1
|
Essfeld F, Ayobahan SU, Strompen J, Alvincz J, Schmidt-Posthaus H, Woelz J, Mueller T, Ringbeck B, Teigeler M, Eilebrecht E, Eilebrecht S. Transcriptomic Point of Departure (tPOD) of androstenedione in zebrafish embryos as a potential surrogate for chronic endpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176026. [PMID: 39236829 DOI: 10.1016/j.scitotenv.2024.176026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/16/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The transcriptomic Point of Departure (tPOD) is increasingly used in ecotoxicology to derive quantitative endpoints from RNA sequencing studies. Utilizing transcriptomic data in zebrafish embryos as a New Approach Methodology (NAM) is beneficial due to its acknowledgment as an alternative to animal testing under EU Directive 2010/63/EU. Transcriptomic profiles are available in zebrafish for various modes of action (MoA). The limited literature available suggest that tPOD values from Fish Embryo Toxicity (FET) tests align with, but are generally lower than, No Observed Effect Concentrations (NOEC) from long-term chronic fish toxicity tests. In studies with the androgenic hormone androstenedione in a Fish Sexual Development Test (FSDT), a significant shift in the sex ratio towards males was noted at all test concentrations, making it impossible to determine a NOEC (NOEC <4.34 μg/L). To avoid additional animal testing in a repetition of the FSDT and adhere to the 3Rs principle (replacement, reduction, and refinement), a modified zebrafish FET (zFET) was conducted aiming to determine a regulatory acceptable effect threshold. This involved lower concentration ranges (20 to 6105 ng/L), overlapping with the masculinization-observed concentrations in the FSDT. The tPOD analysis in zFET showed consistent results with previous FSDT findings, observing strong expression changes in androgen-dependent genes at higher concentrations but not at lower ones, demonstrating a concentration-response relationship. The tPOD values for androstenedione were determined as 24 ng/L (10th percentile), 60 ng/L (20th gene), and 69 ng/L (1st peak). The 10th percentile tPOD value in zFET was 200 times lower than the lowest concentration in the FSDT. Comparing the tPOD values to literature suggests their potential to inform on the NOEC range in FSDT tests.
Collapse
Affiliation(s)
- Fabian Essfeld
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Jannis Strompen
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Julia Alvincz
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Heike Schmidt-Posthaus
- Institute for Fish and Wildlife Health, University of Bern, Laenggassstrasse 122, 3012 Bern, Switzerland
| | - Jan Woelz
- Bayer AG Pharmaceuticals, Muellerstr. 170-178, 13353 Berlin, Germany
| | - Till Mueller
- Bayer AG, REACH Management, Kaiser-Wilhelm-Allee 10, 51373 Leverkusen, Germany
| | - Benedikt Ringbeck
- Department Trace Analysis and Environmental Monitoring, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Matthias Teigeler
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| |
Collapse
|
2
|
Yagi S, Mohammad A, Wen Y, Batallán Burrowes AA, Blankers SA, Galea LAM. Estrogens dynamically regulate neurogenesis in the dentate gyrus of adult female rats. Hippocampus 2024; 34:583-597. [PMID: 39166359 DOI: 10.1002/hipo.23633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Estrone and estradiol differentially modulate neuroplasticity and cognition. How they influence the maturation of new neurons in the adult hippocampus, however, is not known. The present study assessed the effects of estrone and estradiol on the maturation timeline of neurogenesis in the dentate gyrus (DG) of ovariectomized (a model of surgical menopause) young adult Sprague-Dawley rats using daily subcutaneous injections of 17β-estradiol, estrone or vehicle. Rats were injected with a DNA synthesis marker, 