1
|
Qian Y, Qi Y, Lin J, Zhang T, Mo L, Xue Q, Zheng N, Niu Y, Dong X, Shi Y, Jiang Y. AdipoRon ameliorates chronic ethanol induced cardiac necroptosis by reducing ceramide mediated mtROS. Free Radic Biol Med 2025; 229:237-250. [PMID: 39805512 DOI: 10.1016/j.freeradbiomed.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Chronic ethanol (EtOH) consumption has been widely recognized as a significant contributor to cardiotoxicity. However, no specific treatment is currently available to ameliorate chronic ethanol induced cardiotoxicity. Adiponectin receptor agonist AdipoRon exerts protective effects in multiple organs through alleviating lipotoxicity. Our previous study showed that chronic ethanol consumption increased de novo ceramide synthesis and necroptosis in myocardium. In this study, we investigated the role of AdipoRon on ceramide metabolism and necroptosis in chronic ethanol-treated myocardium. Eight-week-old C57/BL6J mice were fed with a Lieber-Decarli diet containing vehicle or AdipoRon for 12 weeks. Cardiac function, histology and oxidative stress were assessed. We found that chronic ethanol treatment decreased expression of AdipoR2 in myocardium and H9c2 cells, whereas AdipoRon improved cardiac function, reduced myocardium ceramide levels and suppressed necroptosis. By pharmacological interventions, RNA interference and point mutations in AdipoR2, we demonstrated that AdipoRon reduced ceramide levels through PPARα mediated lipid metabolism rather than AdipoR2's ceramidase activity. Using transmission electron microscope and reactive oxygen species (ROS) staining, we showed that chronic ethanol induced myocardium mitochondria damage and mitochondrial reactive oxygen species (mtROS) accumulation. Meanwhile, we found that AdipoRon ameliorated chronic ethanol induced cardiac necroptosis via the SIRT3-SOD2-mtROS pathway. Moreover, C6 ceramide treatment recapitulated chronic ethanol in inducing mtROS and necroptosis, whereas the ceramide synthesis inhibitors myriocin (MYR) and fumonisin B1 (FB1) attenuated chronic ethanol induced mtROS and necroptosis. Collectively, AdipoRon ameliorates chronic ethanol induced cardiac necroptosis by reducing ceramide de novo synthesis and mtROS, which highlights the therapeutic potential of targeting ceramide metabolism and oxidative stress pathways in treating ethanol induced cardiotoxicity.
Collapse
Affiliation(s)
- Yile Qian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yanyu Qi
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Junyi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tianyi Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lingjie Mo
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiupeng Xue
- Forensic Science and Information Technology Research Centre of Supreme People's Procuratorate, Beijing, 100726, China
| | - Nianchang Zheng
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yaqin Niu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaoru Dong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Shi
- Academy of Forensic Science Shanghai Key Laboratory of Forensic Medicine, Shanghai, 200063, China.
| | - Yan Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
He Y, Jiang J, Ou L, Chen Y, Abudukeremu A, Chen G, Zhong W, Jiang Z, Nuermaimaiti N, Guan Y. Impaired RelA signaling and lipid metabolism dysregulation in hepatocytes: driving forces in the progression of metabolic dysfunction-associated steatotic liver disease. Cell Death Discov 2025; 11:49. [PMID: 39910053 PMCID: PMC11799324 DOI: 10.1038/s41420-025-02312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/25/2024] [Accepted: 01/21/2025] [Indexed: 02/07/2025] Open
Abstract
RelA, also known as nuclear factor kappa B p65, plays a crucial role in the pathogenesis of various liver diseases. However, the specific role of RelA in hepatocytes during the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) is not well understood. This study explored the relationship between impaired RelA signaling and lipid metabolism disorders in hepatocytes, and how they synergistically contribute to the advancement of MASLD. We assessed the changes, regulatory relationships, and impacts of RelA signaling and lipid metabolism remodeling on disease progression both in vitro and in vivo. During MASLD, there was a decrease in the expression of RelA and hepatocyte nuclear factor 1 alpha (HNF1α), with both factors showing mutual enhancement of each other's expression under normal conditions. This synergistic effect was absent during hepatocyte steatosis. RelA or HNF1α depletion in hepatocytes intensified MASLD symptoms, whereas overexpression of RELA or treatment with necrostatin-1 (a necroptosis inhibitor) or Z-VAD (a caspase inhibitor) significantly mitigated these effects. Mechanistically, during hepatic steatosis, altered lipid profiles exhibited lipotoxicity, inducing hepatocyte apoptosis and necroptosis, whereas endoplasmic reticulum (ER) stress triggered lipid remodeling processes similar to those observed in MASLD. RelA signaling upregulated the expression of activating transcription factor 4 and glucose-regulated protein 78, thereby alleviating ER stress. Impaired RelA signaling remodeled the ER stress response and lipid metabolism, and enhanced lipid accumulation and lipid toxicity. In conclusion, impaired RelA signaling and disrupted lipid metabolism form a detrimental feedback loop in hepatocytes that promotes MASLD progression. Lipid accumulation suppresses RelA signaling, remodeling the ER stress response and exacerbating lipid metabolism disorder, ultimately leading to hepatocyte apoptosis and necroptosis.
