1
|
Khan AL. Silicon: A valuable soil element for improving plant growth and CO 2 sequestration. J Adv Res 2024:S2090-1232(24)00217-0. [PMID: 38806098 DOI: 10.1016/j.jare.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Silicon (Si), the second most abundant and quasi-essential soil element, is locked as a recalcitrant silicate mineral in the Earth's crust. The physical abundance of silicates can play an essential role in increasing plant productivity. Plants store Si as biogenic silica (phytoliths), which is mobilized through a chemical weathering process in the soil. AIM OF REVIEW Although Si is a critical element for plant growth, there is still a considerable need to understand its dissolution, uptake, and translocation in agroecosystems. Here, we show recent progress in understanding the interactome of Si, CO2, the microbiome, and soil chemistry, which can sustainably govern silicate dissolution and cycling in agriculture. KEY SCIENTIFIC CONCEPTS OF THIS REVIEW Si cycling is directly related to carbon cycling, and the resulting climate stability can be enhanced by negative feedback between atmospheric CO2 and the silicate uptake process. Improved Si mobilization in the rhizosphere by the presence of reactive elements (for example, Ca, Na, Al, Zn, and Fe) and Si uptake through genetic transporters in plants are crucial to achieving the dual objectives of (i) enhancing crop productivity and (ii) abiotic stress tolerance. Furthermore, the microbiome is a symbiotic partner of plants. Bacterial and fungal microbiomes can solubilize silicate minerals through intriguingly complex bioweathering mechanisms by producing beneficial metabolites and enzymes. However, the interaction of Si with CO2 and the microbiome's function in mobilization have been understudied. This review shows that enhancing our understanding of Si, CO2, the microbiome, and soil chemistry can help in sustainable crop production during climatic stress events.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston TX, USA.
| |
Collapse
|
2
|
Chan-in P, Jamjod S, Prom-u-thai C, Rerkasem B, Russell J, Pusadee T. Application of Silicon Influencing Grain Yield and Some Grain Quality Features in Thai Fragrant Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:1336. [PMID: 38794407 PMCID: PMC11125221 DOI: 10.3390/plants13101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Silicon (Si) is a beneficial nutrient that has been shown to increase rice productivity and grain quality. Fragrant rice occupies the high end of the rice market with prices at twice to more than three times those of non-fragrant rice. Thus, this study evaluated the effects of increasing Si on the yield and quality of fragrant rice. Also measured were the content of proline and the expression of the genes associated with 2AP synthesis and Si transport. The fragrant rice varieties were found to differ markedly in the effect of Si on their quality, as measured by the grain 2AP concentration, while there were only slight differences in their yield response to Si. The varieties with low 2AP when the Si supply is limited are represented by either PTT1 or BNM4 with only slight increases in 2AP when Si was increased. Si affects the gene expression levels of the genes associated with 2AP synthesis, and the accumulation of 2AP in fragrant rice mainly occurred through the upregulation of Badh2, DAO, OAT, ProDH, and P5CS genes. The findings suggest that Si is a potential micronutrient that can be utilized for improving 2AP and grain yield in further aromatic rice breeding programs.
Collapse
Affiliation(s)
- Phukjira Chan-in
- Plant Genetic Resource and Nutrition Lab (CMUPNLab), Division of Agronomy, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.-i.); (S.J.); (C.P.-u.-t.)
| | - Sansanee Jamjod
- Plant Genetic Resource and Nutrition Lab (CMUPNLab), Division of Agronomy, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.-i.); (S.J.); (C.P.-u.-t.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chanakan Prom-u-thai
- Plant Genetic Resource and Nutrition Lab (CMUPNLab), Division of Agronomy, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.-i.); (S.J.); (C.P.-u.-t.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Benjavan Rerkasem
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Joanne Russell
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD25DA, UK;
| | - Tonapha Pusadee
- Plant Genetic Resource and Nutrition Lab (CMUPNLab), Division of Agronomy, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.C.-i.); (S.J.); (C.P.-u.-t.)
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand;
- Agrobiodiversity in Highland and Sustainable Utilization Research Group, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Dabravolski SA, Isayenkov SV. The Physiological and Molecular Mechanisms of Silicon Action in Salt Stress Amelioration. PLANTS (BASEL, SWITZERLAND) 2024; 13:525. [PMID: 38498577 PMCID: PMC10893008 DOI: 10.3390/plants13040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Salinity is one of the most common abiotic stress factors affecting different biochemical and physiological processes in plants, inhibiting plant growth, and greatly reducing productivity. During the last decade, silicon (Si) supplementation was intensively studied and now is proposed as one of the most convincing methods to improve plant tolerance to salt stress. In this review, we discuss recent papers investigating the role of Si in modulating molecular, biochemical, and physiological processes that are negatively affected by high salinity. Although multiple reports have demonstrated the beneficial effects of Si application in mitigating salt stress, the exact molecular mechanism underlying these effects is not yet well understood. In this review, we focus on the localisation of Si transporters and the mechanism of Si uptake, accumulation, and deposition to understand the role of Si in various relevant physiological processes. Further, we discuss the role of Si supplementation in antioxidant response, maintenance of photosynthesis efficiency, and production of osmoprotectants. Additionally, we highlight crosstalk of Si with other ions, lignin, and phytohormones. Finally, we suggest some directions for future work, which could improve our understanding of the role of Si in plants under salt stress.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel;
| | - Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle, Germany
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Baidi-Vyshneveckogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
4
|
Jiang H, Wang H, Qian C, Yang Z, Yang D, Cui J. A New Type of Quantum Fertilizer (Silicon Quantum Dots) Promotes the Growth and Enhances the Antioxidant Defense System in Rice Seedlings by Reprogramming the Nitrogen and Carbon Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2526-2535. [PMID: 38277640 DOI: 10.1021/acs.jafc.3c08112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
To promote the growth and yield of crops, it is necessary to develop an effective silicon fertilizer. Herein, a new type of 2 nm silicon quantum dot (SiQD) was developed, and the phenotypic, biochemical, and metabolic responses of rice seedlings treated with SiQDs were investigated. The results indicated that the foliar application of SiQDs could significantly improve the growth of rice seedlings by increasing the uptake of nutrient elements and activating the antioxidative defense system. Furthermore, metabolomics revealed that the supply of SiQDs could significantly up-regulate several antioxidative metabolites (oxalic acid, maleic acid, glycine, lysine, and proline) by reprogramming the nitrogen- and carbon-related biological pathways. The findings provide a new strategy for developing an effective and promising quantum fertilizer in agriculture.