5-bromo-2-deoxyuridine (BrdU), and were perfused 1, 2, or 3 weeks after BrdU injection and daily hormone treatment. Brains were sectioned and processed for various markers including: sex-determining region Y-box 2 (Sox2), glial fibrillary acidic protein (GFAP), antigen kiel 67 (Ki67), doublecortin (DCX), and neuronal nuclei (NeuN). Immunofluorescent labeling or co-labelling of BrdU with Sox2 (progenitor cells), Sox2/GFAP (neural progenitor cells), Ki67 (cell proliferation), DCX (immature neurons), NeuN (mature neurons) was used to examine the trajectory and maturation of adult-born neurons over time. Estrogens had early (1 week of exposure) effects on different stages of neurogenesis (neural progenitor cells, cell proliferation and early maturation of new cells into neurons) but these effects were less pronounced after prolonged treatment. Estradiol enhanced, whereas estrone reduced cell proliferation after 1 week but not after longer exposure to either estrogen. Both estrogens increased the density of immature neurons (BrdU/DCX-ir) after 1 week of exposure compared to vehicle treatment but this increased density was not sustained over longer durations of treatments to estrogens, suggesting that the enhancing effects of estrogens on neurogenesis were short-lived. Longer duration post-ovariectomy, without treatments with either of the estrogens, was associated with reduced neural progenitor cells in the DG. These results demonstrate that estrogens modulate several aspects of adult hippocampal neurogenesis differently in the short term, but may lose their ability to influence neurogenesis after long-term exposure. These findings have potential implications for treatments involving estrogens after surgical menopause.
Collapse
Affiliation(s)
- Shunya Yagi
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ahmad Mohammad
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Yanhua Wen
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ariel A Batallán Burrowes
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Samantha A Blankers
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Lu C, Lv Y, Meng X, Yang T, Liu Y, Kou G, Yang X, Luo J. The potential toxic effects of estrogen exposure on neural and vascular development in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116862. [PMID: 39128450 DOI: 10.1016/j.ecoenv.2024.116862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Estrogens and estrogenic chemicals are endocrine-disrupting chemicals (EDCs). The potential toxicity of EDCs to humans and aquatic organisms has become increasingly concerning. However, at present, the potential toxic mechanisms of EDCs on neural and vascular development are still being fully investigated. During the study, we utilized zebrafish to assess the developmental neural and vascular toxicity of different estrogens. The results indicated that zebrafish treated with different estrogens, especially E2, exhibit developmental malformations, including increased mortality, decreased body length, decreased heart rate, aberrant swimming behavior, and increased developmental malformations, including spinal curvature (SC), yolk edema (YE) and pericaidial edema (PE), in a dose-dependent manner with 72 h-treated. Further morphological evaluation revealed that E2 exposure significantly induced motor neural abnormalities in zebrafish embryos. In addition, treated with these three estrogens also impaired the vascular development in the early stage of zebrafish embryos. Mechanistically, the identification of downstream factors revealed that several key neural and vascular development-related genes, including syn2a, gfap, gap43, shha, kdr, flt1 and flt4, were transcriptionally downregulated after estrogen exposure in zebrafish, suggesting that estrogen exposure might cause neural and vascular toxicity by interfering the mRNA levels of genes relevant to neural and vascular development.
