1
|
Zhang B, Li X, Wang Z, Ren H, Wang J, Chen Q, Cai Y, Quan K, Liu M, Pan M, Fang G. Dual biomass-derived porous carbon heterogeneous functionalized mesoporous CuCo 2O 4 nanocomposite combined with molecularly imprinted polymers as an electrochemical sensing platform for hypersensitive and selective determination of dimetridazole contaminants. Talanta 2024; 277:126395. [PMID: 38865958 DOI: 10.1016/j.talanta.2024.126395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
In this study, an original molecularly imprinted electrochemical sensor (MIECS) is prepared using layer-by-layer modification of sensitization nanomaterials (CuCo2O4/BPC-E) coupled with molecularly imprinted polymers (MIPs) for the ultrasensitive and rapid determination of dimetridazole (DMZ) contaminants. The biomass waste of eggshell (ES) powders subtly introduced in situ in the carbonization process of psyllium husk (PSH) substantially promotes the physicochemical properties of the resulting biomass-derived porous carbon (BPC-E). The large specific surface area and abundant pores provide a favourable surface for loading mesoporous CuCo2O4 with a spinel structure. The assembly of CuCo2O4/BPC-E on the gold electrode (GE) surface enhances the electrochemical sensing signal. The MIPs constructed using DMZ and o-phenylenediamine (oPD) as templates and functional monomers boost the targeted recognition performance of the analyte. The combined DMZ targets then undergo an electrochemical reduction reaction in situ with the transfer of four electrons and four protons. Under optimum conditions, the current response of differential pulse voltammetry (DPV) exhibits two linear ranges for DMZ detection, 0.01-10 μM and 10-200 μM. The limit of detection (LOD) is 1.8 nM (S/N = 3) with a sensitivity of 5.724 μA μM-1 cm-2. The obtained MIECS exhibits excellent selectivity, reproducibility, repeatability and stability. This electrochemical sensing system is applied to the detection of real samples (tap water, coarse fodder and swine urine), yielding satisfactory recoveries (90.6%-98.1 %), which are consistent with those obtained via HPLC. This finding verifies that the utility of MIECS for monitoring pharmaceutical and environmental contaminants and ensuring food safety.
Collapse
Affiliation(s)
- Bo Zhang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Xiaoran Li
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zifu Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Huimin Ren
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jianhui Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Qijie Chen
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yongjian Cai
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Ke Quan
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Miao Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Xu T, Gao H, Rojas OJ, Dai H. Silver Nanoparticle-Embedded Conductive Hydrogels for Electrochemical Sensing of Hydroquinone. Polymers (Basel) 2023; 15:polym15112424. [PMID: 37299223 DOI: 10.3390/polym15112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In this work, a conductive hydrogel was successfully synthesized, taking advantage of the high number density of active amino and hydroxyl groups in carboxymethyl chitosan and sodium carboxymethyl cellulose. These biopolymers were effectively coupled via hydrogen bonding with the nitrogen atoms of the heterocyclic rings of conductive polypyrrole. The inclusion of another biobased polymer, sodium lignosulfonate (LS), was effective to achieve highly efficient adsorption and in-situ reduction of silver ions, leading to silver nanoparticles that were embedded in the hydrogel network and used to further improve the electro-catalytic efficiency of the system. Doping of the system in the pre-gelled state led to hydrogels that could be easily attached to the electrodes. The as-prepared silver nanoparticle-embedded conductive hydrogel electrode exhibited excellent electro-catalytic activity towards hydroquinone (HQ) present in a buffer solution. At the optimum conditions, the oxidation current density peak of HQ was linear over the 0.1-100 μM concentration range, with a detection limit as low as 0.12 μM (signal-to-noise of 3). The relative standard deviation of the anodic peak current intensity was 1.37% for eight different electrodes. After one week of storage in a 0.1 M Tris-HCl buffer solution at 4 °C, the anodic peak current intensity was 93.4% of the initial current intensity. In addition, this sensor showed no interference activity, while the addition of 30 μM CC, RS, or 1 mM of different inorganic ions does not have a significant impact on the test results, enabling HQ quantification in actual water samples.
