1
|
Leite C, Russo T, Pinto J, Polese G, Soares AMVM, Pretti C, Pereira E, Freitas R. From the cellular to tissue alterations induced by two rare earth elements in the mussel species Mytilus galloprovincialis: Comparison between exposure and recovery periods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169754. [PMID: 38163599 DOI: 10.1016/j.scitotenv.2023.169754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The global effort to achieve carbon neutrality has led to an increased demand for renewable energy technologies and their raw materials, namely rare earth elements (REEs). These elements possess unique properties and are used in various applications. However, the increased use of REE-based technologies has resulted in higher amounts of electronic waste, leading to elevated REEs concentrations found in the aquatic environment, with poorly understood threats to wildlife. Praseodymium (Pr) and europium (Eu) are two REEs that, despite their potential environmental risks, have almost unknown effects on aquatic organisms. Therefore, the present study aimed to assess the impacts of different concentrations of Pr and Eu (0, 10, 20, 40, and 80 μg/L) in the mussel species Mytilus galloprovincialis, as well as their ability to recover from exposure to the highest concentration. Mussels accumulated both elements in a dose-dependent manner, with the accumulation of Pr being higher. Accompanying the increase of metabolism, mussels exposed to Pr not only enhanced the activity of the antioxidant enzymes superoxide dismutase (up to 40 μg/L) and glutathione reductase (at 80 μg/L) but also the activity of the biotransformation enzymes carboxylesterases (CbE's) and glutathione S-transferases (GSTs) (at 80 μg/L). Nevertheless, these defence mechanisms were not sufficient to prevent cellular damage. All the Eu concentrations induced cellular damage, despite an increase in the activity of biotransformation enzymes (CbE's and GSTs) in mussel tissue. According to the histopathology assessment, mussels were not able to recover after exposure to both elements and lower concentrations induced higher injuries in digestive tubules. This study highlights that exposure to Pr and Eu had adverse effects on M. galloprovincialis, even at the lowest tested concentration, which may eventually impact mussels' growth, reproductive capacity, and survival.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - João Pinto
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
| | - Eduarda Pereira
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Andrade M, Pinto J, Soares AMVM, Solé M, Pereira E, Freitas R. How predicted temperature and salinity changes will modulate the impacts induced by terbium in bivalves? CHEMOSPHERE 2024; 351:141168. [PMID: 38215828 DOI: 10.1016/j.chemosphere.2024.141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
The threat of climate change, which includes shifts in salinity and temperature, has generated a global concern for marine organisms. These changes directly impact them and may alter their susceptibility to contaminants, such as terbium (Tb), found in electronic waste. This study assessed how decreased and increased salinity, as well as increased temperature, modulates Tb effects in Mytilus galloprovincialis mussels. After an exposure period of 28 days, Tb bioaccumulation and biochemical changes were evaluated. Results indicated no significant modulation of salinity and temperature on Tb accumulation, suggesting detoxification mechanisms and adaptations. Further analysis showed that Tb exposure alone caused antioxidant inhibition and neurotoxicity. When exposed to decreased salinity, these Tb-exposed organisms activated defense mechanisms, a response indicative of osmotic stress. Moreover, increased salinity also led to increased oxidative stress and metabolic activity in Tb-exposed organisms. Additionally, Tb-exposed organisms responded to elevated temperature with altered biochemical activities indicative of damage and stress response. Such responses suggested that Tb effects were masked by osmotic and heat stress. This study provides valuable insights into the interactions between temperature, salinity, and contaminants such as Tb, impacting marine organisms. Understanding these relationships is crucial for mitigating climate change and electronic waste effects on marine ecosystems.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - João Pinto
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
3
|