Collapse
Affiliation(s)
- Chunjiao Lu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China
| | - Yuhang Lv
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China
| | - Xin Meng
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China
| | - Ting Yang
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China
| | - Yi Liu
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China
| | - Guanhua Kou
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China
| | - Xiaojun Yang
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China; Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Juanjuan Luo
- Engineering Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
4
|
Cui H, Shu C, Peng Y, Wei Z, Ni X, Zheng L, Shang J, Liu F, Liu J. Long-life triclosan exposure induces ADHD-like behavior in rats via prefrontal cortex dopaminergic deficiency. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116766. [PMID: 39047361 DOI: 10.1016/j.ecoenv.2024.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
In recent years, exposure to triclosan (TCS) has been linked to an increase in psychiatric disorders. Nonetheless, the precise mechanisms of this occurrence remain elusive. Therefore, this study developed a long-life TCS-exposed rat model, an SH-SY5Y cell model, and an atomoxetine hydrochloride (ATX) treatment model to explore and validate the neurobehavioral mechanisms of TCS from multiple perspectives. In the long-life TCS-exposed model, pregnant rats received either 0 mg/kg (control) or 50 mg/kg TCS by oral gavage throughout pregnancy, lactation, and weaning of their offspring (up to 8 weeks old). In the ATX treatment model, weanling rats received daily injections of either 0 mg/kg (control) or 3 mg/kg ATX via intraperitoneal injection until they reached 8 weeks old. Unlike the TCS model, ATX exposure only occurred after the pups were weaned. The results indicated that long-life TCS exposure led to attention-deficit hyperactivity disorder (ADHD)-like behaviors in male offspring rats accompanied by dopamine-related mRNA and protein expression imbalances in the prefrontal cortex (PFC). Moreover, in vitro experiments also confirmed these findings. Mechanistically, TCS reduced dopamine (DA) synthesis, release, and transmission, and increased reuptake in PFC, thereby reducing synaptic gap DA levels and causing dopaminergic deficits. Additional experiments revealed that increased DA concentration in PFC by ATX effectively alleviated TCS-induced ADHD-like behavior in male offspring rats. These findings suggest that long-life TCS exposure causes ADHD-like behavior in male offspring rats through dopaminergic deficits. Furthermore, ATX treatment not only reduce symptoms in the rats, but also reveals valuable insights into the neurotoxic mechanisms induced by TCS.
Collapse
Affiliation(s)
- He Cui
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Chang Shu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yuxuan Peng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Ziyun Wei
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiao Ni
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Linlin Zheng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jianing Shang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Fu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jieyu Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
5
|
Bjørklund G, Mkhitaryan M, Sahakyan E, Fereshetyan K, Meguid NA, Hemimi M, Nashaat NH, Yenkoyan K. Linking Environmental Chemicals to Neuroinflammation and Autism Spectrum Disorder: Mechanisms and Implications for Prevention. Mol Neurobiol 2024; 61:6328-6340. [PMID: 38296898 DOI: 10.1007/s12035-024-03941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
This article explores the potential link between endocrine-disrupting chemicals (EDCs), neuroinflammation, and the development of autism spectrum disorder (ASD). Neuroinflammation refers to the immune system's response to injury, infection, or disease in the central nervous system. Studies have shown that exposure to EDCs, such as bisphenol A and phthalates, can disrupt normal immune function in the brain, leading to chronic or excessive neuroinflammation. This disruption of immune function can contribute to developing neurological disorders, including ASD. Furthermore, EDCs may activate microglia, increasing pro-inflammatory cytokine production and astroglia-mediated oxidative stress, exacerbating neuroinflammation. EDCs may also modulate the epigenetic profile of cells by methyltransferase expression, thereby affecting neurodevelopment. This article also highlights the importance of reducing exposure to EDCs and advocating for policies and regulations restricting their use. Further research is needed to understand better the mechanisms underlying the link between EDCs, neuroinflammation, and ASD and to develop new treatments for ASD.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Meri Mkhitaryan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, 0025, 2 Koryun str, Yerevan, Armenia
| | - Elen Sahakyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, 0025, 2 Koryun str, Yerevan, Armenia
| | - Katarine Fereshetyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, 0025, 2 Koryun str, Yerevan, Armenia
| | - Nagwa A Meguid
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Centre, Giza, Egypt
| | - Maha Hemimi
- Research on Children with Special Needs Department, National Research Centre, Giza, Egypt
- CONEM Egypt Child Brain Research Group, National Research Centre, Giza, Egypt
| | | | - Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after M. Heratsi, 0025, 2 Koryun str, Yerevan, Armenia.
