1
|
Courtene-Jones W, De Falco F, Burgevin F, Handy RD, Thompson RC. Are Biobased Microfibers Less Harmful than Conventional Plastic Microfibers: Evidence from Earthworms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20366-20377. [PMID: 39498562 PMCID: PMC11580163 DOI: 10.1021/acs.est.4c05856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024]
Abstract
Biobased plastics are sometimes promoted as "environmentally friendly" compared to their conventional petrochemical-based counterparts, but their ecotoxicity is only partially understood. Biobased fibers are widely used in clothing and wet wipes and can accumulate in soils through the application of biosolid fertilizers. This study examined the lethal thresholds and sublethal toxicity of chemically characterized, additive-free, biobased (viscose and lyocell) compared to petrochemical-based (polyester) fibers on the key ecosystem engineer, Esenia fetida. Viscose and lyocell had LC20 values of 14.00 and 22.66 mg·L-1, respectively, and no observed effect concentrations (NOEC) of 0-2.8 mg·L-1 (72 h, OECD TG207 filter paper method), while for polyester these were LC20 15.6-31.3 mg·L-1 and NOEC 0-15.6 mg·L-1. Following 28 days of exposure to soils (OECD TG222) contaminated with environmentally relevant concentrations (100 mg kg-1), viscose significantly reduced the mass of progeny compared to polyester. Earthworms exposed to lyocell had a marginal growth reduction (-18%; compared to -11% to -13% in other treatments) linked to increased bioturbation activity. The biobased fibers examined here have greater acute toxicity at high concentrations and broadly similar sublethal effects on E. fetida compared to polyester. Our study highlights the importance of detailed testing before advocating specific materials as plastic alternatives/substitutes to conventional plastics.
Collapse
Affiliation(s)
- W. Courtene-Jones
- School
of Biological and Marine Sciences, University
of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, U.K.
- School
of Ocean Science, Bangor University, Anglesey LL59 5AB, U.K.
| | - F. De Falco
- School
of Biological and Marine Sciences, University
of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, U.K.
- School
of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, U.K.
| | - F. Burgevin
- Institute
for Sustainability, Department of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - R. D. Handy
- School
of Biological and Marine Sciences, University
of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, U.K.
| | - R. C. Thompson
- School
of Biological and Marine Sciences, University
of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, U.K.
| |
Collapse
|
2
|
Courtene-Jones W, Burgevin F, Munns L, Shillam MBT, De Falco F, Buchard A, Handy RD, Thompson RC, Hanley ME. Deterioration of bio-based polylactic acid plastic teabags under environmental conditions and their associated effects on earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172806. [PMID: 38772795 DOI: 10.1016/j.scitotenv.2024.172806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
In response to the plastic waste crisis, teabag producers have substituted the petrochemical-plastic content of their products with bio-based, biodegradable polymers such as polylactic acid (PLA). Despite widespread use, the degradation rate of PLA/PLA-blended materials in natural soil and their effects on soil biota are poorly understood. This study examined the percentage mass deterioration of teabags with differing cellulose:PLA compositions following burial (-10 cm depth) in an arable field margin for 7-months, using a suite of analytical techniques, such as size exclusion chromatography, 1H nuclear magnetic resonance, dynamic scanning calorimetry, and scanning electron microscopy. The effect of 28-d exposure to teabag discs at environmentally relevant concentrations (0.02 %, 0.04 % and 0.07 % w/w) on the survival, growth and reproduction (OECD TG 222 protocol) of the key soil detritivore Eisenia fetida was assessed in laboratory trials. After 7-month burial, Tbag-A (2.4:1 blend) and Tbag-B (3.5:1 cellulose:PLA blend) lost 66 ± 5 % and 78 ± 4 % of their total mass, primarily attributed to degradation of cellulose as identified by FTIR spectroscopy and a reduction in the cellulose:PLA mass ratio, while Tbag-C (PLA) remained unchanged. There were clear treatment and dose-specific effects on the growth and reproductive output of E. fetida. At 0.07 % w/w of Tbag-A adult mortality marginally increased (15 %) and both the quantity of egg cocoons and the average mass of juveniles also increased, while at concentrations ≥0.04 % w/w of Tbag-C, the quantity of cocoons was suppressed. Adverse effects are comparable to those reported for non-biodegradable petrochemical-based plastic, demonstrating that bio-based PLA does not offer a more 'environmentally friendly' alternative. Our study emphasises the necessity to better understand the environmental fate and ecotoxicity of PLA/PLA-blends to ensure interventions developed through the UN Plastic Pollution Treaty to use alternatives and substitutes to conventional plastics do not result in unintended negative consequences.