Collapse
Affiliation(s)
- Hao Jiang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Haodong Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Cancan Qian
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zhenlong Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Desong Yang
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jianghu Cui
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
5
|
Pang Z, Zhu Y, Guan DX, Wang Y, Peng H, Liang Y. Unveiling mechanisms of silicon-mediated resistance to chromium stress in rice using a newly-developed hierarchical system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108368. [PMID: 38237424 DOI: 10.1016/j.plaphy.2024.108368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 03/16/2024]
Abstract
Silicon (Si) has been well-known to enhance plant resistance to heavy-metal stress. However, the mechanisms by which silicon mitigates heavy-metal stress in plants are not clear. In particular, information regarding the role of Si in mediating resistance to heavy-metal stress at a single cell level is still lacking. Here, we developed a hierarchical system comprising the plant, protoplast, and suspension cell subsystems to investigate the mechanisms by which silicon helps to alleviate the toxic effects of trivalent chromium [Cr(III)] in rice. Our results showed that in whole-plant subsystem silicon reduced shoot Cr(III) concentration, effectively alleviating Cr(III) stress in seedlings and causing changes in antioxidant enzyme activities similar to those observed at lower Cr(III) concentrations without silicon added. However, in protoplast subsystem lacking the cell wall, no silicon deposition occurred, leading to insignificant changes in cell survival or antioxidation processes under Cr(III) stress. Conversely, in suspension cell subsystem, silicon supplementation substantially improved cell survival and changes in antioxidant enzyme activities under Cr(III) stress. This is due to the fact that >95% of silicon was on the cell wall, reducing Cr(III) concentration in cells by 7.7%-10.4%. Collectively, the results suggested that the silicon deposited on the cell wall hindered Cr(III) bio-uptake, which consequently delayed Cr(III)-induced changes in antioxidant enzyme activities. This research emphasizes the significance of cell walls in Si-alleviated heavy-metal stress and deepens our understanding of silicon functioning in plants. Furthermore, the hierarchical system has great potential for application in studying the functioning of other elements in plant cell walls.
Collapse
Affiliation(s)
- Zhihao Pang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yerong Zhu
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Dong-Xing Guan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Pang Z, Yin W, Wang Y, Zeng W, Peng H, Liang Y. Silicon-phosphorus pathway mitigates heavy metal stress by buffering rhizosphere acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166887. [PMID: 37683860 DOI: 10.1016/j.scitotenv.2023.166887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Heavy metal pollution threatens food security, and rhizosphere acidification will increase the bioavailability of heavy metals. As a beneficial element in plants, silicon can relieve heavy metal stress. However, less attention has been paid to its effects on plant rhizosphere processes. Here, we show that for Japonica (Nipponbare and Oochikara) and Indica (Jinzao 47) rice cultivars, the degree of root acidification was significantly reduced after silicon uptake, and the total organic carbon, citric acid, and malic acid concentrations in rice root exudates were significantly reduced. We further confirmed the results by q-PCR that the expressions of proton pump and organic acid secretion genes were down-regulated by 35-61 % after silicon treatment. Intriguingly, phosphorus allocation, an intensively studied mechanism of rhizosphere acidification, was altered by silicon treatment. Specifically, among total phosphorus in rice seedlings, the soluble proportion increased from 52.0 % to 61.7 %, while cell wall phosphorus decreased from 48.0 % to 32.3 %. Additionally, silicon-mediated alleviation of rhizosphere acidification has positive effects on relieving heavy metal stress. Simulation revealed that low acidification of the nutrient solution resulted in a decrease in bioavailable heavy metal concentrations, thereby reducing rice uptake. We further confirmed that the impediment of rhizosphere acidification led to free-state Cr3+ in solutions decreasing by 43 % and contributed up to 63 % of silicon's mitigation of Cr(III) stress. Overall, we propose a novel mechanism in which silicon reduces heavy metal absorption by increasing plant soluble phosphorus concentration and buffering rhizosphere acidification. This paper provides a unique insight into the role of silicon in plants and, more importantly, a theoretical reference for the rational application of silicon fertilizer to improve phosphorus utilization efficiency, alleviate heavy metal stress, and balance soil pH.
Collapse
Affiliation(s)
- Zhihao Pang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weisong Yin
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxiao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Wen Zeng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Zhang Q, Liang L, Jing M, Yan X, Peng Y. Bioleaching of available silicon from coal tailings using Bacillus mucilaginosus: a sustainable solution for soil improvement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93142-93154. [PMID: 37501029 DOI: 10.1007/s11356-023-28921-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
In China, a large amount of soil lack available silicon, which leads to a decrease in crop yield. Furthermore, the solid waste coal tailings contain abundant minerals that are rich in silicon, which have not been fully utilized. In this work, we used Bacillus mucilaginosus as the leaching agent to convert insoluble silicon in coal tailings into available silicon for crop. After single-factor experiments, the optimal leaching conditions with bacterial dosage, coal tailings weight, initial pH, leaching temperature, and shaking speed were obtained. Kinetic analysis showed that the controlling process of the leaching was a chemical reaction. The leaching process was characterized by X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), Fourier transform infrared spectrometer (FT-IR), and high-performance liquid chromatography (HPLC). The results showed that bioleaching is a feasible and efficient method to extract silicon from coal tailings, with a maximum leaching amount of 260 mg L-1 after 16 days, which occupied 93% of the total effective silicon. In conclusion, this work demonstrates that bioleaching technology can effectively solve the problem of the environmental utilization of coal tailings by converting them into a soil improver that can provide beneficial nutrients for crop growth.
Collapse
Affiliation(s)
- Qingshan Zhang
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Long Liang
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Mengjuan Jing
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Xinxin Yan
- Institute of Geochemistry Chinese Academy of Science, Guiyang, 550081, China
| | - Yaoli Peng
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
8
|
Carneiro-Carvalho A, Pinto T, Gomes-Laranjo J, Anjos R. The potential of SiK® fertilization in the resilience of chestnut plants to drought - a biochemical study. FRONTIERS IN PLANT SCIENCE 2023; 14:1120226. [PMID: 37448863 PMCID: PMC10338186 DOI: 10.3389/fpls.2023.1120226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/26/2023] [Indexed: 07/15/2023]
Abstract
Silicon is an essential mineral nutrient, that plays a crucial role in the metabolic, biochemical, and functional mechanisms of many crops under environmental stress. In the current study, we evaluated the effect of SiK® fertilization on the biochemical defense response in plants exposed to water stress. Castanea sativa plants were fertilized with different concentrations of potassium silicate (0, 5, 7.5, and 10 mM of SiK®) and exposed to a non-irrigation phase and an irrigation phase. The results indicate that silicon promoted the synthesis of soluble proteins and decreased the proline content and the oxidative stress (reduced electrolyte leakage, lipid peroxidation, and hydrogen peroxide accumulation) in tissues, due to an increase in ascorbate peroxidase, catalase, and peroxidase activity, which was accompanied by the rise in total phenol compounds and the number of thiols under drought conditions. This study suggests that exogenous Si applications have a protective role in chestnut plants under water deficit by increasing their resilience to this abiotic stress.