| |
Collapse
|
6
|
Wang Z, Han X, Su X, Yang X, Wang X, Yan J, Qian Q, Wang H. Analysis of key circRNA events in the AOP framework of TCS acting on zebrafish based on the data-driven. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116507. [PMID: 38838465 DOI: 10.1016/j.ecoenv.2024.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Triclosan (TCS) is a broad-spectrum antibiotic widely used in various personal care products. Research has found that exposure to TCS can cause toxic effects on organisms including neurotoxicity, cardiotoxicity, disorders of lipid metabolism, and abnormal vascular development, and the corresponding toxic mechanisms are gradually delving into the level of abnormal expression of miRNA regulating gene expression. Although the downstream mechanism of TCS targeting miRNA abnormal expression to induce toxicity is gradually improving, its upstream mechanism is still in a fog. Starting from the abnormal expression data of circRNA in zebrafish larvae induced by TCS, this study conducted a hierarchical analysis of the expression levels of all circRNAs, differential circRNAs, and trend circRNAs, and identified 29 key circRNA events regulating miRNA abnormal expression. In combination with GO and KEGG, the effects of TCS exposure were analyzed from the function and signaling pathway of the corresponding circRNA host gene. Furthermore, based on existing literature evidence about the biological toxicity induced by TCS targeting miRNA as data support, a competing endogenous RNAs (ceRNA) network characterizing the regulatory relationship between circRNA and miRNA was constructed and optimized. Finally, a comprehensive Adverse Outcome Pathway (AOP) framework of multiple levels of events including circRNA, miRNA, mRNA, pathway, and toxicity endpoints was established to systematically elucidate the toxic mechanism of TCS. Moreover, the rationality of the AOP framework was verified from the expression level of miRNA and adverse outcomes such as neurotoxicity, cardiotoxicity, oxidative stress, and inflammatory response by knockdown of circRNA48. This paper not only provides the key circRNA events for exploring the upstream mechanism of miRNA regulating gene expression but also provides an AOP framework for comprehensively demonstrating the toxicity mechanism of TCS on zebrafish, which is a theoretical basis for subsequent hazard assessment and prevention and control of TCS.
Collapse
Affiliation(s)
- Zejun Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaowen Han
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xincong Su
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiao Yang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
7
|
Zapater C, Moreira C, Knigge T, Monsinjon T, Gómez A, Pinto PIS. Evolutionary history and functional characterization of duplicated G protein-coupled estrogen receptors in European sea bass. J Steroid Biochem Mol Biol 2024; 236:106423. [PMID: 37939740 DOI: 10.1016/j.jsbmb.2023.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Across vertebrates, the numerous estrogenic functions are mainly mediated by nuclear and membrane receptors, including the G protein-coupled estrogen receptor (GPER) that has been mostly associated with rapid non-genomic responses. Although Gper-mediated signalling has been characterized in only few fish species, Gpers in fish appear to present more mechanistic functionalities as those of mammals due to additional gene duplicates. In this study, we ran a thorough investigation of the fish Gper evolutionary history in light of available genomes, we carried out the functional characterization of the two gper gene duplicates of European sea bass (Dicentrarchus labrax) using luciferase reporter gene transactivation assays, validated it with natural and synthetic estrogen agonists/antagonists and applied it to other chemicals of aquaculture and ecotoxicological interest. Phylogenetic and synteny analyses of fish gper1 and gper1-like genes suggest their duplication may have not resulted from the teleost-specific whole genome duplication. We confirmed that both sbsGper isoforms activate the cAMP signalling pathway and respond differentially to distinct estrogenic compounds. Therefore, as observed for nuclear estrogen receptors, both sbsGpers duplicates retain estrogenic activity although they differ in their specificity and potency (Gper1 being more potent and more specific than Gper1-like), suggesting a more conserved role for Gper1 than for Gper1-like. In addition, Gpers were able to respond to estrogenic environmental pollutants known to interfere with estrogen signalling, such as the phytoestrogen genistein and the anti-depressant fluoxetine, a point that can be taken into account in aquatic environment pollution screenings and chemical risk assessment, complementing previous assays for sea bass nuclear estrogen receptors.