Collapse
Affiliation(s)
- Yihuai He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jinlian Jiang
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lili Ou
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yunfen Chen
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Aikedaimu Abudukeremu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Guimei Chen
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Weiwei Zhong
- Department of Infectious Diseases, Jingmen Central Hospital, Jingmen, Hubei, China
| | - Zhigang Jiang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nuerbiye Nuermaimaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yaqun Guan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China.
- Xinjiang Second Medical College, Karamay, Xinjiang, China.
| |
Collapse
|
3
|
Xiao Y, Huang B, Chen S, Lin Z, Zhu Z, Lu Y, Yu XQ, Wen L, Hu Q. Dual roles of α1,4-galactosyltransferase 1 in spermatogenesis of Drosophila melanogaster. INSECT SCIENCE 2025; 32:127-139. [PMID: 38643371 DOI: 10.1111/1744-7917.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/22/2024]
Abstract
Spermatogenesis is critical for insect reproduction and the process is regulated by multiple genes. Glycosyltransferases have been shown to participate in the development of Drosophila melanogaster; however, their role in spermatogenesis is still unclear. In this study, we found that α1,4-galactosyltransferase 1 (α4GT1) was expressed at a significantly higher level in the testis than in the ovary of Drosophila. Importantly, the hatching rate was significantly decreased when α4GT1 RNA interference (RNAi) males were crossed with w1118 females, with only a few mature sperm being present in the seminal vesicle of α4GT1 RNAi flies. Immunofluorescence staining further revealed that the individualization complex (IC) in the testes from α4GT1 RNAi flies was scattered and did not move synchronically, compared with the clustered IC observed in the control flies. Terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay showed that apoptosis signals in the sperm bundles of α4GT1 RNAi flies were significantly increased. Moreover, the expression of several individualization-related genes, such as Shrub, Obp44a and Hanabi, was significantly decreased, whereas the expression of several apoptosis-related genes, including Dronc and Drice, was significantly increased in the testes of α4GT1 RNAi flies. Together, these results suggest that α4GT1 may play dual roles in Drosophila spermatogenesis by regulating the sperm individualization process and maintaining the survival of sperm bundles.