Collapse
|
9
|
Wadas W, Kondraciuk T. Effect of Silicon on Micronutrient Content in New Potato Tubers. Int J Mol Sci 2023; 24:10578. [PMID: 37445755 DOI: 10.3390/ijms241310578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Since silicon can improve nutrient uptake in plants, the effect of foliar silicon (sodium metasilicate) application on micronutrient content in early crop potato tuber was investigated. Silicon was applied at dosages of 23.25 g Si∙ha-1 or 46.50 g Si∙ha-1 (0.25 L∙ha-1 or 0.50 L∙ha-1 of Optysil) once at the leaf development stage (BBCH 14-16), or at the tuber initiation stage (BBCH 40-1), and twice, at the leaf development and tuber initiation stages. Potatoes were harvested 75 days after planting (the end of June). Foliar-applied silicon reduced the Fe concentration and increased Cu and Mn concentrations in early crop potato tubers under water deficit conditions but did not affect the Zn, B, or Si concentrations. The dosage and time of silicon application slightly affected the Fe and Cu concentration in the tubers. Under drought conditions, the highest Mn content in the tuber was observed when 46.50 g Si∙ha-1 was applied at the leaf development stage, whereas under periodic water deficits, it was highest with the application of the same silicon dosage at the tuber initiation stage (BBCH 40-41). The Si content in tubers was negatively correlated with the Fe and B content, and positively correlated with the Cu and Mn content.
Collapse
Affiliation(s)
- Wanda Wadas
- Institute of Agriculture and Horticulture, Siedlce University of Natural Sciences and Humanities, B. Prusa 14, 08-110 Siedlce, Poland
| | - Tomasz Kondraciuk
- Institute of Agriculture and Horticulture, Siedlce University of Natural Sciences and Humanities, B. Prusa 14, 08-110 Siedlce, Poland
| |
Collapse
|
10
|
Vidya CSN, Shetty R, Bokor B, Fialová I, Luxová M, Jašková K, Vaculík M. Do Antimonite and Silicon Share the Same Root Uptake Pathway by Lsi1 in Sorghum bicolor L. Moench? PLANTS (BASEL, SWITZERLAND) 2023; 12:2368. [PMID: 37375993 DOI: 10.3390/plants12122368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
A study was conducted to further develop our understanding of antimony (Sb) uptake in plants. Unlike other metal(loid)s, such as silicon (Si), the mechanisms of Sb uptake are not well understood. However, SbIII is thought to enter the cell via aquaglyceroporins. We investigated if the channel protein Lsi1, which aids in Si uptake, also plays a role in Sb uptake. Seedlings of WT sorghum, with normal silicon accumulation, and its mutant (sblsi1), with low silicon accumulation, were grown in Hoagland solution for 22 days in the growth chamber under controlled conditions. Control, Sb (10 mg Sb L-1), Si (1mM) and Sb + Si (10 mg Sb L-1 + 1 mM Si) were the treatments. After 22 days, root and shoot biomass, the concentration of elements in root and shoot tissues, lipid peroxidation and ascorbate levels, and relative expression of Lsi1 were determined. When mutant plants were exposed to Sb, they showed almost no toxicity symptoms compared to WT plants, indicating that Sb was not toxic to mutant plants. On the other hand, WT plants had decreased root and shoot biomass, increased MDA content and increased Sb uptake compared to mutant plants. In the presence of Sb, we also found that SbLsi1 was downregulated in the roots of WT plants. The results of this experiment support the role of Lsi1 in Sb uptake in sorghum plants.
Collapse
Affiliation(s)
- Chirappurathu Sukumaran Nair Vidya
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845 23 Bratislava, Slovakia
| | - Rajpal Shetty
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845 23 Bratislava, Slovakia
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B2, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B2, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
- Comenius University Science Park, SK-841 04 Bratislava, Slovakia
| | - Ivana Fialová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845 23 Bratislava, Slovakia
| | - Miroslava Luxová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845 23 Bratislava, Slovakia
| | - Katarína Jašková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845 23 Bratislava, Slovakia
| | - Marek Vaculík
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845 23 Bratislava, Slovakia
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B2, Ilkovicova 6, SK-842 15 Bratislava, Slovakia
| |
Collapse
|
11
|
Whalen NS, Hunt TC, Erickson GM. Evapotranspiration-linked silica deposition in a basal tracheophyte plant (Lycopodiaceae: Lycopodiella alopecuroides): implications for the evolutionary origins of phytoliths. THE NEW PHYTOLOGIST 2023; 238:2224-2235. [PMID: 36869439 DOI: 10.1111/nph.18861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/24/2023] [Indexed: 05/04/2023]
Abstract
Phytoliths, microscopic deposits of hydrated silica within plants, play a myriad of functional roles in extant tracheophytes - yet their evolutionary origins and the original selective pressures leading to their deposition remain poorly understood. To gain new insights into the ancestral condition of tracheophyte phytolith production and function, phytolith content was intensively assayed in a basal, morphologically conserved tracheophyte: the foxtail clubmoss Lycopodiella alopecuroides. Wet ashing was employed to perform phytolith extractions from every major anatomical region of L. alopecuroides. Phytolith occurrence was recorded, alongside abundance, morphometric information, and morphological descriptions. Phytoliths were recovered exclusively from the microphylls, which were apicodistally silicified into multiphytolith aggregates. Phytolith aggregates were larger and more numerous in anatomical regions engaging in greater evapotranspirational activity. The tissue distribution of L. alopecuroides phytoliths is inconsistent with the expectations of proposed adaptive hypotheses of phytolith evolutionary origin. Instead, it is hypothesized that phytoliths may have arisen incidentally in the L. alopecuroides-like ancestral plant, polymerizing from intraplant silicon accumulations arising via bulk flow and 'leaky' cellular micronutrient channels. This basal, nonadaptive phytolith formation model would provide the evolutionary 'raw material' for later modification into the useful, adaptative, phytolith deposits seen in later-diverging plant clades.