Collapse
Affiliation(s)
- Cinta Zapater
- Instituto de Acuicultura Torre de la Sal, CSIC, 12595 Torre de la Sal, Castellón, Spain.
| | - Catarina Moreira
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Thomas Knigge
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Tiphaine Monsinjon
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Ana Gómez
- Instituto de Acuicultura Torre de la Sal, CSIC, 12595 Torre de la Sal, Castellón, Spain.
| | - Patrícia I S Pinto
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal.
| |
Collapse
|
8
|
Falahudin D, Hukom FD, Arifin Z, Dirhamsyah D, Peristiwady T, Sudaryanto A, Iwata M, Hoang AQ, Watanabe I, Takahashi S. First insight into accumulation of characteristics and tissue distribution of PCBs, PBDEs, and other BFRs in the living Indonesian coelacanth (Latimeria menadoensis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49368-49380. [PMID: 36764992 DOI: 10.1007/s11356-023-25716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/31/2023] [Indexed: 04/16/2023]
Abstract
Persistent organic pollutants, including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and other brominated flame retardants, were detected in the liver, muscle, and ovary tissues of the Indonesian coelacanth (Latimeria menadoensis) incidentally caught around Gangga Island, North Sulawesi Province, Indonesia, on November 5, 2014. Concentrations of total PCBs (209 congeners, 300-2600 ng g-1 lipid weight) in all tissues showed higher than those of PBDEs (41 congeners, 3.9-6.3 ng g-1 lw) and BTBPE (1.1-3.6 ng g-1 lw). The tissue-specific PCB and PBDE profiles were likely due to differences in the lipid composition. Toxic equivalent (TEQ) values of dioxin-like PCBs in coelacanth tissues were lower than the benchmark values for early-life fish. However, compared with the data reported for deep-sea fishes in the Pacific and Indian Oceans, the relatively high concentrations of PCBs detected in this study raise concerns regarding Indonesian coelacanth conservation and habitat conditions.
Collapse
Affiliation(s)
- Dede Falahudin
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Frensly Demianus Hukom
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Zainal Arifin
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Dirham Dirhamsyah
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Teguh Peristiwady
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta, 14430, Indonesia
| | - Agus Sudaryanto
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Building 820 KST BJ. Habibie, Serpong, 15314, Banten, Indonesia
| | - Masamitsu Iwata
- Aquamarine Fukushima, Marine Science Museum, 50 Tatsumi-Cho, Onahama, Iwaki, Fukushima, 971-8101, Japan
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, 11000, Vietnam
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan.
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-Cho, Matsuyama, 790-8577, Japan.
| |
Collapse
|
9
|
Ahn C, Jeung EB. Endocrine-Disrupting Chemicals and Disease Endpoints. Int J Mol Sci 2023; 24:ijms24065342. [PMID: 36982431 PMCID: PMC10049097 DOI: 10.3390/ijms24065342] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) have significant impacts on biological systems, and have been shown to interfere with physiological systems, especially by disrupting the hormone balance. During the last few decades, EDCs have been shown to affect reproductive, neurological, and metabolic development and function and even stimulate tumor growth. EDC exposure during development can disrupt normal development patterns and alter susceptibility to disease. Many chemicals have endocrine-disrupting properties, including bisphenol A, organochlorines, polybrominated flame retardants, alkylphenols, and phthalates. These compounds have gradually been elucidated as risk factors for many diseases, such as reproductive, neural, and metabolic diseases and cancers. Endocrine disruption has been spread to wildlife and species that are connected to the food chains. Dietary uptake represents an important source of EDC exposure. Although EDCs represent a significant public health concern, the relationship and specific mechanism between EDCs and diseases remain unclear. This review focuses on the disease-EDC relationship and the disease endpoints associated with endocrine disruption for a better understanding of the relationship between EDCs-disease and elucidates the development of new prevention/treatment opportunities and screening methods.