Collapse
Affiliation(s)
- Yanhong Xiao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Bo Huang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Sibo Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zhikai Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zhiying Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qihao Hu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Laranjeira AC, Berger S, Kohlbrenner T, Greter NR, Hajnal A. Nutritional vitamin B12 regulates RAS/MAPK-mediated cell fate decisions through one-carbon metabolism. Nat Commun 2024; 15:8178. [PMID: 39289374 PMCID: PMC11408588 DOI: 10.1038/s41467-024-52556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Vitamin B12 is an essential nutritional co-factor for the folate and methionine cycles, which together constitute one-carbon metabolism. Here, we show that dietary uptake of vitamin B12 modulates cell fate decisions controlled by the conserved RAS/MAPK signaling pathway in C. elegans. A bacterial diet rich in vitamin B12 increases vulval induction, germ cell apoptosis and oocyte differentiation. These effects are mediated by different one-carbon metabolites in a tissue-specific manner. Vitamin B12 enhances via the choline/phosphatidylcholine metabolism vulval induction by down-regulating fat biosynthesis genes and increasing H3K4 tri-methylation, which results in increased expression of RAS/MAPK target genes. Furthermore, the nucleoside metabolism and H3K4 tri-methylation positively regulate germ cell apoptosis and oocyte production. Using mammalian cells carrying different activated KRAS and BRAF alleles, we show that the effects of methionine on RAS/MAPK-regulated phenotype are conserved in mammals. Our findings suggest that the vitamin B12-dependent one-carbon metabolism is a limiting factor for diverse RAS/MAPK-induced cellular responses.
Collapse
Affiliation(s)
| | - Simon Berger
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Tea Kohlbrenner
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Nadja R Greter
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Alex Hajnal
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Zhu H, You Y, Yu B, Deng Z, Liu M, Hu Z, Duan J. Loss of the ceramide synthase HYL-2 from Caenorhabditis elegans impairs stress responses and alters sphingolipid composition. J Biol Chem 2024; 300:107320. [PMID: 38677510 PMCID: PMC11145541 DOI: 10.1016/j.jbc.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Sphingolipids, essential membrane components and signaling molecules in cells, have ceramides at the core of their metabolic pathways. Initially termed as "longevity assurance genes", the encoding genes of ceramide synthases are closely associated with individual aging and stress responses, although the mechanisms remain unclear. This study aims to explore the alterations and underlying mechanisms of three ceramide synthases, HYL-1, HYL-2, and LAGR-1, in the aging and stress responses of Caenorhabditis elegans. Our results showed the knockdown of HYL-1 extends the lifespan and enhance stress resistance in worms, whereas the loss of HYL-2 function significantly impairs tolerances to heat, oxidation, and ultraviolet stress. Stress intolerance induced by HYL-2 deficiency may result from intracellular mitochondrial dysfunction, accumulation of reactive oxygen species, and abnormal nuclear translocation of DAF-16 under stress conditions. Loss of HYL-2 led to a significant reduction of predominant ceramides (d17:1/C20∼C23) as well as corresponding complex sphingolipids. Furthermore, the N-acyl chain length composition of sphingolipids underwent dramatic modifications, characterized by a decrease in C22 sphingolipids and an increase in C24 sphingolipids. Extra d18:1-ceramides resulted in diminished stress resilience in wild-type worms, while supplementation of d18:1/C16 ceramide to HYL-2-deficient worms marginally improved stress tolerance to heat and oxidation. These findings indicate the importance of appropriate ceramide content and composition in maintaining subcellular homeostasis and nuclear-cytoplasmic signal transduction during healthy aging and stress responses.
Collapse
Affiliation(s)
- Huaiyi Zhu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Yunfei You
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Boming Yu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Zhitao Deng
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Min Liu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Zhenying Hu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Jingjing Duan
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
6
|
Yang Y, Li M, Zheng J, Zhang D, Ding Y, Yu HQ. Environmentally relevant exposure to tetrabromobisphenol A induces reproductive toxicity via regulating glucose-6-phosphate 1-dehydrogenase and sperm activation in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167820. [PMID: 37858812 DOI: 10.1016/j.scitotenv.2023.167820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a ubiquitous brominated flame-retardant environmental pollutant, has been reported to cause reproductive toxicity by chronic exposure. However, the acute reproductive risk and mechanisms of TBBPA toxicity to individuals, especially at environmentally relevant levels, remains a topic of debate. In this study, Caenorhabditis elegans was used to investigate the reproductive toxicity of acute exposure to TBBPA at environmentally relevant doses. The reproductive end points (embryonic lethality ratio and brood size), oxidative stress, sperm activation, and molecular docking were evaluated. Results showed that, after 24 h of TBBPA treatment, even at the lowest concentration (1 μg/L), the embryonic lethality ratio of C. elegans increased significantly, from 1.63 % to 3.03 %. Furthermore, TBBPA induced oxidative stress with significantly increased expression of sod-3 in C. elegans, which further raised the level of reproductive toxicity through inhibiting the activation of sperm in nematodes. In addition, molecular docking suggested TBBPA might compete for the glucose-6-phosphate-binding site of glucose-6-phosphate 1-dehydrogenase, resulting in oxidative stress generation. Accordingly, our findings indicate that even acute exposure to environmental concentrations of TBBPA may induce reproductive toxicity through reducing sperm activation in nematodes.