Andrade M, Soares AMVM, Solé M, Pereira E, Freitas R. Gadolinium accumulation and its biochemical effects in Mytilus galloprovincialis under a scenario of global warming. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116120-116133. [PMID: 37910362 PMCID: PMC10682062 DOI: 10.1007/s11356-023-30439-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Electrical and electronic equipment reaching the end of its useful life is currently being disposed of at such an alarmingly high pace that raises environmental concerns. Together with other potentially dangerous compounds, electronic waste contains the rare-earth element gadolinium (Gd), which has already been reported in aquatic systems. Additionally, the vulnerability of aquatic species to this element may also be modified when climate change related factors, like increase in temperature, are taken into consideration. Thus, the present study aimed to evaluate the toxicity of Gd under a scenario of increased temperature in Mytilus galloprovincialis mussels. A multi-biomarker approach and Gd bioaccumulation were assessed in mussels exposed for 28 days to 0 and 10 μg/L of Gd at two temperatures (control - 17 °C; increased - 22 °C). Results confirmed that temperature had a strong influence on the bioaccumulation of Gd. Moreover, mussels exposed to Gd alone reduced their metabolism, possibly to prevent further accumulation, and despite catalase and glutathione S-transferases were activated, cellular damage seen as increased lipid peroxidation was not avoided. Under enhanced temperature, cellular damage in Gd-exposed mussels was even greater, as defense mechanisms were not activated, possibly due to heat stress. In fact, with increased temperature alone, organisms experienced a general metabolic depression, particularly evidenced in defense enzymes, similar to the results obtained under Gd-exposure. Overall, this study underlines the importance of conducting environmental risk assessment taking into consideration anticipated climate change scenarios and exposures to emerging contaminants at relevant environmental concentrations.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
4
|
Andrade M, Soares AMVM, Solé M, Pereira E, Freitas R. Threats of Pollutants Derived from Electronic Waste to Marine Bivalves: The Case of the Rare-Earth Element Yttrium. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:166-177. [PMID: 36511525 PMCID: PMC10107937 DOI: 10.1002/etc.5508] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/15/2022] [Accepted: 10/24/2022] [Indexed: 06/01/2023]
Abstract
The production of electrical and electronic equipment waste (e-waste) is increasing at an alarming rate worldwide. This may eventually lead to its accumulation in aquatic environments, mainly because of the presence of nonbiodegradable components. The rare-earth element yttrium (Y) is particularly relevant because it is present in a wide variety of electro-based equipment. Within this context, the present study investigated the biological consequences of anthropogenic Y exposure in Mytilus galloprovincialis. Mussels were exposed to Y (0, 5, 10, 20, 40 μg/L) for 28 days, and their bioaccumulation and biomarkers related to metabolism, oxidative stress defenses, cellular damage, and neurotoxicity were evaluated. The results revealed that tissue Y content increased at increasing exposure concentrations (though the bioconcentration factor decreased). At the lowest Y dosage (5 µg/L), mussels lowered their electron transport system (ETS) activity, consumed more energy reserves (glycogen), and activated superoxide dismutase activity, thus preventing cellular damage. At the highest Y dosage (40 μg/L), mussels reduced their biotransformation activities with no signs of cellular damage, which may be associated with the low toxicity of Y and the lower/maintenance of ETS activity. Although only minor effects were observed, the present findings raise an environmental concern for aquatic systems where anthropogenic Y concentrations are generally low but still may compromise organisms' biochemical performance. Particularly relevant are the alterations in energy metabolism and detoxification processes for their longer-term impacts on growth and reproduction but also as defense mechanisms against other stressors. Environ Toxicol Chem 2023;42:166-177. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Madalena Andrade
- Departamento de Biologia & CESAMUniversidade de AveiroAveiroPortugal
| | | | - Montserrat Solé
- Departamento de Recursos Marinos RenovablesInstituto de Ciencias del Mar ICM‐CSICBarcelonaSpain
| | - Eduarda Pereira
- Departamento de Química & CESAM/LAQV‐REQUIMTEUniversidade de AveiroAveiroPortugal
| | - Rosa Freitas
- Departamento de Biologia & CESAMUniversidade de AveiroAveiroPortugal
| |
Collapse
|
5
|
Fourie AJ, Uren RC, Marlin D, Bouwman H. Metals and co-presence of other pollutants in mussels (Perna perna) around Algoa Bay: Human consumption safety concerns. MARINE POLLUTION BULLETIN 2022; 185:114345. [PMID: 36410201 DOI: 10.1016/j.marpolbul.2022.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Elevated metal concentrations can become harmful to marine organisms and to humans that consume them. Metal concentrations at multiple sites around Algoa Bay, South Africa, were last investigated in the 1980s. We collected wild brown mussels (Perna perna) from seven sites around Algoa Bay, and quantified metallic elements using ICPMS. Metallic element concentrations differed significantly among the sampling sites and correlated with pollution sources at specific sites. The concentration of Pb in mussels at one site slightly exceeded South African limits. Based on the South African estimated daily intake, the target hazard quotient, and South African metal limits, mussels from Algoa Bay are safe for human consumption, except possibly from one site. However, combined with data on bisphenols and benzophenone UV filters in P. perna from the same sites, we suggest a possible health concern to consumers.