Collapse
Affiliation(s)
- Changhwan Ahn
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Correspondence: ; Tel.: +82-043-261-2397; Fax: +82-43-267-3150
| |
Collapse
|
10
|
Wesselman HM, Gatz AE, Pfaff MR, Arceri L, Wingert RA. Estrogen Signaling Influences Nephron Segmentation of the Zebrafish Embryonic Kidney. Cells 2023; 12:666. [PMID: 36831333 PMCID: PMC9955091 DOI: 10.3390/cells12040666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Despite significant advances in understanding nephron segment patterning, many questions remain about the underlying genes and signaling pathways that orchestrate renal progenitor cell fate choices and regulate differentiation. In an effort to identify elusive regulators of nephron segmentation, our lab conducted a high-throughput drug screen using a bioactive chemical library and developing zebrafish, which are a conserved vertebrate model and particularly conducive to large-scale screening approaches. 17β-estradiol (E2), which is the dominant form of estrogen in vertebrates, was a particularly interesting hit from this screen. E2 has been extensively studied in the context of gonad development, but roles for E2 in nephron development were unknown. Here, we report that exogenous estrogen treatments affect distal tubule composition, namely, causing an increase in the distal early segment and a decrease in the neighboring distal late. These changes were noted early in development but were not due to changes in cell dynamics. Interestingly, exposure to the xenoestrogens ethinylestradiol and genistein yielded the same changes in distal segments. Further, upon treatment with an estrogen receptor 2 (Esr2) antagonist, PHTPP, we observed the opposite phenotypes. Similarly, genetic deficiency of the Esr2 analog, esr2b, revealed phenotypes consistent with that of PHTPP treatment. Inhibition of E2 signaling also resulted in decreased expression of essential distal transcription factors, irx3b and its target irx1a. These data suggest that estrogenic compounds are essential for distal segment fate during nephrogenesis in the zebrafish pronephros and expand our fundamental understanding of hormone function during kidney organogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, Boler-Parseghian Center for Rare and Neglected Diseases, Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
11
|
Özkan-Kotiloğlu S, Arslan P, Akca G, Günal AÇ. Are BPA-free plastics safe for aquatic life? - Fluorene-9-bisphenol induced thyroid-disrupting effects and histopathological alterations in adult zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 260:109419. [PMID: 35902060 DOI: 10.1016/j.cbpc.2022.109419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022]
Abstract
Fluorene-9-bisphenol (BPFL) is used as an alternative compound for bisphenol A, an endocrine disruptor compound which is present in various materials including plastic bottles and packaging. Although it is used extensively in products that are labelled BPA-free, its effect on wildlife and humans have not been fully studied. Therefore, this study aimed to investigate the effects of BPFL in adult zebrafish. In the preliminary experiments of the study, the median lethal concentration value (LC50) of BPFL was 0.25 mg/L (95 % confidence interval 0.15-0.41) for 96 h. Following exposure to three different sublethal concentrations of BPFL after 96 h and 15 days, T4 hormone levels, expression levels of genes involved in thyroid metabolism and histopathological alterations were assessed. T4 hormone levels were found to be significantly higher in females at the lowest BPFL concentration following 96 h exposure (P < 0.05). Expression levels of trh, tshba and trhrb genes were upregulated following 96 h exposure at 0.025 mg/L concentration and crh was upregulated following 15 days exposure at 0.025 mg/L concentration in female zebrafish (P < 0.05). The most prominent histopathological findings in zebrafish exposed to 0.025 and 0.125 mg/L of BPFL were observed in the gill, liver, kidney and testis tissues. The gill tissues showed some hyperemia, lamellar fusion, hyperplasia, epithelial lifting, and telangiectasis, while passive hyperemia, hydropic degeneration, and necrosis were observed in the liver tissues. The BPFL is highly toxic to zebrafish even in sublethal concentrations according to the molecular and histopathological responses.