Collapse
Affiliation(s)
- Yaning Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui 243000, China
| | - Minghui Li
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Jun Zheng
- Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui 243000, China
| | - Dewei Zhang
- Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui 243000, China
| | - Yan Ding
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Yuan Z, Tian Y, Zhang C, Wang M, Xie J, Wang C, Huang J. Integration of systematic review, lipidomics with experiment verification reveals abnormal sphingolipids facilitate diabetic retinopathy by inducing oxidative stress on RMECs. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159382. [PMID: 37659619 DOI: 10.1016/j.bbalip.2023.159382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
OBJECTIVE This study aims to explore the potential biomarkers in the development of diabetes mellitus (DM) into diabetic retinopathy (DR). METHODS Systematic review of diabetic metabolomics was used to screen the differential metabolites and related pathways during the development of DM. Non-targeted lipidomics of rat plasma was performed to explore the differential metabolites in the development of DM into DR in vivo. To verify the effects of differential metabolites in inducing retinal microvascular endothelial cells (RMECs) injury by increasing oxidative stress, high glucose medium containing differential metabolites was used to induce rat RMECs injury and cell viability, malondialdehyde (MDA) contents, superoxide dismutase (SOD) activities, reactive oxygen species (ROS) levels and mitochondrial membrane potential (MMP) were evaluated in vitro. Network pharmacology was performed to explore the potential mechanism of differential metabolites in inducing DR. RESULTS Through the systematic review, 148 differential metabolites were obtained and the sphingolipid metabolic pathway attracted our attention. Plasma non-targeted lipidomics found that sphingolipids were accompanied by the development of DM into DR. In vitro experiments showed sphinganine and sphingosine-1-phosphate aggravated rat RMECs injury induced by high glucose, further increased MDA and ROS levels, and further decreased SOD activities and MMP. Network pharmacology revealed sphinganine and sphingosine-1-phosphate may induce DR by regulating the AGE-RAGE and HIF-1 signaling pathways. CONCLUSIONS Integrated systematic review, lipidomics and experiment verification reveal that abnormal sphingolipid metabolism facilitates DR by inducing oxidative stress on RMECs. Our study could provide the experimental basis for finding potential biomarkers for the diagnosis and treatment of DR.
Collapse
Affiliation(s)
- Zhenshuang Yuan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshuang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiaqi Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Can Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jianmei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
8
|
Alizadeh J, da Silva Rosa SC, Weng X, Jacobs J, Lorzadeh S, Ravandi A, Vitorino R, Pecic S, Zivkovic A, Stark H, Shojaei S, Ghavami S. Ceramides and ceramide synthases in cancer: Focus on apoptosis and autophagy. Eur J Cell Biol 2023; 102:151337. [PMID: 37392580 DOI: 10.1016/j.ejcb.2023.151337] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Different studies corroborate a role for ceramide synthases and their downstream products, ceramides, in modulation of apoptosis and autophagy in the context of cancer. These mechanisms of regulation, however, appear to be context dependent in terms of ceramides' fatty acid chain length, subcellular localization, and the presence or absence of their downstream targets. Our current understanding of the role of ceramide synthases and ceramides in regulation of apoptosis and autophagy could be harnessed to pioneer the development of new treatments to activate or inhibit a single type of ceramide synthase, thereby regulating the apoptosis induction or cross talk of apoptosis and autophagy in cancer cells. Moreover, the apoptotic function of ceramide suggests that ceramide analogues can pave the way for the development of novel cancer treatments. Therefore, in the current review paper we discuss the impact of ceramide synthases and ceramides in regulation of apoptosis and autophagy in context of different types of cancers. We also briefly introduce the latest information on ceramide synthase inhibitors, their application in diseases including cancer therapy, and discuss approaches for drug discovery in the field of ceramide synthase inhibitors. We finally discussed strategies for developing strategies to use lipids and ceramides analysis in biological fluids for developing early biomarkers for cancer.