Collapse
Affiliation(s)
- Niall S Whalen
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| | - Tyler C Hunt
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| | - Gregory M Erickson
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32304, USA
| |
Collapse
|
12
|
Pang Z, Mei Y, Nikolic N, Nikolic M, Li T, Peng H, Liang Y. From promoting aggregation to enhancing obstruction: A negative feedback regulatory mechanism of alleviation of trivalent chromium toxicity by silicon in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131720. [PMID: 37257379 DOI: 10.1016/j.jhazmat.2023.131720] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/19/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Trivalent chromium [Cr(III)] is a threat to the environment and crop production. Silicon (Si) has been shown to be effective in mitigating Cr(III) toxicity in rice. However, the mechanisms by which Si reduces Cr(III) uptake in rice are unclear. Herein, we hypothesized that the ability of Si to obstruct Cr(III) diffusion via apoplastic bypass is related to silicic acid polymerization, which may be affected by Cr(III) in rice roots. To test this hypothesis, we employed hydroponics experiments on rice (Oryza sativa L.) and utilized apoplastic bypass tracer techniques, as well as model simulations, to investigate 1) the effect of Si on Cr(III) toxicity and its obstruction capacity via apoplastic bypass, 2) the effect of Cr(III) on silicic acid polymerization, and 3) the relationship between the degree of silicic acid polymerization and its Cr(III) obstruction capacity. We found that Si reversed the damage caused by Cr(III) stress in rice. Si exerted an obstruction effect in the apoplast, significantly decreasing the share of Cr(III) uptake via the apoplastic bypass from 18% to 11%. Moreover, Cr(III) reduced silica particles' radii and increased Si concentration in roots. Modeling revealed that a 5-fold reduction in their radii decreased the diffusion of Cr(III) in apoplast by approximately 17%. We revealed that Cr(III) promoted silicic acid polymerization, resulting in the formation of a higher number of Si particles with a smaller radius in roots, which in turn increased the ability of Si to obstruct Cr(III) diffusion. This negative feedback regulatory mechanism is novel and crucially important for maintaining homeostasis in rice, unveiling the unique role of Si under Cr(III) ion stress and providing a theoretical basis for promoting the use of Si fertilizer in the field.
Collapse
Affiliation(s)
- Zhihao Pang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuchao Mei
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nina Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade, Serbia
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade, Serbia
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Pham CD, Dang MDT, Ly TB, Tran KD, Vo NT, Do NHN, Mai PT, Le PK. A review of the extraction methods and advanced applications of lignin-silica hybrids derived from natural sources. Int J Biol Macromol 2023; 230:123175. [PMID: 36623624 DOI: 10.1016/j.ijbiomac.2023.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
The global trend of increasing energy demand along the large volume of wastewater generated annually from the paper pulping and cellulose production industries are considered as serious dilemma that may need to be solved within these current decades. Within this discipline, lignin, silica or lignin-silica hybrids attained from biomass material have been considered as prospective candidates for the synthesis of advanced materials. In this study, the roles and linking mechanism between lignin and silica in plants were studied and evaluated. The effects of the extraction method on the quality of the obtained material were summarized to show that depending on the biomass feedstocks, different retrieval processes should be considered. The combination of alkaline treatment and acidic pH adjustment is proposed as an effective method to recover lignin-silica with high applicability for various types of raw materials. From considerations of the advanced applications of lignin and silica materials in environmental remediation, electronic devices and rubber fillers future valorizations hold potential in conductive materials and electrochemistry. Along with further studies, this research could not only contribute to the development of zero-waste manufacturing processes but also propose a solution for the fully exploiting of by-products from agricultural production.
Collapse
Affiliation(s)
- Co D Pham
- Refinery and Petrochemicals Technology Research Center (RPTC), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Minh D T Dang
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Tuyen B Ly
- Refinery and Petrochemicals Technology Research Center (RPTC), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ho Chi Minh City, Viet Nam
| | - Khoi D Tran
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Nhi T Vo
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Nga H N Do
- Refinery and Petrochemicals Technology Research Center (RPTC), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Phong T Mai
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
| | - Phung K Le
- Refinery and Petrochemicals Technology Research Center (RPTC), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
14
|
Cui H, Tang S, Huang S, Lei L, Jiang Z, Li L, Wei S. Simultaneous mitigation of arsenic and cadmium accumulation in rice grains by foliar inhibitor with ZIF-8@Ge-132. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160307. [PMID: 36403824 DOI: 10.1016/j.scitotenv.2022.160307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Simultaneous mitigation of Arsenic (As) and Cadmium (Cd) in rice grains is hardly achieved with conventional soil treatments due to their opposite chemical behaviors in paddy soils. This study evaluates the effectiveness of a novel foliar inhibitor with germanium (Ge) -modified zeolitic imidazolate framework (ZIF-8@Ge-132) in cooperative mitigation of As and Cd in rice grains in a As and Cd co-contaminated paddy field, and the effecting mechanisms are elucidated by a series of advanced techniques. The results showed that the grains inorganic As and Cd was remarkably decreased by 45 % and 66 % by the foliar spay of ZIF-8@Ge-132, respectively. ZIF-8@Ge-132 also reduced the As and Cd contents in rice tissues, except for Cd in leaves, where Cd content increased by 148 %. The image-based measurement of plant phenotypic traits and the elements of image analysis using Laser Ablation-ICP-MS (LA-ICP-MS) and Laser Scanning Confocal Microscopy (LSCM) revealed that the possible mechanisms for the reduction of As and Cd in rice grains were as follows: (i) the thickening of the xylem in roots significantly retarded As and Cd absorption by rice plants. (ii) co-accumulation of Ge and Cd in the leaf vascular system likely contributed to the high Cd retention in rice leaves. (iii) antagonistic effects of Zn suppressed the uptake and transport of As in roots/leaves, resulting a lower As accumulation in rice grains.
