1
|
Fang K, Hong L, Zhang Y, Cao N, Feng J, Hu M, Fu Q, Zheng Y, Yang Q, Wang Y, Wang J, Wang S, Cheng X, Dong Q. Hourly effect of atmospheric reactive nitrogen species on the onset of acute ischemic stroke: Insight from the Shanghai Stroke Service System Database. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174896. [PMID: 39047832 DOI: 10.1016/j.scitotenv.2024.174896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Acute ischemic stroke (AIS) is one of the most predominant causes of mortality and disability in China. Significant uncertainties in stroke diagnosis and time of onset have resulted in inconsistent evidence on the association between ambient air pollution and the risk of AIS. The present study aimed to evaluate the impact of air pollution on AIS onset based on high time-resolution air pollution data and a stroke-specific registry across the past five years. Hourly concentrations of PM2.5, PM10, O3, SO2, CO, NO2 and nitrous acid (HONO) were monitored from 2017 to 2021, with which a distributed lag non-linear model and conditional logistic regression models coupled with a time-stratified case-crossover design were applied to 106,623 AIS cases recorded in the Shanghai Stroke Service (4S) database during the study period. Results from the conditional logistic regression models indicate that acute exposure to PM2.5, PM10, SO2, NO2 and HONO was found to be associated with AIS onset, respectively. The corresponding cumulative excessive risks of AIS onset were 0.8 %, 1 %, 2.4 %, 2.1 % and 1.8 % for each interquartile range increase in the respective concentration. The longest lag-effect (up to 13 h) was observed for reactive nitrogen species (RNS), such as NO2 and HONO, which remained robust in two-pollutant models. Similar important role of RNS in AIS onset were confirmed by the distributed lag non-linear model. By demonstrating the transient effect of ambient air pollution on AIS, especially the relationships between RNS and AIS for the first time, our study provides stringent evidence for future mitigation strategies for pollution emission and public health.
Collapse
Affiliation(s)
- Kun Fang
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging in Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Lan Hong
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging in Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiran Zhang
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging in Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Nan Cao
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging in Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jialiang Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Ming Hu
- Shanghai Environmental Monitoring Center, Shanghai, China
| | - Qingyan Fu
- Shanghai Academy of Environmental Sciences, Shanghai, China
| | - Yang Zheng
- Department of NCD Surveillance, Division of Chronic Non-communicable Diseases and Injury, Shanghai Municipal Center for Disease Control and Prevention, China
| | - Qundi Yang
- Department of NCD Surveillance, Division of Chronic Non-communicable Diseases and Injury, Shanghai Municipal Center for Disease Control and Prevention, China
| | - Yuzhuo Wang
- Department of NCD Surveillance, Division of Chronic Non-communicable Diseases and Injury, Shanghai Municipal Center for Disease Control and Prevention, China
| | - Jinyitao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China.
| | - Xin Cheng
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging in Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Qiang Dong
- Department of Neurology, National Center for Neurological Disorders, National Clinical Research Center for Aging in Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Lin W, Pan J, Li J, Zhou X, Liu X. Short-Term Exposure to Air Pollution and the Incidence and Mortality of Stroke: A Meta-Analysis. Neurologist 2024; 29:179-187. [PMID: 38048541 DOI: 10.1097/nrl.0000000000000544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
BACKGROUND The relationship between short-term exposure to various air pollutants [particulate matter <10 μm (PM 10 ), particulate matter <2.5 μm (PM 2.5 ), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), carbon monoxide, and ozone (O 3 )] and the incidence and mortality of stroke remain unclear. REVIEW SUMMARY We conducted a comprehensive search across databases, including PubMed, Web of Science, and others. A random-effects model was employed to estimate the odds ratios (OR) and their 95% CIs. Short-term exposure to PM 10 , PM 2.5 , NO 2 , SO 2 , and O 3 was associated with increased stroke incidence [per 10 μg/m 3 increase in PM 2.5 : OR = 1.005 (95% CI: 1.004-1.007), per 10 μg/m 3 increase in PM 10 : OR = 1.006 (95% CI: 1.004-1.009), per 10 μg/m 3 increase in SO 2 : OR = 1.034 (95% CI: 1.020-1.048), per 10 μg/m 3 increase in NO 2 : OR = 1.029 (95% CI: 1.015-1.043), and O 3 for per 10 μg/m 3 increase: OR: 1.006 (95% CI: 1.004-1.007)]. In addition, short-term exposure to PM 2.5 , PM 10 , SO 2, and NO 2 was correlated with increased mortality from stroke [per 10 μg/m 3 increase in PM 2.5 : OR = 1.010 (95% CI: 1.006-1.013), per 10 μg/m 3 increase in PM 10 : OR = 1.004 (95% CI: 1.003-1.006), per 10 μg/m 3 increase in SO 2 : OR = 1.013 (95% CI: 1.007-1.019) and per 10 μg/m 3 increase in NO 2 : OR = 1.012 (95% CI: 1.008-1.015)]. CONCLUSION Reducing outdoor air pollutant levels may yield a favorable outcome in reducing the incidence and mortality associated with strokes.