Collapse
Affiliation(s)
- Tingting Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Huanli Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Orlando J Rojas
- Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Hongqi Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Park J, Kim J, Min A, Choi MY. Fabrication of nonenzymatic electrochemical sensor based on Zn@ZnO core-shell structures obtained via pulsed laser ablation for selective determination of hydroquinone. ENVIRONMENTAL RESEARCH 2022; 204:112340. [PMID: 34740621 DOI: 10.1016/j.envres.2021.112340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Herein, we fabricated a more sensitive nonenzymatic electrochemical sensor for the selective determination of hydroquinone as a targeted pollutant at zinc@zinc oxide (Zn@ZnO) core-shell nanostructures. The nanostructured Zn@ZnO materials were produced using pulsed laser ablation in an aqueous medium without the use of any reducing agents or surfactants. The detailed structural, morphological, elemental composition, and electrochemical voltammetric analyses revealed a significant improvement in Zn@ZnO performance for selective hydroquinone detection. A broad linear calibration response was obtained as 10-90 μM with high sensitivity of 0.5673 μA μM-1 cm-2 and the low detection limit was 0.10443 μM for detection of hydroquinone. The modified Zn@ZnO electrode's excellent electrochemical sensing performance was attributed to the accessibility of a high electrochemically active surface area (EASA = 0.00345 μF/cm2) and an improved electron transfer rate. Stability and antiinterference tests were also carried out. A 100 fold increase in the concentration of common cations and anions (Na+, Mg2+, Cl-, SO42-, and NO3-) did not affect the selective determination of HQ. As a result, the fabricated electrochemical sensor has a wide range of potential applications in environmental and biomedical science.
Collapse
Affiliation(s)
- Juhyeon Park
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jiwon Kim
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, South Korea
| | - Myong Yong Choi
- Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, South Korea; Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
4
|
Abu Nayem SM, Shaheen Shah S, Sultana N, Abdul Aziz M, Saleh Ahammad AJ. Electrochemical Sensing Platforms of Dihydroxybenzene: Part 2 – Nanomaterials Excluding Carbon Nanotubes and Graphene. CHEM REC 2021; 21:1073-1097. [DOI: 10.1002/tcr.202100044] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/30/2021] [Indexed: 12/18/2022]
Affiliation(s)
- S. M. Abu Nayem
- Department of Chemistry Jagannath University 1100 Dhaka Bangladesh
| | - Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals KFUPM Box 5040 31261 Dhahran Saudi Arabia
- Physics Department King Fahd University of Petroleum & Minerals KFUPM Box 5047 31261 Dhahran Saudi Arabia
| | - Nasrin Sultana
- Department of Chemistry Jagannath University 1100 Dhaka Bangladesh
| | - Md. Abdul Aziz
- Center of Research Excellence in Nanotechnology King Fahd University of Petroleum & Minerals KFUPM Box 5040 31261 Dhahran Saudi Arabia
| | | |
Collapse
|
5
|
Lakhdari D, Guittoum A, Benbrahim N, Belgherbi O, Berkani M, Vasseghian Y, Lakhdari N. A novel non-enzymatic glucose sensor based on NiFe(NPs)-polyaniline hybrid materials. Food Chem Toxicol 2021; 151:112099. [PMID: 33677039 DOI: 10.1016/j.fct.2021.112099] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/14/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
Abstract
This article was focused on the elaboration of NiFe-Polyaniline glucose sensors via electrochemical technique. Firstly, the PANi (polyaniline) fibers were synthesized by oxidation of the monomer aniline on FTO (fluorine tin oxide) substrate. Secondly, the Nickel-Iron nanoparticles (NiFe (NPs)) were obtained by the Chronoamperometry method on the Polyaniline surface. The NiFe-PANi hybrid electrode was characterized by scanning electron microscopy (SEM), force atomic microscopy (AFM), Fourier-transformed infrared (FTIR), and X-ray diffraction (XRD). The electrochemical glucose sensing performance of the NiFe alloy nanoparticle was studied by cyclic voltammetry and amperometry. The fabricated glucose sensor Ni-Fe hybrid material exhibited many remarkable sensing performances, such as low-response time (4 s), sensitivity (1050 μA mM-1 cm-2), broad linear range (from 10 μM -1 mM), and low limit of detection (LOD) (0.5 μM, S/N = 3). The selectivity, reliability, and stability of the NiFe hybrid material for glucose oxidation were also investigated. All the results demonstrated that the NiFe-PANi/FTO hybrid electrode is very promising for application in electrochemical glucose sensing.
Collapse
Affiliation(s)
- Delloula Lakhdari
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria; Laboratoire de Physique et Chimie des Matériaux (LPCM), Université Mouloud Mammeri de Tizi-Ouzou, RP 15000, Algeria.
| | - Abderrahim Guittoum
- Nuclear Research Centre of Algiers, 2 Bd Frantz Fanon, Bp 399, Alger-Gare, Algiers, Algeria
| | - Nassima Benbrahim
- Laboratoire de Physique et Chimie des Matériaux (LPCM), Université Mouloud Mammeri de Tizi-Ouzou, RP 15000, Algeria
| | - Ouafia Belgherbi
- Research Center in Industrial Technologies CRTI, P.O. Box 64, Cheraga, 16014, Algiers, Algeria
| | - Mohammed Berkani
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| | - Yasser Vasseghian
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam; The Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam.
| | - Nadjem Lakhdari
- Laboratoire Biotechnologies, Ecole Nationale Supérieure de Biotechnologie, Ville Universitaire Ali Mendjeli, BP E66 25100, Constantine, Algeria.
| |
Collapse
|