Collapse
Affiliation(s)
- Selin Özkan-Kotiloğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Kırşehir Ahi Evran University, Kırşehir, Turkey.
| | - Pınar Arslan
- Biology Department, Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey
| | - Gülçin Akca
- Department of Medical Microbiology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Aysel Çağlan Günal
- Department of Biology Education, Faculty of Gazi Education, Gazi University, Ankara, Turkey
| |
Collapse
|
12
|
Diao W, Qian Q, Sheng G, He A, Yan J, Dahlgren RA, Wang X, Wang H. Triclosan targets miR-144 abnormal expression to induce neurodevelopmental toxicity mediated by activating PKC/MAPK signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128560. [PMID: 35245871 DOI: 10.1016/j.jhazmat.2022.128560] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Although the previous research confirmed that triclosan (TCS) induced an estrogen effect by acting on a novel G-protein coupled estrogen-membrane receptor (GPER), the underlying mechanisms by which downstream pathways induce neurotoxicity remain unclear after TCS activation of GPER. By employing a series of techniques (Illumina miRNA-seq, RT-qPCR, and artificial intervention of miRNA expression), we screened out four important miRNAs, whose target genes were directly/indirectly involved in neurodevelopment and neurobehavior. Especially, the miR-144 up-regulation caused vascular malformation and severely affected hair-cell development and lateral-line-neuromast formation, thereby causing abnormal motor behavior. After microinjecting 1-2-cell embryos, the similar phenotypic malformations as those induced by TCS were observed, including aberrant neuromast, cuticular-plate development and motor behavior. By KEGG pathway enrichment analysis, these target genes were demonstrated to be mainly related to the PKC/MAPK signaling pathway. When a PKC inhibitor was used to suppress the PKC/MAPK pathway, a substantial alleviation of TCS-induced neurotoxicity was observed. Therefore, TCS acts on GPER to activate the downstream PKC/MAPK signaling pathway, further up-regulating miR-144 expression and causing abnormal modulation of these nerve-related genes to trigger neurodevelopmental toxicity. These findings unravel the molecular mechanisms of TCS-induced neurodegenerative diseases, and offer theoretical guidance for TCS-pollution early warning and management.
Collapse
Affiliation(s)
- Wenqi Diao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qiuhui Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Guangyao Sheng
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Anfei He
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jin Yan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
13
|
Zhao C, Xie R, Qian Q, Yan J, Wang H, Wang X. Triclosan induced zebrafish immunotoxicity by targeting miR-19a and its gene socs3b to activate IL-6/STAT3 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152916. [PMID: 34998771 DOI: 10.1016/j.scitotenv.2022.152916] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
As a broad-spectrum antibacterial agent, triclosan (TCS) has been confirmed to possess potential immunotoxicity to organisms, but the underlying mechanisms remains unclear. Herein, with the aid of transgenic zebrafish strains Tg (coro1A: EGFP) and Tg (rag2: DsRed), we intuitively observed acute TCS exposure caused the drastic differentiation, abnormal development and distribution of innate immune cells, as well as barriers to formation of adaptive immune T cells. These abnormalities implied occurrence of the cytokine storm, which was further evidenced by expression changes of immune-related genes, and functional biomarkers. Based on transcriptome deep sequencing, target gene prediction and dual luciferase validation, the highly conservative and up-regulated miR-19a was chosen as the research target. Under TCS exposure, miR-19a up-regulation triggered down-regulation of its target gene socs3b, and simultaneously activated the downstream IL-6/STAT3 signaling pathway. Artificial over-expression and knock-down of miR-19a was realized by microinjecting agomir and antagomir, respectively, in 1-2-cell embryos. The miR-19a up-regulation inhibited socs3b expression to activate IL-6/STAT3 pathway, and yielded abnormal changes in the functional cytokine biomarkers, along with the sharp activation of immune responses. These findings disclose the molecular mechanisms regarding TCS-induced immunotoxicity, and offer important theoretical guidance for healthy safety evaluation and disease early warning from TCS pollution.