Collapse
Affiliation(s)
- Wenjian Lin
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
- Tongji University School of Medicine, Shanghai, China
| | - Jie Pan
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Jiahe Li
- Tongji University School of Medicine, Shanghai, China
| | - Xiaoyu Zhou
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine
| |
Collapse
|
3
|
Lv X, Shi W, Yuan K, Zhang Y, Cao W, Li C, Xu L, Wu L, Sun S, Hong F. Hourly Air Pollution Exposure and Emergency Hospital Admissions for Stroke: A Multicenter Case-Crossover Study. Stroke 2023; 54:3038-3045. [PMID: 37901948 DOI: 10.1161/strokeaha.123.044191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND Daily exposure to ambient air pollution is associated with stroke morbidity and mortality; however, the association between hourly exposure to air pollutants and risk of emergency hospital admissions for stroke and its subtypes remains relatively unexplored. METHODS We obtained hourly concentrations of fine particulate matter (PM2.5), respirable particulate matter (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO) from the China National Environmental Monitoring Center. We conducted a time-stratified case-crossover study among 86 635 emergency hospital admissions for stroke across 10 hospitals in 3 cities (Jinhua, Hangzhou, and Zhoushan) in Zhejiang province, China, between January 1, 2016 and December 31, 2021. Using a conditional logistic regression combined with a distributed lag linear model, we estimated the association between hourly exposure to multiple air pollutants and risk of emergency hospital admissions for total stroke, ischemic stroke, hemorrhagic stroke, and undetermined type. RESULTS Hourly exposure to PM2.5, PM10, NO2, and SO2 was associated with an increased risk of hospital admissions for total stroke and ischemic stroke. The associations were most pronounced during the concurrent hour of exposure and lasted for ≈2 hours. We found that the risk was more pronounced among male patients or those aged <65 years old. CONCLUSIONS Our findings suggest that exposure to PM2.5, PM10, NO2, and SO2, but not CO and O3, is associated with emergency hospital admissions for total stroke or ischemic stroke shortly after exposure. Implementing targeted pollution emission reduction measures may have significant public health implications in controlling and reducing the burden of stroke.
Collapse
Affiliation(s)
- Xin Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China (X.L., W.S., K.Y., Y.Z., S.S.)
| | - Wanying Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China (X.L., W.S., K.Y., Y.Z., S.S.)
| | - Kun Yuan
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China (X.L., W.S., K.Y., Y.Z., S.S.)
| | - Yangchang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China (X.L., W.S., K.Y., Y.Z., S.S.)
| | - Wangnan Cao
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China (W.C.)
| | - Chunrong Li
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China (C.L.)
| | - Lufei Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Human Resources, Peking University Cancer Hospital and Institute, China (L.X.)
| | - Lizhi Wu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China (L.W.)
| | - Shengzhi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China (X.L., W.S., K.Y., Y.Z., S.S.)
