1
|
Liang W, Lin Q, Zeng J, Gao H, Muratkhan M, Li W. Understanding the improvement of sorghum starch acid hydrolysis modification by E-beam irradiation: A supramolecular structure perspective. Food Chem 2024; 437:137820. [PMID: 37871427 DOI: 10.1016/j.foodchem.2023.137820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/19/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
To investigate the effect of E-beam irradiation (EBI) on acid-hydrolyzed starch, sorghum starch was pretreated with EBI (2, 4, and 8 kGy) and further hydrolyzed using hydrochloric acid (1 % and 6 % concentrations) in this study. EBI intensified acid hydrolysis corrosion on starch granule surfaces without inducing changes in the growth ring, FT-IR spectra, and crystal type (A-type). Also, EBI promoted starch degradation by acid hydrolysis, as evidenced by the R1047/1022 loss (1.071 to 1.027), the molecular weight decrease, and the chain length distribution shift (toward short A-chain). Moreover, this synergistic modification induced a starch enthalpy decrease (only 9.49 J/g) and crystallinity reduction (29.87 %), while solubility increase (34.27 %) and swelling power inhibition (only 7.65 g/g) were observed. Notably, starch digestibility was improved after synergistic modification. The obtained results broaden the processing depth of EBI in modified starch and highlight the promising application of acidolysis sorghum starch as a potential industrial starch.
Collapse
Affiliation(s)
- Wei Liang
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Qian Lin
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China
| | - Jie Zeng
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, PR China
| | - Haiyan Gao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, PR China
| | - Marat Muratkhan
- Kazakh Agrotechnical University, Zhenis Avenue, 62, Nur-Sultan 010011, Republic of Kazakhstan
| | - Wenhao Li
- Engineering Research Center of Grain and Oil Functionalized Processing in Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
2
|
Liu S, Zeng Y, Liu J, Li J, Peng H, Xie H, Zou H, Xiao C, Hua X, Bao J, Xian L, Li Y, Chi F. Efficient capture and stable storage of radioactive iodine by bismuth-based ZIF-8 derived carbon materials as adsorbents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Bibliometrics of Functional Polymeric Biomaterials with Bioactive Properties Prepared by Radiation-Induced Graft Copolymerisation: A Review. Polymers (Basel) 2022; 14:polym14224831. [PMID: 36432958 PMCID: PMC9692568 DOI: 10.3390/polym14224831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Functional polymeric biomaterials (FPBMs) with bioactive characteristics obtained by radiation-induced graft copolymerisation (RIGC) have been subjected to intensive research and developed into many commercial products. Various studies have reported the development of a variety of radiation-grafted FPBMs. However, no reports dealing with the quantitative evaluations of these studies from a global bibliographic perspective have been published. Such bibliographic analysis can provide information to overcome the limitations of the databases and identify the main research trends, together with challenges and future directions. This review aims to provide an unprecedented bibliometric analysis of the published literature on the use of RIGC for the preparation of FPBMs and their applications in medical, biomedical, biotechnological, and health care fields. A total of 235 publications obtained from the Web of Science (WoS) in the period of 1985-2021 were retrieved, screened, and evaluated. The records were used to manifest the contributions to each field and underline not only the top authors, journals, citations, years of publication, and countries but also to highlight the core research topics and the hubs for research excellence on these materials. The obtained data overviews are likely to provide guides to early-career scientists and their research institutions and promote the development of new, timely needed radiation-grafted FPBMs, in addition to extending their applications.
Collapse
|
4
|
Dong Z, Wang Y, Wen D, Peng J, Zhao L, Zhai M. Recent progress in environmental applications of functional adsorbent prepared by radiation techniques: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:126887. [PMID: 34763925 DOI: 10.1016/j.jhazmat.2021.126887] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Environmental pollution has been accelerated due to fast urbanization and industrialization, and thus hazardous contaminants removal and valuable metal recovery have become urgent. Adsorption has become a promising technology for water treatment because of its advantages of low-cost, good reusability, low energy consumption, high capacity and high selectivity. Particularly, radiation techniques including radiation induced graft copolymerization and radiation crosslinking have been found to be widely utilized to exploit adsorbents for water treatment. In this review, the current status and progress of adsorbents in environmental pollution in the past decade are summarized, including adsorbents (in form of particles, fiber and fabric, membrane, novel nanomaterials) synthesized by radiation induced graft copolymerization and hydrogel-based adsorbents fabricated by radiation crosslinking. Finally, further perspective on the development and challenge of adsorbents by radiation techniques is also suggested.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Yue Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Di Wen
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Jing Peng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Long Zhao
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China.