Collapse
Affiliation(s)
- Chenxi Zhao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Ruihui Xie
- Food & Drug Inspection and Testing Center of Puyang City, Puyang 457000, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xuedong Wang
- College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
14
|
Wang D, Liu J, Jiang H. Triclosan regulates the Nrf2/HO-1 pathway through the PI3K/Akt/JNK signaling cascade to induce oxidative damage in neurons. ENVIRONMENTAL TOXICOLOGY 2021; 36:1953-1964. [PMID: 34160118 DOI: 10.1002/tox.23315] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS), a broad-spectrum antimicrobial agent, is recognized as an environmental endocrine disruptor. TCS has caused a wide range of environmental, water and soil pollution. TCS is also still detected in food. Due to its high lipophilicity and stability, TCS can enter the human body through biological enrichment and potentially threatenes human health. In recent years, the neurotoxic effects caused by TCS contamination have attracted increasing attention. This study was designed to investigate the mechanism underlying TCS-induced HT-22 cells injury and to explore the effect of TCS on the PI3K/Akt, MAPK, and Nrf2/HO-1 signaling pathways in HT-22 cells. In this study, we examined the adverse effects of TCS treatment on ROS generation, and MDA, GSH-Px, and SOD activities. The expression levels of proteins in the Nrf2, PI3K/Akt, MAPK pathways and Caspase-3, BAX, Bcl-2 were measured and quantified by Western blotting. The results showed that TCS could significantly reduce the activity of HT-22 cells, increase the production of intracellular ROS and upregulate the expression of proapoptotic proteins. In addition, TCS promoted an increase in the MDA and SOD levels, and downregulated the GSH-Px activity, and oxidative damage occurred in neurons. The mechanism underlying this toxicity was related to TCS-induced PI3K/Akt/JNK-mediated regulation of the Nrf2/HO-1 signaling pathway. This result was further confirmed by the specific inhibitors LY294002 and SP600125. In summary, TCS could induce oxidative damage in HT-22 neurons, and activation of the PI3K/Akt/JNK/ Nrf2 /HO-1 signaling cascade was the main mechanism underlying the TCS-induced HT-22 neuronal toxicity.
Collapse
Affiliation(s)
- Dan Wang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Jieyu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Zahra A, Dong Q, Hall M, Jeyaneethi J, Silva E, Karteris E, Sisu C. Identification of Potential Bisphenol A (BPA) Exposure Biomarkers in Ovarian Cancer. J Clin Med 2021; 10:jcm10091979. [PMID: 34062972 PMCID: PMC8125610 DOI: 10.3390/jcm10091979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) can exert multiple deleterious effects and have been implicated in carcinogenesis. The xenoestrogen Bisphenol A (BPA) that is found in various consumer products has been involved in the dysregulation of numerous signalling pathways. In this paper, we present the analysis of a set of 94 genes that have been shown to be dysregulated in presence of BPA in ovarian cancer cell lines since we hypothesised that these genes might be of biomarker potential. This study sought to identify biomarkers of disease and biomarkers of disease-associated exposure. In silico analyses took place using gene expression data extracted from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Differential expression was further validated at protein level using immunohistochemistry on an ovarian cancer tissue microarray. We found that 14 out of 94 genes are solely dysregulated in the presence of BPA, while the remaining 80 genes are already dysregulated (p-value < 0.05) in their expression pattern as a consequence of the disease. We also found that seven genes have prognostic power for the overall survival in OC in relation to their expression levels. Out of these seven genes, Keratin 4 (KRT4) appears to be a biomarker of exposure-associated ovarian cancer, whereas Guanylate Binding Protein 5 (GBP5), long intergenic non-protein coding RNA 707 (LINC00707) and Solute Carrier Family 4 Member 11 (SLC4A11) are biomarkers of disease. BPA can exert a plethora of effects that can be tissue- or cancer-specific. Our in silico findings generate a hypothesis around biomarkers of disease and exposure that could potentially inform regulation and policy making.
Collapse
Affiliation(s)
- Aeman Zahra
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Qiduo Dong
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Marcia Hall
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Mount Vernon Cancer Centre, Northwood HA6 2RN, UK
| | - Jeyarooban Jeyaneethi
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Elisabete Silva
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Correspondence: (E.K.); (C.S.)
| | - Cristina Sisu
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Correspondence: (E.K.); (C.S.)
| |
Collapse
|