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China (S.S., F.H.)
| | - Feng Hong
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China (S.S., F.H.)
| |
Collapse
|
4
|
Lamorie-Foote K, Ge B, Shkirkova K, Liu Q, Mack W. Effect of Air Pollution Particulate Matter on Ischemic and Hemorrhagic Stroke: A Scoping Review. Cureus 2023; 15:e46694. [PMID: 37942398 PMCID: PMC10629995 DOI: 10.7759/cureus.46694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Air pollution particulate matter (PM) exposure has been established as a risk factor for stroke. However, few studies have investigated the effects of PM exposure on stroke subtypes (ischemic and hemorrhagic stroke). Ischemic (IS) and hemorrhagic strokes (HS) involve distinctive pathophysiological pathways and may be differentially influenced by PM exposure. This review aims to characterize the effects of PM exposure on ischemic and hemorrhagic strokes. It also identifies subpopulations that may be uniquely vulnerable to PM toxicity. Pubmed was queried from 2000 to 2023 to identify clinical and epidemiological studies examining the association between PM exposure and stroke subtypes (ischemic and hemorrhagic stroke). Inclusion criteria were: 1) articles written in English 2) clinical and epidemiological studies 3) studies with a clear definition of stroke, IS, HS, and air pollution 4) studies reporting the effects of PM and 5) studies that included distinct analyses per stroke subtype. Two independent reviewers screened the literature for applicable studies. A total of 50 articles were included in this review. Overall, PM exposure increases ischemic stroke risk in both lightly and heavily polluted countries. The association between PM exposure and hemorrhagic stroke is variable and may be influenced by a country's ambient air pollution levels. A stronger association between PM exposure and stroke is demonstrated in older individuals and those with pre-existing diabetes. There is no clear effect of sex or hypertension on PM-associated stroke risk. Current literature suggests PM exposure increases ischemic stroke risk, with an unclear effect on hemorrhagic stroke risk. Older patients and those with pre-existing diabetes may be the most vulnerable to PM toxicity. Future investigations are needed to characterize the influence of sex and hypertension on PM-associated stroke risk.
Collapse
Affiliation(s)
| | - Brandon Ge
- Neurological Surgery, Keck School of Medicine of University of Southern California, Los Angeles, USA
| | - Kristina Shkirkova
- Neurological Surgery, Keck School of Medicine of University of Southern California, Los Angeles, USA
| | - Qinghai Liu
- Neurological Surgery, University of Southern California, Los Angeles, USA
| | - William Mack
- Neurological Surgery, University of Southern California, Los Angeles, USA
| |
Collapse
|
5
|
Kuźma Ł, Roszkowska S, Święczkowski M, Dąbrowski EJ, Kurasz A, Wańha W, Bachórzewska-Gajewska H, Dobrzycki S. Exposure to air pollution and its effect on ischemic strokes (EP-PARTICLES study). Sci Rep 2022; 12:17150. [PMID: 36229478 PMCID: PMC9563068 DOI: 10.1038/s41598-022-21585-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/29/2022] [Indexed: 01/04/2023] Open
Abstract
It is well known that exceeded levels of particulate matter in the air and other air pollutants harmfully affect the cardiovascular system. Empirical analyses of the effects of these factors on stroke incidence and mortality are still limited. The main objective of our analyses was to determine the association between short-term exposure to air pollutants and stroke incidence in non-industrial areas, more specifically in north-eastern Poland. To achieve this aim, we used data from the National Health Fund on patients hospitalized for stroke between 2011 and 2020 in the largest city of the region described as the Green Lungs of Poland. The pollution levels and atmospheric conditions data were obtained from the Provincial Inspectorate for Environmental Protection and the Institute of Meteorology and Water Management. Using daily data on hospitalizations, atmospheric conditions, and pollution, as well as ordered logistic regression models the hypotheses on the impact of weather and air pollution conditions on ischemic strokes were tested. The study group included 4838 patients, 45.6% of whom were male; the average patient age was approximately 74 years. The average concentrations of PM2.5 were 19.09 µg/m3, PM10 26.66 µg/m3 and CO 0.35 µg/m3. Analyses showed that an increase in PM2.5 and PM10 concentrations by 10 µg/m3 was associated with an increase in the incidence of stroke on the day of exposure (OR = 1.075, 95% CI 0.999-1.157, P = 0.053; OR = 1.056, 95% CI 1.004-1.110, P = 0.035) and the effect was even several times greater on the occurrence of a stroke event in general (PM2.5: OR = 1.120, 95% CI 1.013-1.237, P = 0.026; PM10: OR = 1.103, 95% CI 1.028-1.182, P = 0.006). Furthermore, a short-term (up to 3 days) effect of CO on stroke incidence was observed in the study area. An increase of 1 μg/m3 CO was associated with a lower incidence of stroke 2 days after the exposure (OR = 0.976, 95% CI 0.953-0.998, P = 0.037) and a higher incidence 3 days after the exposure (OR = 1.026, 95% CI 1.004-1.049, P = 0.022).
