1
|
Qureshi A, Shah A, Iftikhar FJ, Haleem A, Zia MA. Electrochemical analysis of anticancer and antibiotic drugs in water and biological specimens. RSC Adv 2024; 14:36633-36655. [PMID: 39559583 PMCID: PMC11570916 DOI: 10.1039/d4ra05685j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
The increasing prevalence of pharmaceuticals in water and complex matrices necessitates accurate measurement and monitoring of their environmental contamination levels. This is crucial not only for environmental conservation but also for comprehending the intricate mechanisms involved and developing more effective treatment approaches. In this context, electrochemical techniques show significant potential for the detection of pharmaceuticals across various matrices. Specifically, voltammetry is advantageous due to its rapid, straightforward, and cost-effective nature, allowing for the simultaneous analysis of multiple anticancer and antibiotic drugs. By utilizing nanomaterial-modified electrochemical sensors, the sensitivity and selectivity of detection methods can be significantly improved. The small size and customizable properties of nanomaterials enable these sensors to identify trace amounts of drugs in diverse samples. However, challenges persist in achieving reliable and accurate electrochemical monitoring of drugs in water and biological samples. Biofluids such as saliva, urine, and blood/serum, along with environmental samples from lakes and rivers, often contain numerous interfering substances that can diminish analyte signals. This review examines electrochemical methods and their potential applications for detecting pharmaceuticals and their metabolites, while also addressing the mechanisms of action and harmful effects of these drugs on both ecosystems and human health. Recent developments in electrochemical sensors utilizing nanomaterials for the detection of health-threatening pharmaceutical contaminants are examined, providing important insights into their underlying mechanisms. The emphasis is placed on the detection of anticancer agents and antibiotics, which relies on the electrocatalytic properties of the sensor materials. Additionally, discussions on density functional theory studies are included, along with an exploration of the emerging challenges and future directions in this area, aimed at enhancing readers' comprehension of the field and underscoring the necessary actions for a sustainable future.
Collapse
Affiliation(s)
- Ayesha Qureshi
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | | | - Abdul Haleem
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Abid Zia
- Department of Chemistry, University of Education Attock Punjab 43600 Pakistan
| |
Collapse
|
2
|
Munusamy S, Govindhan G, Lu Z, Jin J. New spacious SrWO 4/PEDOT-PPy nanohybrids and their electrochemical and photocatalytic activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57887-57902. [PMID: 39298034 DOI: 10.1007/s11356-024-34988-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
A novel SrWO4-poly(3,4-ethylene dioxythiophene) (PEDOT)-polypyrrole (PPy) nanocomposite was synthesized via chemically oxidative polymerization and considered by using numerous method of the techniques. The resulting SrWO4/PEDOT-PPy nanocomposite demonstrated remarkable electrochemical sensing capabilities for sulfadiazine (SFA). As a modified glassy carbon electrode (SrWO4/PEDOT-PPy/GCE) revealed for superior catalytic activity in the electrochemical oxidation of sulfadiazine, enabling sensitive detection with quantification and detection limits of 1.0936 × 10-9 M µA-1 and 2.2104 × 10-9 M µA-1, respectively. This technique effectively determined SFA content in real samples. Additionally, SrWO4/PEDOT-PPy demonstrated extraordinary photocatalytic ability, achieving a Methylene Blue (MB) degradation rate of up to 99.1% under halogen light irradiation within 80 min. Hybrid photocatalyst has exhibited to strong reusability and photocatalytic stability under frequent light exposure. A contrivance for the photocatalytic deprivation of MB by SrWO4/PEDOT-PPy is proposed. These results underscore the crucial role of SrWO4/PEDOT-PPy in practical environmental remediation analysis. The fluorescence investigations have betrothed to terephthalic acid radical formations of SrWO4/PEDOT-PPy hybrids, which were modulated by different approaches, and its mainly driven for higher illumination aptitudes. Meanwhile, this was more supporting for physio-chemical properties of the phenomenon, at this consequential with significantly well improved to the photocatalytic performances. Because of this, SrWO4/PEDOT-PPy hybrid materials were comprehended to deliver excellent kinetics, and better recyclable activities.
Collapse
Affiliation(s)
- Settu Munusamy
- Centre for Applied Nanomaterials, Chennai Institute of Technology, Chennai, 600069, Tamil Nadu, India
| | - Gnanamoorthy Govindhan
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Department of Inorganic Chemistry, University of Madras, Chennai, 600025, Tamil Nadu, India.