Collapse
Affiliation(s)
- Amarein J Fourie
- Sustainable Seas Trust, 222 Main Road, Walmer, Gqeberha 6001, South Africa.
| | - Ryan C Uren
- Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Danica Marlin
- Sustainable Seas Trust, 222 Main Road, Walmer, Gqeberha 6001, South Africa
| | - Hindrik Bouwman
- Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
6
|
Moleiro P, Morais T, Leite C, Coppola F, Henriques B, Pinto J, Soares AMVM, Pereira E, Freitas R. The effect of ocean warming on accumulation and cellular responsiveness to cobalt in Mytilus galloprovincialis. MARINE POLLUTION BULLETIN 2022; 182:113944. [PMID: 35908486 DOI: 10.1016/j.marpolbul.2022.113944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Cobalt (Co) is among the hazardous substances identified in aquatic environments. Industrialization and population growth have also contributed to climate change, namely in what concerns ocean temperature rise. The aim of the present study was to evaluate the influence of temperature rise on the impacts caused by Co on Mytilus galloprovincialis. To this end, mussels were exposed for 28 days to 17 °C and 21 °C, without and with 200 μg L-1 of Co. Results showed no significant differences in Co bioaccumulation by the organisms between temperatures. A significant interaction between temperature and Co contamination was observed in terms of oxidative damage, detoxification capacity, and neurotoxicity, with a synergistic effect particularly evident in terms of biotransformation enzymes' activity. The obtained results point out that population survival and distribution may be limited in the long term, highlighting the need for future research on the combined effects of both stressors.
Collapse
Affiliation(s)
- Pedro Moleiro
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Tiago Morais
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Leite
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Henriques
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Dragun Z, Ivanković D, Krasnići N, Kiralj Z, Cvitanović M, Karamatić I, Valić D, Barac F, Filipović Marijić V, Mijošek T, Gjurčević E, Matanović K, Kužir S. Metal-binding biomolecules in the liver of northern pike (Esox lucius Linnaeus, 1758): The first data for the family Esocidae. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109327. [PMID: 35276358 DOI: 10.1016/j.cbpc.2022.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 03/06/2022] [Indexed: 11/28/2022]
Abstract
Metal-handling strategies of various fish species are known to vary significantly in association with their intracellular metal behaviour. Thus, to better understand the possible consequences of increased metal exposure in fish it is important to perform comparative studies on metal-binding biomolecules in organs of different species. This study was the first of this kind on a liver of an esocid fish (northern pike, Esox lucius), and the gathered information were compared to fish belonging to three other families, Leuciscidae, Cyprinidae and Salmonidae. Distributions of ten elements among cytosolic biomolecules of different molecular masses were studied by size exclusion HPLC combined offline with high resolution ICP-MS. The results indicated predominant association of Co, Fe and Mo to high molecular mass biomolecules (>100 kDa), of Zn and Bi to both high and medium molecular mass biomolecules (>30 kDa), of Mn and Se to medium molecular mass biomolecules (30-100 kDa), and Ag, Cd and Cu to low molecular mass biomolecules (10-30 kDa), presumably metallothioneins. Evident binding to metallothioneins was also detected for Zn and Bi. For several metals, distinct differences were observed when cytosolic metal distributions of northern pike were compared to leuciscids, salmonids and cyprinids. More pronounced Zn binding to metallothioneins was recorded in leuciscids and cyprinids than both esocids and salmonids, whereas cytosolic Mn and Se distributions clearly differed between all studied fish families. Accordingly, in assessment of metal pollution it is vital to consider the exposed species, which requires prior comprehensive comparative research on numerous aquatic organisms.