Collapse
Affiliation(s)
- Łukasz Kuźma
- grid.48324.390000000122482838Department of Invasive Cardiology, Medical University of Bialystok, Białystok, Poland
| | - Sylwia Roszkowska
- grid.10789.370000 0000 9730 2769Faculty of Economics and Sociology, University of Lodz, Łódź, Poland ,grid.12847.380000 0004 1937 1290Faculty of Management, University of Warsaw, Warsaw, Poland
| | - Michał Święczkowski
- grid.48324.390000000122482838Department of Invasive Cardiology, Medical University of Bialystok, Białystok, Poland
| | - Emil Julian Dąbrowski
- grid.48324.390000000122482838Department of Invasive Cardiology, Medical University of Bialystok, Białystok, Poland
| | - Anna Kurasz
- grid.48324.390000000122482838Department of Invasive Cardiology, Medical University of Bialystok, Białystok, Poland
| | - Wojciech Wańha
- grid.411728.90000 0001 2198 0923Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Hanna Bachórzewska-Gajewska
- grid.48324.390000000122482838Department of Invasive Cardiology, Department of Clinical Medicine, Medical University of Bialystok, Białystok, Poland
| | - Sławomir Dobrzycki
- grid.48324.390000000122482838Department of Invasive Cardiology, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
6
|
Ji Y, Liu B, Song J, Cheng J, Wang H, Su H. Association between traffic-related air pollution and anxiety hospitalizations in a coastal Chinese city: are there potentially susceptible groups? ENVIRONMENTAL RESEARCH 2022; 209:112832. [PMID: 35104480 DOI: 10.1016/j.envres.2022.112832] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Motor vehicle exhaust emissions have become the main source of urban air pollution in China, but few studies have explored the association of short-term exposure to traffic-related air pollutants (TRAPs) with anxiety disorders. Thus, we used an overdispersed, generalized additive model (GAM) to investigate the association between TRAPs and hospital admissions (HAs) for anxiety in Qingdao, a coastal Chinese city with high vehicle ownership. In addition, stratified analyses were performed by gender, age, season and hospitalization frequency (first admission and readmission). A positive association between TRAPs and HAs for anxiety was observed. Both inhalable particulate matter (PM10) and nitrogen dioxide (NO2) showed significant effects at lag 3 in the single-day lag structure, and each 10 μg/m3 increase in the concentrations was significantly associated with increases of 0.88% [95% confidence interval (CI): 0.04%, 1.72%] for PM10 and 2.74% (0.45%, 5.08%) for NO2 on anxiety hospitalizations. For fine particulate matter (PM2.5) and carbon monoxide (CO), the strongest effects were found at lag05 and lag04 [2.67% (0.77%, 4.62%) and 0.19% (0.04%, 0.34%), respectively] in the multiday lag structure. The estimates of PM2.5 were relatively robust after adjusting for other pollutants in the two-pollutant model. Stratified analyses indicated that the associations were stronger in females and younger individuals (<45 in age) than in males and elderly individuals (≥45 in age). Furthermore, the effects of PM2.5 and CO were most obvious during the cold season. Regarding hospitalization frequency, only PM2.5 was found to have a significant effect in the first-admission group. The results showed that short-term exposure to TRAPs, especially to PM2.5, was significantly associated with the increased risk of daily HAs for anxiety, which can help clinicians and policymakers better understand the effects of TRAPs to implement targeted interventions.