| | - Ziyang Lu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jie Jin
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| |
Collapse
|
3
|
Santhan A, Hwa KY. Alkaline metal tungstate anchored on functionalized-MWCNT: A co-active electrocatalyst for the detection of levofloxacin. CHEMOSPHERE 2024; 364:143028. [PMID: 39111672 DOI: 10.1016/j.chemosphere.2024.143028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/20/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
The widespread usage of levofloxacin (LVF) intake is executed for several urinary and respiratory systems infections in human. But, its over intake leads to severe damage to humans and the environment by its exposure. Hence the detection of LVF is concerned and we herein developed an electrocatalyst, strontium tungsten oxide nanospheres and later decorated onto the functionalized multiwall carbon nanotubes (SrWO4/f-MWCNT) to perform effective electrochemical recognition of LVF in aquatic and biological samples. Binary metal oxide with carbon composite SrWO4/f-MWCNT was developed due to its specific features as nanostructures. Various methods of investigation have been examined to identify the physiochemical characteristics like X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and morphological characteristics including field emission scanning electron microscopy, and transmission electron microscopy. The synthesized SrWO4/f-MWCNT sample crystalline size was around 32.9 nm. The SrWO4/f-MWCNT modified glassy carbon electrode (GCE) has been subjected to electrochemical investigation with a wide linear range of 0.049 μM-574.73 μM with good sensitivity 2.86 μA μM-1 cm2, the limit of detection at 14.9 nM for LVF sensing. Furthermore, the designed LVF detection exhibited excellent anti-interference, stability, reproducibility, and repeatability. The as-developed sensor's electrochemical outcomes indicate the superior performance inherent in the developed composite.
Collapse
Affiliation(s)
- Aravindan Santhan
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, Taiwan; Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan
| | - Kuo Yuan Hwa
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, Taiwan; Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan.
| |
Collapse
|
4
|
Teradale AB, Unki SN, Ganesh PS, Das KK, Das SN. Development of a Diethylcarbamazine Citrate‐Based Electrochemical Sensor for Quick and Affordable Detection of Sulfadiazine and Uric Acid in Environmental Monitoring. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202401047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/02/2024] [Indexed: 07/23/2024]
Abstract
AbstractThe widespread use of antibiotics like sulfadiazine (SDZ) in various industries has raised environmental and health concerns due to their potential for bioaccumulation and the subsequent effects on human health and the environment. Diethylcarbamazine citrate (DCZ), a well‐established antifilarial drug, has yet to be explored as a sensing agent despite its extensive use. This study proposes a cost‐effective and efficient method for detecting SDZ and Uric acid (UA) using a DCZ‐modified carbon paste electrode (poly‐DCZ/MCPE). The poly‐DCZ film is synthesized via cyclic voltammetry (CV) on the carbon paste electrode surface, demonstrating excellent electrocatalytic activity for SDZ and UA detection at pH 7.4. The diffusion‐controlled electrode process is observed with a lower limit of detection (LOD) and limit of quantification (LOQ) for SDZ as 3.8×10−9 M and 12.94×10−9 M respectively. For UA, LOD and LOQ were found to be 6.291×10−9 M and 20.97×10−9 M respectively at the poly‐DCZ/MCPE. Notably, the sensor exhibits simultaneous detection capabilities for SDZ and UA by CV and differential pulse voltammetry (DPV) methods, addressing the need to monitor antibiotic residues in aquatic ecosystems and animal‐derived products.
Collapse
Affiliation(s)
- Amit B. Teradale
- PG Department of Chemistry BLDEA's S.B. Arts and K.C.P. Science College Vijayapur Karnataka 586103 India
| | - Shrishila N. Unki
- PG Department of Chemistry BLDEA's S.B. Arts and K.C.P. Science College Vijayapur Karnataka 586103 India
| | - Pattan S. Ganesh
- Interaction Laboratory Future Convergence Engineering Advanced Technology Research Center Korea University of Technology and Education Cheonan-si Chungcheongnam-do 31253, Republic of Korea
| | - Kusal K. Das
- Laboratory of Vascular Physiology & Medicine Department of Physiology Shri B.M.Patil Medical College Hospital & Research Centre Director - Center for Advanced Medical Research BLDE (Deemed to be University) Vijayapura 586103 Karnataka India
| | - Swastika N. Das
- Department of Chemistry, BLDEA's V. P. Dr. P. G. Halakatti College of Engineering and Technology Vijayapur 586103 Karnataka India
| |
Collapse
|
5
|
John Felix MA, Rex Shanlee SS, Chen SM, Ruspika S, Balaji R, Chandrasekar N, Doss PA. Design and fabrication of La-based perovskites incorporated with functionalized carbon nanofibers for the electrochemical detection of roxarsone in water and food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2857-2868. [PMID: 38639051 DOI: 10.1039/d4ay00264d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The pentavalent arsenic compound roxarsone (RSN) is used as a feed additive in poultry for rapid growth, eventually ending up in poultry litter. Poultry litter contains chicken manure, which plays a vital role as an affordable fertilizer by providing rich nutrients to agricultural land. Consequently, the extensive use of poultry droppings serves as a conduit for the spread of toxic forms of arsenic in the soil and surface water. RSN can be easily oxidized to release highly carcinogenic As(III) and As(IV) species. Thus, investigations were conducted for the sensitive detection of RSN electrochemically by developing a sensor material based on lanthanum manganese oxide (LMO) and functionalized carbon nanofibers (f-CNFs). The successfully synthesised LMO/f-CNF composite was confirmed by chemical, compositional, and morphological studies. The electrochemical activity of the prepared composite material was examined using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The obtained results confirmed that LMO/f-CNF showed enhanced electrocatalytic activity and improved current response with a good linear range (0.01-0.78 μM and 2.08-497 μM, respectively), exhibiting a low limit of detection (LOD) of 0.004 μM with a high sensitivity of 13.24 μA μM-1 cm-2 towards the detection of RSN. The noteworthy features of LMO/f-CNF composite with its superior electrochemical performance enabled reliable reproducibility, exceptional stability and reliable practical application in the analysis of tap water and food sample, affording a recovery range of 86.1-98.87%.