Collapse
Affiliation(s)
- W Courtene-Jones
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK.
| | - F Burgevin
- Institute for Sustainability, Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - L Munns
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - M B T Shillam
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - F De Falco
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK; School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, PL4 8AA Plymouth, Devon, UK
| | - A Buchard
- Institute for Sustainability, Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - R D Handy
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - R C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - M E Hanley
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| |
Collapse
|
3
|
Ge Y, Huang C, Zhou W, Shen Z, Qiao Y. Eisenia fetida impact on cadmium availability and distribution in specific components of the earthworm drilosphere. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112222-112235. [PMID: 37831264 DOI: 10.1007/s11356-023-30335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Although the potential of vermiremediation for restoring metal-contaminated soils is promising, the effects of earthworms on the availability of soil metals are still debatable. Most previous studies considered the soil as a "whole black box." Mobilization or immobilization of metals are affected by earthworm activities within drilosphere hotspots under different soil conditions, which has not been specifically studied. Therefore, an improved 2D terrarium was designed to study the impact of earthworm activities on cadmium (Cd) fate in the drilosphere hotspots (burrow wall soils, burrow casts, and surface casts) of different artificially spiked Cd treatments (CK: 0 mg kg-1; LM: 1 mg kg-1; and HM: 5 mg kg-1) with different organic amendments (2% and 10%). The results revealed that Cd increased earthworm activities with the highest cast production in HM and the highest burrow length in LM. Earthworms exhibited a stronger tendency to reduce total Cd concentration by 4.48-13.58% in casts of LM soils, while 3.37-5.22% in burrow walls under HM treatments. Overall, earthworms could increase the availability of Cd in casts under all conditions (55.46-121.01%). The organic amendments decreased the total Cd concentration and increased the availability of Cd in the disturbed soil. A higher amount of organic amendment significantly decreased total Cd concentration of the drilosphere by 1.16-5.83% in LM and HM treatments, while increasing DTPA-Cd concentrations in all components by 23.13-55.20 %, 14.63-35.11%, and 3.30-11.41% in CK, LM, and HM treatments, respectively, except for earthworm non-disturbed soil and no-earthworm soil in HM treatments. Redundancy analysis (RDA) revealed that the moisture, pH, and total carbon contents in soil are the main factors affecting Cd bioavailability. In this study, we decoded the "black box" of soil by making it relatively simple to better understand the effects and mechanisms of earthworm activities on soil metal availability and consequently provided comprehensive insights for using earthworms in soil vermiremediation.
Collapse
Affiliation(s)
- Yan Ge
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Caide Huang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Wenhao Zhou
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Shen
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Yuhui Qiao
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Bosch S, Botha TL, Wepener V. Influence of different functionalized CdTe quantum dots on the accumulation of metals, developmental toxicity and respiration in different development stages of the zebrafish ( Danio rerio). FRONTIERS IN TOXICOLOGY 2023; 5:1176172. [PMID: 37200940 PMCID: PMC10185758 DOI: 10.3389/ftox.2023.1176172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction: The bioaccumulation and differential effects of cadmium tellurium quantum dot (CdTe QDs) nanomaterials with different functional groups are poorly understood in aquatic organisms. This study aimed to investigate the metal uptake, developmental effects, and respiratory effects of CdTe QDs with different functional groups (COOH, NH3, and PEG) on zebrafish embryos. Methods: Zebrafish embryos were exposed to carboxylate (COOH), ammonia (NH3), and polyethylene glycol (PEG) functionalized CdTe QDs at nominal concentrations of 0.5, 2, 4, 6, and 20 mg QDs/L. The materials were characterized in E3 exposure media and the metal uptake, developmental effects, and respiratory effects of zebrafish embryos were recorded. Results: The total Cd or Te concentrations in the larvae could not be explained by the metal concentrations or dissolution of the materials in the exposure media. The metal uptake in the larvae was not dose-dependent, except for the QD-PEG treatment. The QD-NH3 treatment caused respiration inhibition at the highest exposure concentration and hatching delays and severe malformations at low concentrations. The toxicities observed at low concentrations were attributed to particles crossing the pores in the chorion, and toxicities at higher concentrations were linked to the aggregation of particle agglomerates to the surface of the chorion impairing respiration. Developmental defects were recorded following exposure to all three functional groups, but the QD-NH3 group had the most severe response. The LC50 values for embryo development of QD-COOH and QD-PEG groups were higher than 20 mg/L, and the LC50 of the QD-NH3 group was 20 mg/L. Discussion: The results of this study suggest that CdTe QDs with different functional groups have differential effects on zebrafish embryos. The QD-NH3 treatment caused the most severe effects, including respiration inhibition and developmental defects. These findings provide valuable information for understanding the effects of CdTe QDs on aquatic organisms and highlight the need for further investigation.