Collapse
Affiliation(s)
- Yanhu Ji
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Bin Liu
- Qingdao Mental Health Center, Qingdao, Shandong Province, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Heng Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Chen H, Cheng Z, Li M, Luo P, Duan Y, Fan J, Xu Y, Pu K, Zhou L. Ambient Air Pollution and Hospitalizations for Ischemic Stroke: A Time Series Analysis Using a Distributed Lag Nonlinear Model in Chongqing, China. Front Public Health 2022; 9:762597. [PMID: 35118040 PMCID: PMC8804166 DOI: 10.3389/fpubh.2021.762597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/02/2021] [Indexed: 01/11/2023] Open
Abstract
Short-term exposure to air pollution has been associated with ischemic stroke (IS) hospitalizations, but the evidence of its effects on IS in low- and middle-income countries is limited and inconsistent. We aimed to quantitatively estimate the association between air pollution and hospitalizations for IS in Chongqing, China. This time series study included 2,299 inpatients with IS from three hospitals in Chongqing from January 2015 to December 2016. Generalized linear regression models combined with a distributed lag nonlinear model (DLNM) were used to investigate the impact of air pollution on IS hospitalizations. Stratification analysis was further implemented by sex, age, and season. The maximum lag-specific and cumulative percentage changes of IS were 1.2% (95% CI: 0.4–2.1%, lag 3 day) and 3.6% (95% CI: 0.5–6.7%, lag 05 day) for each 10 μg/m3 increase in PM2.5; 1.0% (95% CI: 0.3–1.7%, lag 3 day) and 2.9% (95% CI: 0.6–5.2%, lag 05 day) for each 10 μg/m3 increase in PM10; 4.8% (95% CI: 0.1–9.7%, lag 4 day) for each 10 μg/m3 increase in SO2; 2.5% (95% CI: 0.3–4.7%, lag 3 day) and 8.2% (95% CI: 0.9–16.0%, lag 05 day) for each 10 μg/m3 increase in NO2; 0.7% (95% CI: 0.0–1.5%, lag 6 day) for each 10 μg/m3 increase in O3. No effect modifications were detected for sex, age, and season. Our findings suggest that short-term exposure to PM2.5, PM10, SO2, NO2, and O3 contributes to more IS hospitalizations, which warrant the government to take effective actions in addressing air pollution issues.
Collapse
Affiliation(s)
- Hao Chen
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Zheng Cheng
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Mengmeng Li
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Pan Luo
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yong Duan
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jie Fan
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ying Xu
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Kexue Pu
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- *Correspondence: Li Zhou
| |
Collapse
|
8
|
Short-term effect of fine particulate matter and ozone on non-accidental mortality and respiratory mortality in Lishui district, China. BMC Public Health 2021; 21:1661. [PMID: 34517854 PMCID: PMC8439017 DOI: 10.1186/s12889-021-11713-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/29/2021] [Indexed: 11/29/2022] Open
Abstract
Background In recent years, air pollution has become an imminent problem in China. Few studies have investigated the impact of air pollution on the mortality of the middle-aged and elderly people. Therefore, this study aims to evaluate the impact of PM2.5 (fine particulate matter) and O3 (ozone) on non-accidental mortality and respiratory mortality of the middle-aged and elderly people in Lishui District of Nanjing and provide the evidence for potential prevention and control measures of air pollution. Method Using daily mortality and atmospheric monitoring data from 2015 to 2019, we applied a generalized additive model with time-series analysis to evaluate the association of PM2.5 and O3 exposure with daily non-accidental mortality and respiratory mortality in Lishui District. Using the population attributable fractions to estimate the death burden caused by short-term exposure to O3 and PM2.5。. Result For every 10 μg/m3 increase in PM2.5, non-accidental mortality increased 0.94% with 95% confidence interval (CI) between 0.05 and 1.83%, and PM2.5 had a more profound impact on females than males. For every 10 μg/m3 increase in O3, respiratory mortality increased 1.35% (95% CI: 0.05, 2.66%) and O3 had a more profound impact on males than females. Compared with the single pollutant model, impact of the two-pollutant model on non-accidental mortality and respiratory mortality slightly decreased. In summer and winter as opposed to the other seasons, O3 had a more obvious impact on non-accidental mortality. The population attributable fractions of non-accidental mortality were 0.84% (95% CI:0.00, 1.63%) for PM2.5 and respiratory mortality were 0.14% (95% CI:0.01, 0.26%) for O3. For every 10 μg/m3 decrease in PM2.5, 122 (95% CI: 6, 237) non-accidental deaths could be avoided. For every 10 μg/m3 decrease in O3, 10 (95% CI: 1, 38) respiratory deaths could be avoided. Conclusion PM2.5 and O3 could significantly increase the risk of non-accidental and respiratory mortality in the middle-aged and elderly people in Lishui District of Nanjing. Exposed to air pollutants, men were more susceptible to O3 damage, and women were more susceptible to PM2.5 damage. Reduction of PM2.5 and O3 concentration in the air may have the potential to avoid considerable loss of lives.
Collapse
|