Collapse
Affiliation(s)
- Mariya Antony John Felix
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Santhiyagu Sahayaraj Rex Shanlee
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Sundaresan Ruspika
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Ramachandran Balaji
- Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Andhra Pradesh 522302, India.
| | - Narendhar Chandrasekar
- Department of BioNano Technology, Gachon University, Seongnam 13120, Gyeonggi, Republic of Korea
| | - Periyanayagam Arockia Doss
- Department of Chemistry, St. Joseph's College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu 620002, India
| |
Collapse
|
6
|
Tho LH, Khuyen BX, Mai NXD, Tran NHT. Potential of a deep eutectic solvent in silver nanoparticle fabrication for antibiotic residue detection. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:426-434. [PMID: 38655542 PMCID: PMC11035980 DOI: 10.3762/bjnano.15.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Deep eutectic solvents (DESs) have recently emerged as an alternative solvent for nanoparticle synthesis. There have been numerous advancements in the fabrication of silver nanoparticles (Ag NPs), but the potential of DESs in Ag NP synthesis was neither considered nor studied carefully. In this study, we present a novel strategy to fabricate Ag NPs in a DES (Ag NPs-DES). The DES composed of ᴅ-glucose, urea, and glycerol does not contain any anions to precipitate with Ag+ cations. Our Ag NPs-DES sample is used in a surface-enhanced Raman scattering (SERS) sensor. The two analytes for SERS quantitation are nitrofurantoin (NFT) and sulfadiazine (SDZ) whose residues can be traced down to 10-8 M. The highest enhancement factors (EFs) are competitive at 6.29 × 107 and 1.69 × 107 for NFT and SDZ, respectively. Besides, the linearity coefficients are extremely close to 1 in the range of 10-8 to 10-3 M of concentration, and the SERS substrate shows remarkable uniformity along with great selectivity. This powerful SERS performance indicates that DESs have tremendous potential in the synthesis of nanomaterials for biosensor substrate construction.
Collapse
Affiliation(s)
- Le Hong Tho
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Viet Nam
| | - Bui Xuan Khuyen
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ngoc Xuan Dat Mai
- Vietnam National University, Ho Chi Minh City, Vietnam
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Viet Nam
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
7
|
Zhu X, Li Z, E Y, Chen P, Jiang Y, Wei P, Li L, Qian K. Highly dispersed redox antimony oxide pairs for accurate detection and electrochemistry-controlled recovery toward an antibiotic drug: Sulfadiazine. Anal Chim Acta 2023; 1281:341891. [PMID: 38783737 DOI: 10.1016/j.aca.2023.341891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Sulfadiazine (SDZ) is a broad-spectrum antibiotic widely used in aquaculture and animal husbandry and it is easy to remain in the water system to damage the human body. Therefore, detection and removal of sulfadiazine in water systems become critical. Nowadays, catalysts and visible light are used to degrade sulfadiazine into smaller molecules containing N and S to reduce toxicity. However, these small molecules are easily released into water and the atmosphere to be the acid rain. Therefore, it is urgent to design a sensor with the ability to detect and remove SDZ at the same time. (96) RESULTS: We designed a novel composite catalyst sensor (Sb6O13@LTA GCE) with the ability to simultaneously monitor and remove sulfadiazine. The catalyst is generated by introducing SbCl5 into the reactive gel of LTA (Linde Type A) structure zeolite. In the hydrothermal reaction, the corrosive SbCl5 is transferred into nanosized Sb6O13 nanoparticle which is highly dispersed in the opening nano-scaled windows of the zeolite through redox and self-assembled progress. In the selected electrochemical overpotential range, the Sb6O13@LTA composited modified electrode could complete adsorption and desorption of SDZ through the electron transfer from Sb3+ to Sb5+. As the catalyst is in high stability, the only loss in the whole process of recovering SDZ is a small amount of electric energy. The extra-low detection limit and the removal efficiency of Sb6O13@LTA GCE have been achieved 4.0 pM and 19.3 mg/20 mg (136) SIGNIFICANCE: The prepared novel sensor has low detection limit, high removal efficiency and high selectivity for sulfadiazine. The Sb6O13@LTA GCE sensor, which is low-cost and has a simple preparation method, exhibits good reproducibility in both seawater and cell fluid. This provides the possibility for wide application in detecting and removing SDZ in water system. (53).