Collapse
Affiliation(s)
- Suanne Bosch
- Water Research Group, School of Biological Sciences, North-West University, Potchefstroom, South Africa
- *Correspondence: Suanne Bosch,
| | - Tarryn Lee Botha
- Water Research Group, School of Biological Sciences, North-West University, Potchefstroom, South Africa
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Victor Wepener
- Water Research Group, School of Biological Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Adeel M, Shakoor N, Shafiq M, Pavlicek A, Part F, Zafiu C, Raza A, Ahmad MA, Jilani G, White JC, Ehmoser EK, Lynch I, Ming X, Rui Y. A critical review of the environmental impacts of manufactured nano-objects on earthworm species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118041. [PMID: 34523513 DOI: 10.1016/j.envpol.2021.118041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/07/2021] [Accepted: 08/23/2021] [Indexed: 05/27/2023]
Abstract
The presence of manufactured nano-objects (MNOs) in various consumer or their (future large-scale) use as nanoagrochemical have increased with the rapid development of nanotechnology and therefore, concerns associated with its possible ecotoxicological effects are also arising. MNOs are releasing along the product life cycle, consequently accumulating in soils and other environmental matrices, and potentially leading to adverse effects on soil biota and their associated processes. Earthworms, of the group of Oligochaetes, are an ecologically significant group of organisms and play an important role in soil remediation, as well as acting as a potential vector for trophic transfer of MNOs through the food chain. This review presents a comprehensive and critical overview of toxic effects of MNOs on earthworms in soil system. We reviewed pathways of MNOs in agriculture soil environment with its expected production, release, and bioaccumulation. Furthermore, we thoroughly examined scientific literature from last ten years and critically evaluated the potential ecotoxicity of 16 different metal oxide or carbon-based MNO types. Various adverse effects on the different earthworm life stages have been reported, including reduction in growth rate, changes in biochemical and molecular markers, reproduction and survival rate. Importantly, this literature review reveals the scarcity of long-term toxicological data needed to actually characterize MNOs risks, as well as an understanding of mechanisms causing toxicity to earthworm species. This review sheds light on this knowledge gap as investigating bio-nano interplay in soil environment improves our major understanding for safer applications of MNOs in the agriculture environment.
Collapse
Affiliation(s)
- Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University Zhuhai Subcampus, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, PR China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Muhammad Shafiq
- University of Guadalajara-University Center for Biological and Agricultural Sciences, Camino Ing. Ramón Padilla Sánchez núm. 2100, La Venta del Astillero, Zapopan, Jalisco, CP. 45110, Mexico
| | - Anna Pavlicek
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria; Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190, Vienna, Austria
| | - Florian Part
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria; Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190, Vienna, Austria
| | - Christian Zafiu
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria
| | - Ali Raza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38000, Pakistan
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Ghulam Jilani
- Institute of Soil Science, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Eva-Kathrin Ehmoser
- Department of Water-Atmosphere-Environment, Institute of Waste Management, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Xu Ming
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University Zhuhai Subcampus, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, PR China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
6
|
Recent advances in electrochemiluminescence luminophores. Anal Bioanal Chem 2021; 414:131-146. [PMID: 33893832 DOI: 10.1007/s00216-021-03329-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Electrochemiluminescence (ECL) has continued to receive considerable attention in various applications, owing to its intrinsic advantages such as near-zero background response, wide dynamic range, high sensitivity, simple instrumentation, and low cost. The ECL luminophore is one of the most significant components during the light generation processes. Despite significant progress that has been made in the synthesis of new luminophores and their roles in resolving various challenges, there are few comprehensive summaries on ECL luminophores. In this review, we discuss some of the recent advances in organic, metal complexes, nanomaterials, metal oxides, and near-infrared ECL luminophores. We also emphasize their roles in tackling various challenges with illustrative examples that have been reported in the last few years. Finally, perspective and some unresolved challenges in ECL that can potentially be addressed by introducing new luminophores have also been discussed. Graphical abstract.
Collapse
|