Collapse
Affiliation(s)
- Javad Alizadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xiaohui Weng
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Joadi Jacobs
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Amir Ravandi
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, 66 Chancellors Cir, Winnipeg, MB R3T 2N2, Canada
| | - Rui Vitorino
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Stevan Pecic
- Department of Chemistry & Biochemistry, California State University, Fullerton, 800 N. State College, Fullerton, CA 92834, United States
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetstrasse 1, 40225 Duesseldorf, Germany
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
9
|
Circ-CPSF1 Worsens Radiation-Induced Oxidative Stress Injury in Caenorhabditis elegans. Biomolecules 2023; 13:biom13010102. [PMID: 36671487 PMCID: PMC9856148 DOI: 10.3390/biom13010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Radioactive substances have been used in various aspects in daily life. However, high-energy radiation could cause environmental problems, which would damage the human body. Circular RNA (CircRNA) has great potential in the minimization of ionizing radiation damage. To find a potential diagnostic and therapeutic target for reducing the damage of ionizing radiation, we selected circRNA cleavage and polyadenylation specificity factor subunit 1 (circ-CPSF1) based on its up-regulated expression after X-ray radiation and explored its effect on response to ionizing radiation using Caenorhabditis elegans (C. elegans). Circ-CPSF1 was screened out and its up-regulated expression was verified. The measurement of lifespan and germ cell apoptosis showed that circ-CPSF1 RNAi treatment extended lifespan and reduced apoptotic germ cells. ROS levels were significantly reduced after the interference of circ-CPSF1 in C. elegans with radiation. Mitochondrial membrane potential assay showed that the suppression of circ-CPSF1 could alleviate mitochondrial damage after radiation. Relative genes expression showed the involvement of circ-CPSF1 in radiation mediated DNA damage response pathways and apoptosis pathways. In conclusion, circ-CPSF1 exerts deleterious effects on lifespan, eggs production and germ cell apoptosis of C. elegans through oxidative stress, the DNA damage response (DDR) pathway, and the core apoptotic pathway after ionizing radiation, indicating the potential of circ-CPSF1 to be an important therapeutic target of radiation damage.
Collapse
|
10
|
Liu F, Zhang Y, Shi Y, Xiong K, Wang F, Yang J. Ceramide induces pyroptosis through TXNIP/NLRP3/GSDMD pathway in HUVECs. BMC Mol Cell Biol 2022; 23:54. [DOI: 10.1186/s12860-022-00459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Pyroptosis of endothelial cells is a new cause of endothelial dysfunction in multiple diseases. Ceramide acts as a potential bioactive mediator of inflammation and increases vascular endothelial permeability in many diseases, whether it can aggravate vascular endothelial injury by inducing cell pyroptosis remains unknown. This study was established to explore the effects of C8-ceramide (C8-Cer) on human umbilical vein vascular endothelial cells (HUVECs) and its possible underlying mechanism.
Methods
HUVECs were exposed to various concentrations of C8-Cer for 12 h, 24 h, 48 h. The cell survival rate was measured using the cell counting kit-8 assay. Western blotting and Real-time polymerase chain reaction (RT-PCR) were used to detect the pyroptosis-releated protein and mRNA expressions, respectively. Caspase-1 activity assay was used to detect caspase-1 activity. Hoechst 33342/propidium iodide double staining and flow cytometry were adopted to measure positive staining of cells. Lactate dehydrogenase release assay and enzyme-linked immunosorbent assay were adopted to measure leakage of cellular contents. FITC method was used to detect the permeability of endothelial cells. ROS fluorescence intensity were detected by flow cytometry.