| | - Maolin Zhai
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Nasef MM, Gupta B, Shameli K, Verma C, Ali RR, Ting TM. Engineered Bioactive Polymeric Surfaces by Radiation Induced Graft Copolymerization: Strategies and Applications. Polymers (Basel) 2021; 13:3102. [PMID: 34578003 PMCID: PMC8473120 DOI: 10.3390/polym13183102] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022] Open
Abstract
The interest in developing antimicrobial surfaces is currently surging with the rise in global infectious disease events. Radiation-induced graft copolymerization (RIGC) is a powerful technique enabling permanent tunable and desired surface modifications imparting antimicrobial properties to polymer substrates to prevent disease transmission and provide safer biomaterials and healthcare products. This review aims to provide a broader perspective of the progress taking place in strategies for designing various antimicrobial polymeric surfaces using RIGC methods and their applications in medical devices, healthcare, textile, tissue engineering and food packing. Particularly, the use of UV, plasma, electron beam (EB) and γ-rays for biocides covalent immobilization to various polymers surfaces including nonwoven fabrics, films, nanofibers, nanocomposites, catheters, sutures, wound dressing patches and contact lenses is reviewed. The different strategies to enhance the grafted antimicrobial properties are discussed with an emphasis on the emerging approach of in-situ formation of metal nanoparticles (NPs) in radiation grafted substrates. The current applications of the polymers with antimicrobial surfaces are discussed together with their future research directions. It is expected that this review would attract attention of researchers and scientists to realize the merits of RIGC in developing timely, necessary antimicrobial materials to mitigate the fast-growing microbial activities and promote hygienic lifestyles.
Collapse
Affiliation(s)
- Mohamed Mahmoud Nasef
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Putra, Kuala Lumpur 54100, Malaysia;
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016, India; (B.G.); (C.V.)
| | - Kamyar Shameli
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile Technology, Indian Institute of Technology, New Delhi 110016, India; (B.G.); (C.V.)
| | - Roshafima Rasit Ali
- Advanced Materials Research Group, Center of Hydrogen Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Putra, Kuala Lumpur 54100, Malaysia;
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia;
| | - Teo Ming Ting
- Radiation Processing Technology Division, Malaysian Nuclear Agency, Kajang 43000, Malaysia;
| |
Collapse
|
6
|
Wang Y, Zhao M, Zhang L, Chen Y. Covalent organic polymers are highly effective absorbers of iodine in water under ultra-high pressure. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Yan Z, Cui B, Zhao T, Luo Y, Zhang H, Xie J, Li N, Bu N, Yuan Y, Xia L. A Carbazole-Functionalized Porous Aromatic Framework for Enhancing Volatile Iodine Capture via Lewis Electron Pairing. Molecules 2021; 26:5263. [PMID: 34500694 PMCID: PMC8434361 DOI: 10.3390/molecules26175263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 11/27/2022] Open
Abstract
Nitrogen-rich porous networks with additional polarity and basicity may serve as effective adsorbents for the Lewis electron pairing of iodine molecules. Herein a carbazole-functionalized porous aromatic framework (PAF) was synthesized through a Sonogashira-Hagihara cross-coupling polymerization of 1,3,5-triethynylbenzene and 2,7-dibromocarbazole building monomers. The resulting solid with a high nitrogen content incorporated the Lewis electron pairing effect into a π-conjugated nano-cavity, leading to an ultrahigh binding capability for iodine molecules. The iodine uptake per specific surface area was ~8 mg m-2 which achieved the highest level among all reported I2 adsorbents, surpassing that of the pure biphenyl-based PAF sample by ca. 30 times. Our study illustrated a new possibility for introducing electron-rich building units into the design and synthesis of porous adsorbents for effective capture and removal of volatile iodine from nuclear waste and leakage.
Collapse
Affiliation(s)
- Zhuojun Yan
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
| | - Bo Cui
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
| | - Ting Zhao
- School of Environmental Science, Liaoning University, Shenyang 110036, China; (T.Z.); (Y.L.)
| | - Yifu Luo
- School of Environmental Science, Liaoning University, Shenyang 110036, China; (T.Z.); (Y.L.)
| | - Hongcui Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
| | - Jialin Xie
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
| | - Na Li
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
| | - Naishun Bu
- School of Environmental Science, Liaoning University, Shenyang 110036, China; (T.Z.); (Y.L.)
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Lixin Xia
- College of Chemistry, Liaoning University, Shenyang 110036, China; (Z.Y.); (B.C.); (H.Z.); (J.X.); (N.L.)
- Yingkou Institute of Technology, Yingkou 115014, China
| |
Collapse
|
8
|
Equilibrium studies on the uptake of nitrate and phosphate ions using functionalized carbon cloth. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07872-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
9
|
Pan XH, Zu JH. A highly hydrophilic cation exchange nonwoven with a further modifiable epoxy group prepared by radiation-induced graft polymerization. Polym Chem 2021. [DOI: 10.1039/d1py00866h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel cation exchange nonwoven PP-g-SSS/GMA containing epoxy and sulfonic groups was successfully prepared via radiation-induced simultaneous grafting polymerization by attaching GMA and SSS monomers onto PP nonwoven.
Collapse
Affiliation(s)
- Xiao-han Pan
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-hua Zu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|