Collapse
Affiliation(s)
- Hao Cui
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China; Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Shuting Tang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China
| | - Shiqi Huang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China
| | - Lidan Lei
- Chongqing Key Laboratory of Karst Environment, School of Geographical Sciences, Southwest University, Chongqing 400715, PR China
| | - Zhenmao Jiang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China
| | - Lei Li
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China
| | - Shiqiang Wei
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
15
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
16
|
Lv Y, Li J, Chen Z, Liu X, Chen B, Zhang M, Ke X, Zhang TC. Effects of different silicate minerals on silicon activation by Ochrobactium sp. T-07-B. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87393-87401. [PMID: 35809170 DOI: 10.1007/s11356-022-21824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/10/2021] [Indexed: 06/15/2023]
Abstract
As a kind of solid waste with a high silicon content, electrolytic manganese residue (EMR) can be utilized as silicon source by plants through bioleaching processes. EMR contains a variety of silicate minerals. In order to determine the source of available silicon in the bioleaching process of EMR, it is necessary to investigate the influence of silicate minerals in EMR on silicon-activating behavior of specific minerals. In this study, Ochrobactium sp. T-07-B was used to conduct bioleaching experiments on five kinds of silicate minerals with different structures (quartz, muscovite, biotite, olivine, and rhodonite); the growth of Ochrobactium sp. T-07-B, their acid- and polysaccharide-producing capacity, and evolution of surface morphology and structure of the silicate minerals in different systems were determined, so as to explore the silicon-activating capacity of Ochrobactium sp. T-07-B and the selectivity toward different minerals in the bioleaching process. Results showed that the effects of Ochrobactium sp. T-07-B for different silicate minerals were obviously different, and the sequence of silicon-activating efficiency from high to low was as follows: muscovite (65.84 mg·L-1) > biotite (63.84 mg·L-1) > olivine (55.76 mg·L-1) > rhodonite (50.98 mg·L-1) > quartz (23.63 mg·L-1). Results of this study may be of guiding significance for the future research on the silicon-activating behavior of solid waste.
Collapse
Affiliation(s)
- Ying Lv
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd, Beijing, 100088, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Jia Li
- College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Zhenxing Chen
- College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xingyu Liu
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- GRIMAT Engineering Institute Co., Ltd, Beijing, 101407, China
| | - Bowei Chen
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- GRIMAT Engineering Institute Co., Ltd, Beijing, 101407, China
| | - Mingjiang Zhang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd, Beijing, 100088, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- GRIMAT Engineering Institute Co., Ltd, Beijing, 101407, China
| | - Xuan Ke
- College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE, 68182, USA
| |
Collapse
|
17
|
Niu Y, Liu L, Wang F, Liu X, Huang Z, Zhao H, Qi B, Zhang G. Exogenous silicon enhances resistance to 1,2,4-trichlorobenzene in rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157248. [PMID: 35820528 DOI: 10.1016/j.scitotenv.2022.157248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental contamination with 1,2,4-trichlorobenzene (TCB) is a threat to rice growth, and ultimately, to human health. Silicon (Si) plays an important role in plants' stress responses. However, little is known about the effects of Si on the TCB tolerance of rice plants. We investigated the effects of Si on the morphological, physiological, and molecular characteristics of rice plants under TCB stress. First, we compared the TCB tolerance of 13 rice cultivars by measuring seven growth-related and 13 physiological indices across four treatments. Then, six cultivars with contrasting TCB tolerance were selected to study the expression of Si transport and detoxification related genes. Compared with the control, the TCB treatment resulted in decreased growth indices, chlorophyll content, and antioxidant enzyme activities, and increased the superoxide anion content and root electrical conductivity. Application of Si improved rice growth, chlorophyll content and alleviated oxidative damage caused by TCB. The alleviating effect of Si ranged from 4.1 % to 56.72 % among the cultivars, with the strongest alleviating effect on Wuyujing 36. The transcript levels of genes encoding Si transporters and detoxification enzymes were higher in tolerant cultivars than in sensitive cultivars. The TCB treatment induced the expression of GST and Lsi2 in roots and HO-1 in leaves; these genes as well as Lsi1 were differentially expressed in roots and/or leaves in the TCB + Si treatment. Lsi1 played a key role in Si-mediated TCB tolerance in Wuyujing 36. The joint analysis of gene transcript levels in TCB and TCB + Si treatments confirmed that all six genes were associated with TCB tolerance, especially Lsi1 and Lsi2 in roots and GST and CuZn-SOD in leaves. Si can increase rice plants' resistance to TCB stress by improving growth and enhancing superoxide dismutase (SOD) activity and chlorophyll content, and by up-regulating genes involved in Si transport and detoxification.
Collapse
Affiliation(s)
- Yuan Niu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Le Liu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Fang Wang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xinhai Liu
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhiwei Huang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Hongliang Zhao
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Bo Qi
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Guoliang Zhang
- School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China; State Key Laboratory of soil and agricultural sustainable development, Nanjing 210008, China; Jiangsu Key Laboratory of Attapulgite Clay Resource Utilization, Huai'an 223003, China.
| |
Collapse
|
18
|
Silicon modifies C:N:P stoichiometry and improves the physiological efficiency and dry matter mass production of sorghum grown under nutritional sufficiency. Sci Rep 2022; 12:16082. [PMID: 36167895 PMCID: PMC9515215 DOI: 10.1038/s41598-022-20662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Silicon (Si) may be involved in the modification of C:N:P stoichiometry and in physiological processes, increasing sorghum growth and grain production. The objective was to evaluate the effect of Si supply on C:N:P:Si stoichiometry, physiological response, growth, and grain production of sorghum. The experiment was carried out in pots with four concentrations of Si: 0; 1.2; 2.4; and 3.6 mmol L−1 in a completely randomized design, with six replicates. Physiological attributes and dark green color index were measured and grain and biomass production were determined. Posteriorly, the plant material was ground to determine silicon (Si), carbon (C), nitrogen (N), and phosphorus (P) contents in order to analyze C:N:P:Si stoichiometry. C:Si and C:N ratios decreased at all Si concentrations applied (1.2, 2.4, and 3.6 mmol L−1) and in all plant parts studied, being lower at 3.6 mmol L−1. The lowest C:P ratios of leaves and roots were observed at 3.6 mmol L−1 Si and the lowest C:P ratio of stems was observed at 1.2 mmol L−1 Si. Si concentrations were not significant for the N:P ratio of leaves. The highest N:P ratio of stems was observed at 3.6 mmol L−1, while the lowest N:P ratio of roots was observed at 2.4 and 3.6 mmol L−1. Regardless of photosynthetic parameters, the application of 1.2 mmol L−1 Si enhanced photosynthetic rate. The application of 2.4 and 3.6 mmol L−1 enhanced stomatal conductance and dark green color index. The mass of 1000 grains was not influenced by Si applications, while Si applications at all concentrations studied (1.2, 2.4, and 3.6 mmol L−1) enhanced shoot and total dry matter, not affecting root dry matter and grain production. In conclusion, Si supply modifies C:N:P:Si stoichiometry and increases physiologic parameters, growth, development, and grain production in sorghum.