Collapse
Affiliation(s)
- Xinyu Zhu
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Zhuozhe Li
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Yifeng E
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Peng Chen
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China.
| | - Yuying Jiang
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Pengyan Wei
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Li Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry in Jilin University, Changchun, 130012, PR China.
| | - Kun Qian
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| |
Collapse
|
8
|
Zhu X, Li Z, Fang F, E Y, Chen P, Li L, Qian K. Coral-like, self-assembled, and spatially bounded Ag nano-particles on franzinite zeolite composite sensor toward accurate, synergetic, and ultra-trace sulfadiazine detection. Anal Chim Acta 2023; 1276:341619. [PMID: 37573109 DOI: 10.1016/j.aca.2023.341619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
A coral-like Ag@FRA zeolite nanocomposite sensor reveals high sensitivity toward sulfadiazine (SDZ) in a dual detection of fluorescence and electrochemistry. The sensor has been as-synthesized in the hydrothermal condition through a one-pot self-assembly process in which the high crystalline Ag nanoparticles (NPs) are closely arranged and stacked on the nanosized surface cage window of the FRA (Franzinite) zeolite. Strong ultrasound can drive the coral-like composite release Ag nanoparticles whose distribution range mainly from 10 to 12 nm lead to the purple fluorescence in an emission spectrum. In sea water, the fluorescence increases linearly in the SDZ concentration range of 5 × 10-18-5 × 10-10 M. Furthermore, the LOD (limit of detection) reaches 1.4 × 10-22 M by the spatial confinement effect of the coral-liked FRA cage structure in CV (cyclic voltammetry) method at the characteristic potential peak position of 0.1 V vs. SCE. The theoretical calculation also confirms that the FRA cage structure matches well with the SDZ molecules. Further studies indicate the generation of a novel stable composite sensor with high specificity, good recovery and repeatability, which depends on the induction of silver ions upon the artificial synthesis of FRA.
Collapse
Affiliation(s)
- Xinyu Zhu
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Zhuozhe Li
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Fang Fang
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Yifeng E
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Peng Chen
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China.
| | - Li Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry in Jilin University, Changchun, 130012, PR China.
| | - Kun Qian
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| |
Collapse
|
9
|
Zheng X, Yang L, Sun Q, Zhang L, Le T. Development and Validation of Aptasensor Based on MnO 2 for the Detection of Sulfadiazine Residues. BIOSENSORS 2023; 13:613. [PMID: 37366978 DOI: 10.3390/bios13060613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
The monitoring of sulfadiazine (SDZ) is of great significance for food safety, environmental protection, and human health. In this study, a fluorescent aptasensor based on MnO2 and FAM-labeled SDZ aptamer (FAM-SDZ30-1) was developed for the sensitive and selective detection of SDZ in food and environmental samples. MnO2 nanosheets adsorbed rapidly to the aptamer through its electrostatic interaction with the base, providing the basis for an ultrasensitive SDZ detection. Molecular dynamics was used to explain the combination of SMZ1S and SMZ. This fluorescent aptasensor exhibited high sensitivity and selectivity with a limit of detection of 3.25 ng/mL and a linear range of 5-40 ng/mL. The recoveries ranged from 87.19% to 109.26% and the coefficients of variation ranged from 3.13% to 13.14%. In addition, the results of the aptasensor showed an excellent correlation with high-performance liquid chromatography (HPLC). Therefore, this aptasensor based on MnO2 is a potentially useful methodology for highly sensitive and selective detection of SDZ in foods and environments.
Collapse
Affiliation(s)
- Xiaoling Zheng
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Lulan Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Lei Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
10
|
Baby JN, Akila B, Chiu TW, Sakthinathan S, V AS, Zealma B A, George M. Deep Eutectic Solvent-Assisted Synthesis of a Strontium Tungstate Bifunctional Catalyst: Investigation on the Electrocatalytic Determination and Photocatalytic Degradation of Acetaminophen and Metformin Drugs. Inorg Chem 2023; 62:8249-8260. [PMID: 37202345 DOI: 10.1021/acs.inorgchem.3c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this work, we propose a modified solid-state approach for the sustainable preparation of a SrWO4 bifunctional catalyst using thymol-menthol-based natural deep eutectic green solvents (NADESs). Various spectroscopic and morphological techniques analyzed the as-synthesized SrWO4 particles. Acetaminophen (ATP) and metformin (MTF) were selected as the model drug compounds. The electrochemical detection and photocatalytic degradation of ATP and MTF upon ultraviolet-visible (UV-vis) light irradiation in the presence of as-prepared SrWO4 particles as an active catalyst are examined. The present study displayed that the proposed catalyst SrWO4 has enhanced catalytic activity in achieving the optimum experimental conditions, and linear ranges of ATP = 0.01-25.90 μM and MTF = 0.01-25.90 μM, a lower limit of detection (LOD) value (ATP = 0.0031 μM and MTF = 0.008 μM), and higher sensitivity toward ATP and MTF determination were obtained. Similarly, the rate constant was found to be k = ATP = 0.0082 min-1 and MTF = 0.0296 min-1 according to the Langmuir-Hinshelwood model, benefitting from the excellent synergistic impact of the SrWO4 catalyst toward the photocatalytic degradation of the drug molecule. Hence, this work offers innovative insights into the applicability of the as-prepared SrWO4 bifunctional catalyst as an excellent functional material for the remediation of emerging pollutants in water bodies with a recovery range of 98.2-99.75%.