Results
The viability of HUVECs decreased gradually with the increase in ceramide concentration and time. Ceramide upregulated the expression of thioredoxin interacting protein (TXNIP), NLRP3, GSDMD, GSDMD-NT, caspase-1 and Casp1 p20 at the protein and mRNA level in a dose-dependent manner. It also enhanced the PI uptake in HUVECs and upregulated caspase-1 activity. Moreover, it promoted the release of lactate dehydrogenase, interleukin-1β, and interleukin-18. Meanwhile, we found that ceramide led to increased vascular permeability. The inhibitor of NLRP3 inflammasome assembly, MCC950, was able to disrupt the aforementioned positive loop, thus alleviating vascular endothelial cell damage. Interestingly, inhibition of TXNIP either chemically using verapamil or genetically using small interfering RNA (siRNA) can effectively inhibit ceramide-induced pyroptosis and improved cell permeability. In addition, ceramide stimulated reactive oxygen species (ROS) generation. The pretreatment of antioxidant N-acetylcysteine (NAC), ROS scavenger, blocked the expression of pyroptosis markers induced by C8-cer in HUVECs.
Conclusion
The current study demonstrated that C8-Cer could aggravate vascular endothelial cell damage and increased cell permeability by inducing cell pyroptosis. The results documented that the ROS-dependent TXNIP/NLRP3/GSDMD signalling pathway plays an essential role in the ceramide-induced pyroptosis in HUVECs.
Collapse
|
11
|
Dhakal R, Yosofvand M, Yavari M, Abdulrahman R, Schurr R, Moustaid-Moussa N, Moussa H. Review of Biological Effects of Acute and Chronic Radiation Exposure on Caenorhabditis elegans. Cells 2021; 10:cells10081966. [PMID: 34440735 PMCID: PMC8392105 DOI: 10.3390/cells10081966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
Knowledge regarding complex radiation responses in biological systems can be enhanced using genetically amenable model organisms. In this manuscript, we reviewed the use of the nematode, Caenorhabditis elegans (C. elegans), as a model organism to investigate radiation’s biological effects. Diverse types of experiments were conducted on C. elegans, using acute and chronic exposure to different ionizing radiation types, and to assess various biological responses. These responses differed based on the type and dose of radiation and the chemical substances in which the worms were grown or maintained. A few studies compared responses to various radiation types and doses as well as other environmental exposures. Therefore, this paper focused on the effect of irradiation on C. elegans, based on the intensity of the radiation dose and the length of exposure and ways to decrease the effects of ionizing radiation. Moreover, we discussed several studies showing that dietary components such as vitamin A, polyunsaturated fatty acids, and polyphenol-rich food source may promote the resistance of C. elegans to ionizing radiation and increase their life span after irradiation.
Collapse
Affiliation(s)
- Rabin Dhakal
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79401, USA; (R.D.); (M.Y.)
| | - Mohammad Yosofvand
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79401, USA; (R.D.); (M.Y.)
| | - Mahsa Yavari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.Y.); (N.M.-M.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Ramzi Abdulrahman
- Medical Center, Department of Radiation Oncology, Texas Tech University, Lubbock, TX 79430, USA;
| | - Ryan Schurr
- Cancer Center, UMC Health System, Lubbock, TX 79430, USA;
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; (M.Y.); (N.M.-M.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Hanna Moussa
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79401, USA; (R.D.); (M.Y.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Correspondence: ; Tel.: +1-806-834-6271
| |
Collapse
|
12
|
Han J, Mei Z, Lu C, Qian J, Liang Y, Sun X, Pan Z, Kong D, Xu S, Liu Z, Gao Y, Qi G, Shou Y, Chen S, Cao Z, Zhao Y, Lin C, Zhao Y, Geng Y, Chen J, Yan X, Ma W, Yang G. Ultra-High Dose Rate FLASH Irradiation Induced Radio-Resistance of Normal Fibroblast Cells Can Be Enhanced by Hypoxia and Mitochondrial Dysfunction Resulting From Loss of Cytochrome C. Front Cell Dev Biol 2021; 9:672929. [PMID: 33996831 PMCID: PMC8121317 DOI: 10.3389/fcell.2021.672929] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/08/2021] [Indexed: 01/15/2023] Open
Abstract