Collapse
|
19
|
Elemental Profiles of Wild Thymus L. Plants Growing in Different Soil and Climate Conditions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plants of the genus Thymus L. are traditionally used in medicine and cooking due to the presence of biologically active compounds in them that have fungicidal, antibacterial and other medicinal properties and original taste qualities. Genetic features and growing conditions cause the elemental composition, responsibly of the synthesised medicinal compounds. However, information on the contents and distributions of elements in the organs of Thymus L. is very limited. This study was to set and compare the elements in organs of wild thyme for different soil and climatic conditions. Two species of wild Thymus L. from Mongolian steppe and on the coast of Lake Baikal were collected during flowering. Twenty-four elements, including Si, in soils, roots, stems, leaves and flowers were simultaneously determined by atomic emission spectrometry. Elemental profiles of two species of wild Thymus L. are described. It is assumed that Si is a necessary element of the plant. The predominance of the genetic resistance of plants over the influence of soil and climatic conditions is shown.
Collapse
|
20
|
Understanding the Relationship between Water Availability and Biosilica Accumulation in Selected C4 Crop Leaves: An Experimental Approach. PLANTS 2022; 11:plants11081019. [PMID: 35448747 PMCID: PMC9031050 DOI: 10.3390/plants11081019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
Biosilica accumulation in plant tissues is related to the transpiration stream, which in turn depends on water availability. Nevertheless, the debate on whether genetically and environmentally controlled mechanisms of biosilica deposition are directly connected to water availability is still open. We aim at clarifying the system which leads to the deposition of biosilica in Sorghum bicolor, Pennisetum glaucum, and Eleusine coracana, expanding our understanding of the physiological role of silicon in crops well-adapted to arid environments, and simultaneously advancing the research in archaeological and paleoenvironmental studies. We cultivated ten traditional landraces for each crop in lysimeters, simulating irrigated and rain-fed scenarios in arid contexts. The percentage of biosilica accumulated in leaves indicates that both well-watered millet species deposited more biosilica than the water-stressed ones. By contrast, sorghum accumulated more biosilica with respect to the other two species, and biosilica accumulation was independent of the water regime. The water treatment alone did not explain either the variability of the assemblage or the differences in the biosilica accumulation. Hence, we hypothesize that genetics influence the variability substantially. These results demonstrate that biosilica accumulation differs among and within C4 species and that water availability is not the only driver in this process.
Collapse
|
21
|
Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na + uptake. Sci Rep 2022; 12:5089. [PMID: 35332196 PMCID: PMC8948228 DOI: 10.1038/s41598-022-09061-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
Silicon (Si) effectively alleviates the effects of salt stress in plants and can enhance salt tolerance in liquorice. However, the mechanisms by which Si improved salt tolerance in liquorice and the effects of foliar application of Si on different liquorice species under salt stress are not fully understood. We investigated the effects of foliar application of Si on the growth, physiological and biochemical characteristics, and ion balance of two liquorice species, Glycyrrhiza uralensis and G. inflata. High salt stress resulted in the accumulation of a large amount of Na+, decreased photosynthetic pigment concentrations, perturbed ion homeostasis, and eventually inhibited both liquorice species growth. These effects were more pronounced in G. uralensis, as G. inflata is more salt tolerant than G. uralensis. Foliar application of Si effectively reduced the decomposition of photosynthetic pigments and improved gas exchange parameters, thereby promoting photosynthesis. It also effectively inhibited lipid peroxidation and leaf electrolyte leakage and enhanced osmotic adjustment of the plants. Furthermore, Si application increased the K+ concentration and reduced Na+ absorption, transport, and accumulation in the plants. The protective effects of Si were more pronounced in G. uralensis than in G. inflata. In conclusion, Si reduces Na+ absorption, improves ion balance, and alleviates the negative effects of salt stress in the two liquorice species studied, but the effect is species dependent. These findings may help to develop novel strategies for protecting liquorice plants against salt stress and provide a theoretical basis for the evaluation of salt tolerance and the scientific cultivation of liquorice.
Collapse
|
22
|
Mavrič Čermelj A, Golob A, Vogel-Mikuš K, Germ M. Silicon Mitigates Negative Impacts of Drought and UV-B Radiation in Plants. PLANTS (BASEL, SWITZERLAND) 2021; 11:91. [PMID: 35009094 PMCID: PMC8747213 DOI: 10.3390/plants11010091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/24/2021] [Indexed: 05/31/2023]
Abstract
Due to climate change, plants are being more adversely affected by heatwaves, floods, droughts, and increased temperatures and UV radiation. This review focuses on enhanced UV-B radiation and drought, and mitigation of their adverse effects through silicon addition. Studies on UV-B stress and addition of silicon or silicon nanoparticles have been reported for crop plants including rice, wheat, and soybean. These have shown that addition of silicon to plants under UV-B radiation stress increases the contents of chlorophyll, soluble sugars, anthocyanins, flavonoids, and UV-absorbing and antioxidant compounds. Silicon also affects photosynthesis rate, proline content, metal toxicity, and lipid peroxidation. Drought is a stress factor that affects normal plant growth and development. It has been frequently reported that silicon can reduce stress caused by different abiotic factors, including drought. For example, under drought stress, silicon increases ascorbate peroxidase activity, total soluble sugars content, relative water content, and photosynthetic rate. Silicon also decreases peroxidase, catalase, and superoxide dismutase activities, and malondialdehyde content. The effects of silicon on drought and concurrently UV-B stressed plants has not yet been studied in detail, but initial studies show some stress mitigation by silicon.
Collapse
Affiliation(s)
- Anja Mavrič Čermelj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (A.G.); (K.V.-M.); (M.G.)
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (A.G.); (K.V.-M.); (M.G.)
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (A.G.); (K.V.-M.); (M.G.)