Collapse
Affiliation(s)
- Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
- Department of Chemistry, St. Mary's College, Sulthan Bathery, Wayanad, Kerala 673592, India
| | - Balasubramanian Akila
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Subramanian Sakthinathan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Abhikha Sherlin V
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
| | - Annie Zealma B
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
| |
Collapse
|
11
|
Dehghani Soltani M, Dadfarnia S, Mohammad Haji Shabani A, Afsharipour R. Fabrication of a fluorescent nanoprobe for determination of sulfadiazine after its dispersive solid-phase extraction using magnetic nanocomposite sorbent. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
12
|
Manjunatha L, Kumara Swamy B, Manjunatha K. Cadmium oxide nanoparticle modified carbon paste electrode sensor for sulfadiazine: A voltammetric study. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
13
|
Gokulkumar K, Huang SJ, Wang SF, Balaji R, Chandrasekar N, Hwang MT. Zinc molybdate/functionalized carbon nanofiber composites modified electrodes for high-performance amperometric detection of hazardous drug Sulfadiazine. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
14
|
Elamin MB, Ali SMA, Essousi H, Chrouda A, Alhaidari LM, Jaffrezic-Renault N, Barhoumi H. An Electrochemical Sensor for Sulfadiazine Determination Based on a Copper Nanoparticles/Molecularly Imprinted Overoxidized Polypyrrole Composite. SENSORS (BASEL, SWITZERLAND) 2023; 23:1270. [PMID: 36772311 PMCID: PMC9919664 DOI: 10.3390/s23031270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
To protect consumers from risks related to overexposure to sulfadiazine, total residues of this antibacterial agent in animal-origin foodstuffs not exceed international regulations. To this end, a new electrochemical sensor based on a molecularly imprinted polymer nanocomposite using overoxidized polypyrrole and copper nanoparticles for the detection of sulfadiazine is elaborated. After optimization of the preparation of the electrochemical sensors, their differential pulse voltammetric signal exhibits an excellent stability and reproducibility at 1.05 V, with a large linear range between 10-9 and 10-5 mol L-1 and a low detection limit of 3.1 × 10-10 mol L-1. The produced sulfadiazine sensor was successfully tested in real milk samples. The combination of the properties of the electrical conduction of copper nanoparticles with the properties of the preconcentration of the molecularly imprinted overoxidized polypyrrole allows for the highly sensitive detection of sulfadiazine, even in real milk samples. This strategy is new and leads to the lowest detection limit yet achieved, compared to those of the previously published sulfadiazine electrochemical sensors.
Collapse
Affiliation(s)
- Manahil Babiker Elamin
- Department of Chemistry, Faculty of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | | | - Houda Essousi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, Monastir University, Monastir 5000, Tunisia
| | - Amani Chrouda
- Department of Chemistry, Faculty of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Laila M. Alhaidari
- Department of Chemistry, Faculty of Science Al-Zulfi, Majmaah University, Majmaah 11952, Saudi Arabia
| | | | - Houcine Barhoumi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences, Monastir University, Monastir 5000, Tunisia
| |
Collapse
|
15
|
Gu C, Wang Z, Pan Y, Zhu S, Gu Z. Tungsten-based Nanomaterials in the Biomedical Field: A Bibliometric Analysis of Research Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204397. [PMID: 35906814 DOI: 10.1002/adma.202204397] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Tungsten-based nanomaterials (TNMs) with diverse nanostructures and unique physicochemical properties have been widely applied in the biomedical field. Although various reviews have described the application of TNMs in specific biomedical fields, there are still no comprehensive studies that summarize and analyze research trends of the field as a whole. To identify and further promote the development of biomedical TNMs, a bibliometric analysis method is used to analyze all relevant literature on this topic. First, general bibliometric distributions of the dataset by year, country, institute, referenced source, and research hotspots are recognized. Next, a comprehensive review of the subjectively recognized research hotspots in various biomedical fields, including biological sensing, anticancer treatments, antibacterials, and toxicity evaluation, is provided. Finally, the prospects and challenges of TNMs are discussed to provide a new perspective for further promoting their development in biomedical research.
Collapse
Affiliation(s)
- Chenglu Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Wang
- School of Science, China University of Geosciences, Beijing, 100049, China
| | - Yawen Pan
- School of Science, China University of Geosciences, Beijing, 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Liu Y, Chen J, Hu H, Qu K, Cui Z. A Low-Cost Electrochemical Method for the Determination of Sulfadiazine in Aquaculture Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16945. [PMID: 36554826 PMCID: PMC9779263 DOI: 10.3390/ijerph192416945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
As the concept of green development spreads worldwide, environmental protection awareness for production and life has been continuously strengthened. Antibiotic residues in aquaculture wastewaters aggravate environmental pollution and threaten human health. Therefore, the detection of residual antibiotics in wastewater is crucial. In this paper, a new, simple, and low-cost method based on the glassy carbon electrode electrochemical sensor for the detection of sulfadiazine in aquaculture wastewater was developed without using complex materials to modify the electrode surface, to detect sulfadiazine which electrochemically oxidizes directly. The electrochemical performance of the sensor was studied and optimized with differential pulse voltammetry and cyclic voltammetry in the three-electrode system. The optimal electrolyte was acetic acid-sodium acetate buffer, and the optimal pH was 4.0. Finally, based on the optimized conditions, the newly established method showed satisfactory results for detecting sulfadiazine in aquaculture wastewater. The concentration of sulfadiazine and the peak current intensity showed a linear relationship in the range of 20 to 300 μmol/L, and the limit of detection was 6.14 μmol/L, the recovery rate of standard addition was 87-95%, with satisfactory reproducibility and low interference.