Ultra-high dose rate FLASH irradiation (FLASH-IR) has got extensive attention since it may provide better protection on normal tissues while maintain tumor killing effect compared with conventional dose rate irradiation. The FLASH-IR induced protection effect on normal tissues is exhibited as radio-resistance of the irradiated normal cells, and is suggested to be related to oxygen depletion. However, the detailed cell death profile and pathways are still unclear. Presently normal mouse embryonic fibroblast cells were FLASH irradiated (∼109 Gy/s) at the dose of ∼10–40 Gy in hypoxic and normoxic condition, with ultra-fast laser-generated particles. The early apoptosis, late apoptosis and necrosis of cells were detected and analyzed at 6, 12, and 24 h post FLASH-IR. The results showed that FLASH-IR induced significant early apoptosis, late apoptosis and necrosis in normal fibroblast cells, and the apoptosis level increased with time, in either hypoxic or normoxic conditions. In addition, the proportion of early apoptosis, late apoptosis and necrosis were significantly lower in hypoxia than that of normoxia, indicating that radio-resistance of normal fibroblast cells under FLASH-IR can be enhanced by hypoxia. To further investigate the apoptosis related profile and potential pathways, mitochondria dysfunction cells resulting from loss of cytochrome c (cyt c–/–) were also irradiated. The results showed that compared with irradiated normal cells (cyt c+/+), the late apoptosis and necrosis but not early apoptosis proportions of irradiated cyt c–/– cells were significant decreased in both hypoxia and normoxia, indicating mitochondrial dysfunction increased radio-resistance of FLASH irradiated cells. Taken together, to our limited knowledge, this is the first report shedding light on the death profile and pathway of normal and cyt c–/– cells under FLASH-IR in hypoxic and normoxic circumstances, which might help us improve the understanding of the FLASH-IR induced protection effect in normal cells, and thus might potentially help to optimize the future clinical FLASH treatment.
Collapse
Affiliation(s)
- Jintao Han
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Zhusong Mei
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Chunyang Lu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Jing Qian
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yulan Liang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Xiaoyi Sun
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Zhuo Pan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Defeng Kong
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Shirui Xu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Zhipeng Liu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Ying Gao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Guijun Qi
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Yinren Shou
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Shiyou Chen
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Zhengxuan Cao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chen Lin
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Yanying Zhao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Yixing Geng
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Jiaer Chen
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Xueqing Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
| | - Wenjun Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics and CAPT, Peking University, Beijing, China
| |
Collapse
|
13
|
Gartner A, Engebrecht J. DNA repair, recombination, and damage signaling. Genetics 2021; 220:6522877. [PMID: 35137093 PMCID: PMC9097270 DOI: 10.1093/genetics/iyab178] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
DNA must be accurately copied and propagated from one cell division to the next, and from one generation to the next. To ensure the faithful transmission of the genome, a plethora of distinct as well as overlapping DNA repair and recombination pathways have evolved. These pathways repair a large variety of lesions, including alterations to single nucleotides and DNA single and double-strand breaks, that are generated as a consequence of normal cellular function or by external DNA damaging agents. In addition to the proteins that mediate DNA repair, checkpoint pathways have also evolved to monitor the genome and coordinate the action of various repair pathways. Checkpoints facilitate repair by mediating a transient cell cycle arrest, or through initiation of cell suicide if DNA damage has overwhelmed repair capacity. In this chapter, we describe the attributes of Caenorhabditis elegans that facilitate analyses of DNA repair, recombination, and checkpoint signaling in the context of a whole animal. We review the current knowledge of C. elegans DNA repair, recombination, and DNA damage response pathways, and their role during development, growth, and in the germ line. We also discuss how the analysis of mutational signatures in C. elegans is helping to inform cancer mutational signatures in humans.
Collapse
Affiliation(s)
- Anton Gartner
- Department for Biological Sciences, IBS Center for Genomic Integrity, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea,Corresponding author: (A.G.); (J.E.)
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA,Corresponding author: (A.G.); (J.E.)
| |
Collapse
|