- Jozef Stefan Institut, Jamova 39, 1000 Ljubljana, Slovenia
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia; (A.G.); (K.V.-M.); (M.G.)
| |
Collapse
|
23
|
Lv Y, Li J, Liu X, Chen B, Zhang M, Chen Z, Zhang TC. Screening of silicon-activating bacteria and the activation mechanism of silicon in electrolytic manganese residue. ENVIRONMENTAL RESEARCH 2021; 202:111659. [PMID: 34246642 DOI: 10.1016/j.envres.2021.111659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/29/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Electrolytic manganese residue (EMR) is a kind of solid waste with a high silicon content. Most of the silicon in EMR, however, exist in the state of SiO2, which cannot be directly absorbed by plants. Currently, it is very challenge to recover the silicon from EMR. In this study, a preliminary screening of strains with silicon-activating ability was conducted, and four strains were screened out and isolated from the soil around the tailings pond of EMR. Then, single factor experiments were conducted to obtain the optimal growth conditions of the four strains, and the results indicated that the Ochrobactrum sp. T-07 had the best silicon-activating ability from EMR after nitrosoguanidine mutagenesis (Ochrobactrum sp. T-07-B). The available silicon (in terms of SiO2) in the leaching solution was up to 123.88 mg L-1, which was significantly higher than that produced by Bacillus circulans and Paenibacillus mucilaginosus, the two commercial available pure culture strains. Results of direct/indirect contact experiments between Ochrobactrum sp. T-07-B and EMR revealed that bioleaching was promoted under the synergistic effect of bacteria growth on the surface of and metabolism within EMR. The newly isolated strains with silicon-activating effect are different from the existing-known silicate bacteria and may be used for more efficient silicon activation in silicate minerals.
Collapse
Affiliation(s)
- Ying Lv
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd., Beijing, 100088, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing, 101407, China; General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Jia Li
- College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Xingyu Liu
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd., Beijing, 100088, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing, 101407, China.
| | - Bowei Chen
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd., Beijing, 100088, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing, 101407, China
| | - Mingjiang Zhang
- National Engineering Laboratory of Biohydrometallurgy, GRINM Group Co., Ltd., Beijing, 100088, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing, 101407, China
| | - Zhenxing Chen
- College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Tian C Zhang
- Civil Engineering Department, University of Nebraska-Lincoln (Omaha Campus), Omaha, NE, 68182, USA
| |
Collapse
|
24
|
Basu S, Kumar G. Exploring the significant contribution of silicon in regulation of cellular redox homeostasis for conferring stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:393-404. [PMID: 34153883 DOI: 10.1016/j.plaphy.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/04/2021] [Indexed: 05/28/2023]
Abstract
Silicon (Si), a bioactive metalloid is beneficial for plant growth and development. It also plays a key role in the amelioration of different abiotic and biotic stresses. Extensive studies have elucidated the morpho-physiological, biochemical and molecular background of Si-mediated stress tolerance in plants. However, the mechanism acquired by Si to enhance stress tolerance in plants is still unheeded. Present review summarized the prospective mechanisms of Si in acquisition of stress tolerance with emphasis on its interactions with secondary messengers. Silicon usually modulates the different gene expressions in plants under stress conditions rather than acting as a direct signal or secondary messengers. Silicon regulates the production and accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in plants under stress conditions. Furthermore, Si also activates the antioxidant defence system in plants; thereby, maintaining the cellular redox homeostasis and preventing the oxidative damage of cells. Silicon also up-regulates the synthesis of hydrogen sulfide (H2S) or acts synergistically with nitric oxide (NO), consequently conferring stress tolerance in plants. Overall, the review may provide a progressive understanding of the role of Si in conservation of the redox homeostasis in plants.
Collapse
Affiliation(s)
- Sahana Basu
- Department of Biotechnology, Assam University, Silchar, 788011, Assam, India
| | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Gaya, 824236, Bihar, India.
| |
Collapse
|
25
|
Pre- and/or Postharvest Silicon Application Prolongs the Vase Life and Enhances the Quality of Cut Peony ( Paeonia lactiflora Pall.) Flowers. PLANTS 2021; 10:plants10081742. [PMID: 34451787 PMCID: PMC8398881 DOI: 10.3390/plants10081742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022]
Abstract
Peony is an important ornamental plant and has become increasingly popular for cut flower cultivation. However, a short vase life and frequent poor vase quality severely restrict its market value. The study described herein was conducted to investigate the effects of silicon application on the vase life and quality of two cut peony (Paeonia lactiflora Pall.) cultivars, ‘Taebaek’ and ‘Euiseong’. For pre- and/or postharvest silicon application, four experimental groups based on treatments were designed. With silicon treatment, the relevant growth attributes, including the shoot and leaf lengths, stem and bud diameters as well as the leaf width were all remarkably increased. In the postharvest storage, the addition of silicon to the holding solution in the vase was able to significantly extend vase life, delay fresh weight decrease, and improve vase quality, as characterized by the antioxidant enzyme activities and mechanical stem strength. Taken together, silicon application, regardless of the approach, was able to effectively prolong the vase life and enhance the quality of cut peony flowers.
Collapse
|
26
|
Pontigo S, Larama G, Parra-Almuna L, Nunes-Nesi A, Mora MDLL, Cartes P. Physiological and molecular insights involved in silicon uptake and transport in ryegrass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:308-316. [PMID: 33895436 DOI: 10.1016/j.plaphy.2021.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
The silicon (Si) uptake system of two ryegrass (Lolium perenne L.) cultivars was characterised by assessing the concentration- and time-dependent kinetics. Additionally, a Si transporter gene was isolated from ryegrass and their expression pattern was analysed. The concentration-dependent kinetics was examined in Jumbo and Nui cultivars supplied with 0, 0.5, 1.0, 2.0, and 4.0 mM Si and harvested at 24 h and 21 d. The time-dependent kinetics was evaluated at 0, 0.5, or 2 mM Si doses after 0, 3, 6, 9, 12, and 24 h. RACE-PCR was performed to isolate a full-length sequence codifying for a Si transporter, and semi-quantitative and quantitative RT-PCR was used to analyse its expression pattern. Differential Si uptake between ryegrass cultivars was found. Moreover, Lineweaver-Burk linearization showed similar Vmax values between cultivars; however, different Km suggested that Jumbo and Nui may have different affinities for silicic acid. The dissimilarities in Km between cultivars might involve either the differential contribution of known proteins responsible for Si uptake and transport or the involvement of undiscovered Si transporters. We identified a putative Si transporter from ryegrass Nui (LpLsi1), which was only expressed in roots and down-regulated by Si supply. The predicted amino acid sequence of LpLsi1 did not only show a high similarity and close phylogenetic relationship with monocot Si influx transporters but also indicated that it is a membrane protein possessing a high conservation of domains essential for silicic acid selectivity. Our findings provide evidence of LpLsi1 in ryegrass, which supports its high Si accumulation capacity.