Collapse
Affiliation(s)
- Yang Liu
- Faculty of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jianlei Chen
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Haiyan Hu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
17
|
Radha A, Wang SF. Bismuth sulfide microstructures decorated with functionalized boron nitride composite for electrochemical detection of sulfadiazine. Mikrochim Acta 2022; 189:429. [PMID: 36264516 DOI: 10.1007/s00604-022-05518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022]
Abstract
In this work, the hydrothermal method was used to synthesize f-BN@Bi2S3 nanocomposite and used as an electrocatalyst for the detection of sulfadiazine (SD) drug. Various spectroscopic and voltammetric techniques were adopted to evaluate the morphological and structural features of the prepared materials. The modification of the electrode results in good electrocatalytic activity and excellent sensitive towards the oxidation of SD because of its huge active surface area, high sensitivity, and electrical conductivity provided by the synergistic effects of the f-BN@Bi2S3 nanocomposite. This modified electrode exhibited linearity in the range 0.01-62 µM at Epa = 0.93 V (vs. Ag/AgCl). Furthermore, according to the electrochemical reaction towards the SD, a modified electrode of f-BN@Bi2S3 has a LOD value of 0.0015 µM, sensitivity (8.42 μA·μM-1·cm-2), good anti-interfering ability, and good repeatability. The suggested electrochemical sensor has high detection performance for monitoring water and urine samples. Notably, relative standard deviations (RSD) and recoveries of the proposed sensor for spiked water and urine samples are in the ranges of 0.014-0.75% and 98.97-99.98% (n = 3), respectively.
Collapse
Affiliation(s)
- Aravind Radha
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan.
| |
Collapse
|
18
|
Sriram B, Kogularasu S, Hsu YF, Wang SF, Sheu JK. Fabrication of Praseodymium Vanadate Nanoparticles on Disposable Strip for Rapid and Real-Time Amperometric Sensing of Arsenic Drug Roxarsone. Inorg Chem 2022; 61:16370-16379. [PMID: 36184926 DOI: 10.1021/acs.inorgchem.2c02388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanomaterials have versatile properties owing to their high surface-to-volume ratio and can thus be used in a variety of applications. This work focused on applying a facile hydrothermal strategy to prepare praseodymium vanadate nanoparticles due to the importance of nanoparticles in today's society and the fact that their synthesis might be a challenging endeavor. The structural and morphological characterizations were carried out to confirm the influence of the optimizations on the reaction's outcomes, which revealed praseodymium vanadate (PrVO4) with a tetragonal crystal system. In this regard, the proposed development of electrochemical sensors based on the PrVO4 nanocatalyst for the real-time detection of arsenic drug roxarsone (RXS) is a primary concern. The detection was measured by amperometric (i-t) signals where PrVO4/SPCE, as a new electrochemical sensing medium for RXS detection, increased the sensitivity of the sensor to about ∼2.5 folds compared to the previously reported ones. In the concentration range of 0.001-551.78 μM, the suggested PrVO4/SPCE sensor has a high sensitivity for RXS, with a detection limit of 0.4 nM. Furthermore, the impact of several selected potential interferences, operational stability (2000 s), and reproducibility measurements have no discernible effect on RXS sensing, making it the ideal sensing device feasible for technical analysis. The real-time analysis reveals the excellent efficiency and reliability of the prosed sensor toward RXS detection with favorable recovery ranges between ±97.00-99.66% for chicken, egg, water, and urine samples.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei106, Taiwan
| | | | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei106, Taiwan
| | - Jinn-Kong Sheu
- Department of Photonics, National Cheng Kung University, Tainan701, Taiwan
| |
Collapse
|
19
|
3D-nanocubes of N-doped carbon quantum dots adorned manganese oxide: A functional electrocatalyst for the sensitive detection of sulfadiazine. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Sriram B, Baby JN, Hsu YF, Wang SF, George M. In Situ Synthesis of a Bismuth Vanadate/Molybdenum Disulfide Composite: An Electrochemical Tool for 3-Nitro-l-Tyrosine Analysis. Inorg Chem 2022; 61:14046-14057. [PMID: 35998644 DOI: 10.1021/acs.inorgchem.2c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The quantification of 3-nitro-l-tyrosine (NO2-Tyr), an in vivo biomarker of nitrosative stress, is indispensable for the clinical intervention of various inflammatory disorders caused by nitrosative stress. By integrating the unique features of BiVO4 and MoS2 with matching bandgap energies, electrode materials with amplified response signals can be developed. In this regard, we introduce a hydrothermally synthesized bismuth vanadate sheathed molybdenum disulfide (MoS2@BiVO4) heterojunction as a highly sensitive electrode material for the determination of NO2-Tyr. Excellent electrochemical behavior perceived for the MoS2@BiVO4 augments the performance of the sensor and allows the measurement of NO2-Tyr in biological media without any time-consuming pretreatments. The synergistic interactions between BiVO4 and MoS2 heterojunctions contribute to low resistance charge transfer (Rct = 159.13 Ω·cm2), a reduction potential Epc = -0.58 V (vs Ag/AgCl), and a good response range (0.001-526.3 μM) with a lower limit of detection (0.94 nM) toward the detection of NO2-Tyr. An improved active surface area, reduced charge recombination, and high analyte adsorption contribute to the high loading of the biomarker for improved selectivity (in the presence of 10 interfering compounds), operational stability (1000 s), and reproducibility (six various modified electrodes). The proposed sensor was successfully utilized for the real-time determination of NO2-Tyr in water, urine, and saliva samples with good recovery values (±98.94-99.98%), ascertaining the reliability of the method. It is noteworthy that the electrochemical activity remains unaffected by other redox interferons, thus leading to targeted sensing applications.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India.,Department of Chemistry, St. Mary's College, Sulthan Bathery, Wayanad, Kerala 673592, India