Collapse
Affiliation(s)
- Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia.
| | - Dušica Ivanković
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia.
| | - Nesrete Krasnići
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Zoran Kiralj
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Marita Cvitanović
- Faculty of Science, Department of Biology, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia
| | - Ivana Karamatić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Damir Valić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Fran Barac
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Vlatka Filipović Marijić
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Tatjana Mijošek
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Bijenička c. 54, Zagreb, Croatia
| | - Emil Gjurčević
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, Croatia
| | - Krešimir Matanović
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, Croatia
| | - Snježana Kužir
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, Croatia
| |
Collapse
|
8
|
Banc-Prandi G, Baharier N, Benaltabet T, Torfstein A, Antler G, Fine M. Elevated temperatures reduce the resilience of the Red Sea branching coral stylophora pistillata to copper pollution. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106096. [PMID: 35101775 DOI: 10.1016/j.aquatox.2022.106096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Copper (Cu) is a common marine pollutant of coastal environments and can cause severe impacts on coral organisms. To date, only a few studies assessed the effects of Cu contamination in combination with elevated seawater temperatures on corals. Furthermore, experiments focusing on coral recovery during a depuration phase, and under thermal stress, are lacking. The present study investigated the physiological response of the common and thermally tolerant scleractinian coral Stylophora pistillata from the northern Red Sea to Cu contamination (2.5, 5 or 10 µg L - 1) in combination with thermal stress (5 °C above local ambient temperatures (26 °C)) for 23 days, and assessed the impact of elevated temperatures on its ability to recover from such pollution during a one-week depuration period. Variation in coral photo-physiological biomarkers including antioxidant defense capacity, were dose, time and temperature-dependent, and revealed additive effects of elevated temperatures. Successful recovery was achieved in ambient temperature only and was mediated by antioxidant defenses. Elevation of temperature altered the recovery dynamics during depuration, causing reduced Cu bioaccumulation and photosynthetic yield. The present study provides novel information on the effects of elevated temperature on the resilience (resistance and recovery processes) of a scleractinian coral exposed to a common marine pollutant. Our findings suggest that ocean warming may alter the resilience strategies of corals when exposed to local pollution, an impact that might have long-term consequences on the chances of survival of reefs in increasingly populated and warming coastal environments.
Collapse
Affiliation(s)
- Guilhem Banc-Prandi
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 52900, Israel; The Interuniversity Institute for Marine Sciences, Eilat, 88103 Israel.
| | - Neta Baharier
- The University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Tal Benaltabet
- The Interuniversity Institute for Marine Sciences, Eilat, 88103 Israel; The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Adi Torfstein
- The Interuniversity Institute for Marine Sciences, Eilat, 88103 Israel; The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Gilad Antler
- The Interuniversity Institute for Marine Sciences, Eilat, 88103 Israel; Department of Earth and Environmnental Sciences, Ben-Gurion University of the Negev, Beersheva 8410501, Israel
| | - Maoz Fine
- The Interuniversity Institute for Marine Sciences, Eilat, 88103 Israel; Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute or Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| |
Collapse
|
9
|
Yap CK, Sharifinia M, Cheng WH, Al-Shami SA, Wong KW, Al-Mutairi KA. A Commentary on the Use of Bivalve Mollusks in Monitoring Metal Pollution Levels. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3386. [PMID: 33805997 PMCID: PMC8061770 DOI: 10.3390/ijerph18073386] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 01/09/2023]
Abstract
The objective of this commentary is to promote the use of bivalves as biomonitors, which is a part of the continual efforts of the International Mussel Watch. This commentary is an additional discussion on "Bivalve mollusks in metal pollution studies: From bioaccumulation to biomonitoring" by Zuykov et al., published in Chemosphere 93, 201-208. The present discussion can serve as a platform for further insights to provide new thoughts and novel ideas on how to make better use of bivalves in biomonitoring studies. The certainty of better and more extensive applications of mollusks in environmental monitoring in the future is almost confirmed but more studies are urgently needed. With all the reported studies using bivalves as biomonitors of heavy metal pollution, the effectiveness of using Mussel Watch is beyond any reasonable doubts. The challenge is the development of more accurate methodologies for of heavy metal data interpretation, and the precision of the biomonitoring studies using bivalves as biomonitors, whether in coastal or freshwater ecosystems. Lastly, inclusion of human health risk assessment of heavy metals in commercial bivalves would make the research papers of high public interest.
Collapse
Affiliation(s)
- Chee Kong Yap
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Moslem Sharifinia
- Shrimp Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Bushehr 75169-89177, Iran;
| | - Wan Hee Cheng
- Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana BBN, Nilai 71800, Negeri Sembilan, Malaysia;
| | - Salman Abdo Al-Shami
- Indian River Research and Education Center, IFAS, University of Florida, Fort Pierce, FL 34945, USA;
| | - Koe Wei Wong
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Khalid Awadh Al-Mutairi
- Department of Biology, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
| |
Collapse
|