Collapse
Affiliation(s)
- Sofía Pontigo
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar, 01145, Temuco, Chile
| | - Giovanni Larama
- Centro de Excelencia de Modelación y Computación Científica, Universidad de La Frontera, Avenida Francisco Salazar, 01145, Temuco, Chile
| | - Leyla Parra-Almuna
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar, 01145, Temuco, Chile
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - María de la Luz Mora
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar, 01145, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar, 01145, Temuco, Chile
| | - Paula Cartes
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Avenida Francisco Salazar, 01145, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
27
|
Khan MIR, Ashfaque F, Chhillar H, Irfan M, Khan NA. The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:36-47. [PMID: 33667965 DOI: 10.1016/j.plaphy.2021.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/01/2021] [Indexed: 05/28/2023]
Abstract
Unfavorable environmental conditions are the critical inimical to the sustainable agriculture. Among various novel strategies designed to protect plants from abiotic stress threats, use of mineral elements as 'stress mitigators' has emerged as the most crucial and interesting aspect. Silicon (Si) is a quasi-essential nutrient that mediates plant growth and development and interacts with plant growth regulators (PGRs) and signaling molecules to combat abiotic stress induced adversities in plants and increase stress tolerance. PGRs are one of the most important chemical messengers that mediate plant growth and development during stressful conditions. However, the individual roles of Si and PGRs have extensively defined but their exquisite crosstalk with each other to mediate plant stress responses is still indiscernible. The present review is an upfront effort to delineate an intricate crosstalk/interaction between Si and PGRs to reduce abiotic stress adversities. The combined effects of interaction of Si with other signaling molecules such as reactive oxygen species (ROS), nitric oxide (NO) and calcium (Ca2+) for the survival of plants under stress and optimal conditions are also discussed.
Collapse
Affiliation(s)
| | - Farha Ashfaque
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | - Mohammad Irfan
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, New Jersey, USA
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
28
|
Cheng B, Chen F, Wang C, Liu X, Yue L, Cao X, Wang Z, Xing B. The molecular mechanisms of silica nanomaterials enhancing the rice (Oryza sativa L.) resistance to planthoppers (Nilaparvata lugens Stal). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144967. [PMID: 33636776 DOI: 10.1016/j.scitotenv.2021.144967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Herein, fluorescent silica (F-SiO2) ENMs (50 nm) were synthesized, which could be taken up and translocated from rice root to shoot, promoting the plant growth and resistance to planthopper compared with Si ion fertilizers under hydroponic conditions. Particularly, upon exposure F-SiO2 ENMs (5 mg‧L-1) suspension for 9 days, the fresh and dry weight (FW and DW) of shoot, the root length, surface area, and tip number were increased by 33.58%, 65.22%, 15.26%, 20.26% and 29.01%, respectively. Notably, in the presence of planthopper, the shoot FW and DW still increased by 61.88% and 114.75%, respectively. The increased lignin content (by 30.13%) and formation of silica cells in stem after F-SiO2 ENMs exposure (5 mg‧L-1) could be mechanical barriers against planthoppers. The transcriptome data revealed that F-SiO2 ENMs could upregulate the expression of genes involved in plant-pathogen interactions, plant hormone signal transduction, glucose metabolism and carbon fixation pathway, promoting the growth and resistance of rice seedlings. Our findings provide first evidence for the underlying molecular mechanisms of SiO2 ENMs enhancing the rice resistance to planthopper.
Collapse
Affiliation(s)
- Bingxu Cheng
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaofei Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
29
|
Acevedo FE, Peiffer M, Ray S, Tan CW, Felton GW. Silicon-Mediated Enhancement of Herbivore Resistance in Agricultural Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:631824. [PMID: 33679847 PMCID: PMC7928372 DOI: 10.3389/fpls.2021.631824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/18/2021] [Indexed: 06/06/2023]
Abstract
Silicon (Si) is a beneficial mineral that enhances plant protection against abiotic and biotic stresses, including insect herbivores. Si increases mechanical and biochemical defenses in a variety of plant species. However, the use of Si in agriculture remains poorly adopted despite its widely documented benefits in plant health. In this study, we tested the effect of Si supplementation on the induction of plant resistance against a chewing herbivore in crops with differential ability to accumulate this element. Our model system comprised the generalist herbivore fall armyworm (FAW) Spodoptera frugiperda and three economically important plant species with differential ability to uptake silicon: tomato (non-Si accumulator), soybean, and maize (Si-accumulators). We investigated the effects of Si supply and insect herbivory on the induction of physical and biochemical plant defenses, and herbivore growth using potted plants in greenhouse conditions. Herbivory and Si supply increased peroxidase (POX) activity and trichome density in tomato, and the concentration of phenolics in soybean. Si supplementation increased leaf Si concentration in all plants. Previous herbivory affected FAW larval weight gain in all plants tested, and the Si treatment further reduced weight gain of larvae fed on Si accumulator plants. Notably, our results strongly suggest that non-glandular trichomes are important reservoirs of Si in maize and may increase plant resistance to chewing herbivores. We conclude that Si offers transient resistance to FAW in soybean, and a more lasting resistance in maize. Si supply is a promising strategy in management programs of chewing herbivores in Si-accumulator plants.
Collapse
|
30
|
Zhou P, Adeel M, Shakoor N, Guo M, Hao Y, Azeem I, Li M, Liu M, Rui Y. Application of Nanoparticles Alleviates Heavy Metals Stress and Promotes Plant Growth: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E26. [PMID: 33374410 PMCID: PMC7824443 DOI: 10.3390/nano11010026] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/04/2022]
Abstract
Nanotechnology is playing a significant role in addressing a vast range of environmental challenges by providing innovative and effective solutions. Heavy metal (HM) contamination has gained considerable attention in recent years due their rapidly increasing concentrations in agricultural soil. Due to their unique physiochemical properties, nanoparticles (NPs) can be effectively applied for stress alleviation. In this review, we explore the current status of the literature regarding nano-enabled agriculture retrieved from the Web of Science databases and published from January 2010 to November 2020, with most of our sources spanning the past five years. We briefly discuss uptake and transport mechanisms, application methods (soil, hydroponic and foliar), exposure concentrations, and their impact on plant growth and development. The current literature contained sufficient information about NPs behavior in plants in the presence of pollutants, highlighting the alleviation mechanism to overcome the HM stress. Furthermore, we present a broad overview of recent advances regarding HM stress and the possible mechanism of interaction between NPs and HM in the agricultural system. Additionally, this review article will be supportive for the understanding of phytoremediation and micro-remediation of contaminated soils and also highlights the future research needs for the combined application of NPs in the soil for sustainable agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (P.Z.); (M.A.); (N.S.); (M.G.); (Y.H.); (I.A.); (M.L.); (M.L.)
| |
Collapse
|