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
| |
Collapse
|
21
|
Avcı RN, Oymak T, Bağda E. Determination of Sulfadiazine in Natural Waters by Pine Needle Biochar – Derivatized Magnetic Nanocomposite Based Solid-Phase Extraction (SPE) with High-Performance Liquid Chromatography (HPLC). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2059668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Remziye Nur Avcı
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Tülay Oymak
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Esra Bağda
- Department of Basic Pharmaceutical Sciences, Analytical Chemistry Division, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
22
|
Joseph XB, Stanley MM, Wang SF, George M. Growth of 2D-layered double hydroxide nanorods heterojunctions with 2D tungsten carbide nanocomposite: An improving the electrochemical sensing in norfloxacin monitoring. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
A Low-Cost Wireless Intelligent Portable Sensor Based on Disposable Laser-Induced Porous Graphene Flexible Electrode Decorated by Gold Nanoshells for Rapid Detection of Sulfonamides in Aquatic Products. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Habibi MM, Mousavi M, Shadman Z, Ghasemi JB. Preparation of a nonenzymatic electrochemical sensor based on g-C3N4/MWO4 (M: Cu, Mn, Co, Ni) composite for the determination of H2O2. NEW J CHEM 2022. [DOI: 10.1039/d1nj05711a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen peroxide (H2O2) has a significant effect on physiological proceedings. In the present research, a g-C3N4-based nanocomposite g-C3N4/MWO4(M: Cu, Mn, Co, Ni) was prepared via the precipitation-calcination method. A...
Collapse
|
25
|
Kokulnathan T, Rajagopal V, Wang TJ, Huang SJ, Ahmed F. Electrochemical Behavior of Three-Dimensional Cobalt Manganate with Flowerlike Structures for Effective Roxarsone Sensing. Inorg Chem 2021; 60:17986-17996. [PMID: 34747616 DOI: 10.1021/acs.inorgchem.1c02583] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rational design and construction of the finest electrocatalytic materials are important for improving the performance of electrochemical sensors. Spinel bioxides based on cobalt manganate (CoMn2O4) are of particular importance for electrochemical sensors due to their excellent catalytic performance. In this study, three-dimensional CoMn2O4 with the petal-free, flowerlike structure is synthesized by facile hydrothermal and calcination methods for the electrochemical sensing of roxarsone (RXS). The effect of calcination temperature on the characteristics of CoMn2O4 was thoroughly studied by in-depth electron microscopic, spectroscopic, and analytical methods. Compared to previous reports, CoMn2O4-modified screen-printed carbon electrodes display superior performance for the RXS detection, including a wide linear range (0.01-0.84 μM; 0.84-1130 μM), a low limit of detection (0.002 μM), and a high sensitivity (33.13 μA μM-1 cm-2). The remarkable electrocatalytic performance can be attributed to its excellent physical properties, such as good conductivity, hybrid architectures, high specific surface area, and rapid electron transportation. More significantly, the proposed electrochemical sensor presents excellent selectivity, good stability, and high reproducibility. Besides, the detection of RXS in river water samples using the CoMn2O4-based electrochemical sensor shows satisfactory recovery values in the range of 98.00-99.80%. This work opens a new strategy to design an electrocatalyst with the hybrid architecture for high-performance electrochemical sensing.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Veeramanikandan Rajagopal
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Song-Jeng Huang
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf, Al-Ahsa 31982, Kingdom of Saudi Arabia
| |
Collapse
|
26
|
Sriram B, Baby JN, Hsu YF, Wang SF, George M. Toward the Development of Disposable Electrodes Based on Holmium Orthovanadate/ f-Boron Nitride: Impacts and Electrochemical Performances of Emerging Inorganic Contaminants. Inorg Chem 2021; 60:12425-12435. [PMID: 34311546 DOI: 10.1021/acs.inorgchem.1c01678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rare-earth metal orthovanadates have great technological relevance in the family of rare-earth compounds owing to their excellent physical and chemical properties. A significant number of studies have been carried out on this class of compounds to exploit their electrochemical properties in virtue of variable oxidation states. But holmium vanadate (HoV) and its morphology selective synthesis have not been considered, which can have potential applications similar to the rest of the family. In this work, we propose the synthesis of superior architectures of HoV with a functionalized boron nitride (f-BN) nanocomposite. The synergistic effect between HoV and f-BN can have a positive effect on the physical characteristics of the nanocomposite, which can be explored for its electrochemical capacity. Here, HoV incorporated with f-BN is explored for the electrochemical detection of Hg2+ ions, which is known for its toxicity-induced environmental health hazards. The structural and compositional revelation reveals higher conductivity and faster electron transfer in the composite, which facilitates a wide working range (0.02-53.8 and 64.73-295.4 μM), low limit of detection (5 nM), higher sensitivity (66.6 μA μM-1 cm-2), good selectivity over 10-fold higher concentration of other interfering compounds compared to Hg2+ ion concentration, and good cycles stability (30 segments) toward Hg2+ ion detection. This also envisages the morphology selective synthesis and utilization of other rare-earth metals, whose electrochemical capacities are unexplored.
Collapse
Affiliation(s)
- Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
| | - Yung-Fu Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai, Tamil Nadu 600086, India
| |
Collapse
|
27
|
Baby JN, Sriram B, Wang SF, George M. Integration of samarium vanadate/carbon nanofiber through synergy: An electrochemical tool for sulfadiazine analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124940. [PMID: 33387714 DOI: 10.1016/j.jhazmat.2020.124940] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/05/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Antibiotic pollution causes worldwide concern due to its more apparent consequences, namely antibiotic resistance and destruction of the environment. Extensive use of antibiotics in human and veterinary drugs releases a significant amount of toxins into the sphere of living matter, causing adverse ecological impacts. This requires the design of new analytical protocols for the effective mitigation and monitoring of hazardous pharmaceutical products to reduce the environmental burden. Therefore, we present here the hydrothermal synthesis of samarium vanadate/carbon nanofiber (SmV/CNF) composite for the determination of sulfadiazine (SFZ). The synergistic effect arising from the combination of SmV and CNF accelerates charge transfer kinetics along with the creation of more surface-active sites that benefit effective detection. The structural and compositional disclosure indicates the high purity and superior attributes of the composite material that possesses the ability to improve catalytic performance. The proposed SmV/CNF sensor exhibits important static characteristics such as wide linear response ranges, low detection limit, high sensitivity and selectivity, and increased stability. To the best of our knowledge, this is the first report on the electrochemical performance of SmV/CNF, establishing its potential application in real-time analysis of environmentally hazardous contaminants.
Collapse
Affiliation(s)
- Jeena N Baby
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India
| | - Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei 106, Taiwan.
| | - Mary George
- Department of Chemistry, Stella Maris College, Affiliated to the University of Madras, Chennai 600086, Tamil Nadu, India.
| |
Collapse
|
28
|
Kaleeswarran P, Sriram B, Wang SF, Baby JN, Arumugam A, Bilgrami AL, Hashsham SA, Abdullah Sayegh F, Liu CJ. Electrochemical detection of antipsychotic drug in water samples based on nano/sub-microrod-like CuBi2−xInxO4 electrocatalysts. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105886] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Vinoth S, Govindasamy M, Wang SF, Alothman AA, Alshgari RA. Hydrothermally synthesized cubical zinc manganite nanostructure for electrocatalytic detection of sulfadiazine. Mikrochim Acta 2021; 188:131. [PMID: 33742263 DOI: 10.1007/s00604-021-04768-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/20/2021] [Indexed: 11/30/2022]
Abstract
An electrocatalyst modified electrode has been investigated to develop the rapid detection of antibiotics. The modified electrocatalyst was intended for the determination of sulfadiazine (SFZ) in biological fluids by electrochemical methods. Nanocube of zinc manganite (ZnMn2O4-NC) is prepared by hydrothermal method and a glassy carbon electrode (GCE) has been modified with the zinc manganite. The ZnMn2O4/GCE exhibit enhanced detection performances towards SFZ drug owing to their selective adsorption ability and the combination of electrostatic attraction of nanocube with SFZ. The modified electrocatalyst shows excellent electrocatalytic interactions with antibiotic drug. Besides, the modified sensors exhibit nanomolar detection limit (0.0021 μM) in 0.05 M phosphate buffer (pH = 7.0) using differential pulse voltammetric method. The working range of the modified electrode is 0.008-1264 μM, and the sensitivity of the SFZ sensor is 11.44 μA μM-1 cm-2. The modified sensor stability and reproducibility performances have been examined by electrochemical method. In addition, the obtained results of real sample analysis with different concentrations of SFZ in biological fluids are satisfactory with good recovery.
Collapse
Affiliation(s)
- Subramaniyan Vinoth
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan
| | - Mani Govindasamy
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan.
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Rd., Taipei, 106, Taiwan.
| | - Asma A Alothman
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Razan A Alshgari
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
30
|
Joseph XB, Ezhilarasi JC, Wang SF, Elanthamilan E, Sriram B, Merlin JP. Fabrication of Co 3O 4 nanoparticle-decorated porous activated carbon electrode for the electrochemical detection of 4-nitrophenol. NEW J CHEM 2021. [DOI: 10.1039/d1nj02642a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Preparation of Co3O4@BVFC for the electrochemical detection of 4-NP.
Collapse
Affiliation(s)
- Xavier Benadict Joseph
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - J. Christy Ezhilarasi
- Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620017, Tamil Nadu, India
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - E. Elanthamilan
- Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620017, Tamil Nadu, India
| | - Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - J. Princy Merlin
- Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620017, Tamil Nadu, India
| |
Collapse
|