1
|
Jia Y, Xiao E, Lan X, Lin W, Sun J, Xiao T. Microbial-mediated metal(loid) immobilization in mulch-covered tailings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116881. [PMID: 39151372 DOI: 10.1016/j.ecoenv.2024.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Mulch coverage of mining tailings can create anaerobic conditions and consequently establish an anoxic environment that promotes the metabolic processes of anaerobic microorganisms. This anoxic environment has the potential to decrease heavy metal mobility and bioavailability. While tailings exposed to sunlight have been extensively studied, research on the effects of microbial-mediated geochemical cycling of heavy metals in mulch-covered tailings is scarce. This study aimed to examine the effects of mulch coverage-induced alterations in the structures of tailing microbial communities on the biogeochemical processes associated with heavy metals. Mulch coverage significantly reduced the pH of the tailings and the tailings exhibited heavy metal bioavailability. Random forest analysis demonstrated that mulch coverage-induced changes in the As/Cd-contaminated fractions and nutrients (total organic carbon and total nitrogen) were the most crucial predictors of microbial diversity and ecological clusters in the tailings. Notably, different from direct metal(loid) immobilization, mulch coverage can facilitate heavy metal immobilization in tailings by promoting microbial-mediated Fe, S, and As reduction. Overall, this study demonstrated that mulch coverage of tailings contributed to a reduction in heavy metal mobilization, which can be attributed to shifts in microbial-mediated Fe, S, and As reduction processes.The study provides valuable insights into the potential of mulch coverage as a remediation strategy and underscores the importance of microbial-mediated processes in managing heavy metal pollution in tailing systems.
Collapse
Affiliation(s)
- Yanlong Jia
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China; School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550002, China
| | - Enzong Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaolong Lan
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China.
| | - Wenjie Lin
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China.
| | - Jialong Sun
- School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550002, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
2
|
Wen J, Yang R, Li X, Xie R, Wu Y. Migration mechanism of PTEs in polymetallic mines under pioneer phytoremediation: A Lanmuchang mercury-thallium mine perspective. ENVIRONMENTAL RESEARCH 2024; 263:120078. [PMID: 39343344 DOI: 10.1016/j.envres.2024.120078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The establishment of pioneer plants in waste slag sites not only modifies the nutrient content of the waste, but also plays a significant role in regulating the pH and potentially toxic elements (PTEs), thereby providing favorable conditions for the quick introduction of other plants. However, the mechanisms by which pioneer plants impact the migration and transformation of PTEs in polymetallic mines have rarely been studied. In this study, we investigated the effects of pioneer phytoremediation on the migration and transformation of PTEs, specifically thallium (Tl), mercury (Hg), arsenic (As), and antimony (Sb), in mercury-thallium mine waste. The results showed that pioneer phytoremediation increased esters and ethers containing C-O and P-O groups in dissolved organic matter, which subsequently formed soluble complexes with Hg, As, and Sb. Nevertheless, pioneer phytoremediation reduced the migration of Tl in the waste, this was mainly because pioneer phytoremediation reduced Fe3+ in silicate minerals and iron-containing minerals to more reactive Fe2+, thereby increasing the electronegativity (El) of the waste and enhancing its adsorption capacity for metal cations, such as Hg and Tl, thus maintaining electrical neutrality. However, the increased El of the waste was detrimental to the adsorption of negatively charged oxygen-containing anions, such as As and Sb. At the same time, the dissolution of Fe2+ resulted in the release and mobility of As and Sb that had been adsorbed onto iron oxides. The results offer significant theoretical support for guiding the ecological restoration of PTEs in polymetallic mines.
Collapse
Affiliation(s)
- Jichang Wen
- Institute of Rural Revitalization, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystem Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Ruijia Yang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Xinlong Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Rong Xie
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystem Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Du Y, Shi L, Cao X, Zhao F, Hu P, Ying R, Gu S, Wu L, Luo Y, Christie P. Potential high-risk release sources of thallium and arsenic from surrounding rocks of a typical thallium and arsenic mining area in southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173371. [PMID: 38772486 DOI: 10.1016/j.scitotenv.2024.173371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Abundant naturally and anthropogenically exposed surrounding rocks (NESRs and AESRs) in mining areas may pose persistent threats as sources of potentially toxic elements (PTEs), but this has been historically overlooked, especially for thallium (Tl) and arsenic (As). Here, the release risks of Tl and As from both NESRs and AESRs in a typical TlAs sulfide mining area were investigated. In a single leaching process, AESRs released 10.4 % of total Tl (157 μg L-1) and 32.5 % of total As (4089 μg L-1), 2-3 orders of magnitude higher than NESRs. Prolonged multiple leaching tests revealed notable and long-term risks of release of Tl and As from AESRs, associated with oxidation and dissolution of iron/sulfur-bearing minerals. Substantial release of PTEs was linked to the transformation/degradation of the -OH functional group and extensive dissolution of secondary sulfate minerals in AESRs. Ultrafiltration and STEM-EDS indicate that 18.4 % of water-extracted As released from AESRs existed as natural nanoparticles consisting of iron/sulfur-bearing minerals. This study highlights the high risks of Tl and As release from anthropogenically exposed surrounding rocks and the importance of nanoparticles in PTE transport, and provides insights into the control of PTEs in mining areas.
Collapse
Affiliation(s)
- Yanpei Du
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lingfeng Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyan Cao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fengqi Zhao
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Pengjie Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
| | - Rongrong Ying
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Shangyi Gu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Longhua Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| | - Peter Christie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China
| |
Collapse
|
4
|
Du Y, Shi L, Li X, Liu J, Ying R, Hu P, Wu L, Christie P. Potential mobilization of water-dispersible colloidal thallium and arsenic in contaminated soils and sediments in mining areas of southwest China. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133211. [PMID: 38101008 DOI: 10.1016/j.jhazmat.2023.133211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Water-dispersible colloids (WDCs) are vital for trace element migration, but there is limited information about the abundance, size distribution and elemental composition of WDC-bound thallium (Tl) and arsenic (As) in mining-contaminated soils and sediments solutions. Here, we investigated the potential mobilization of WDC-bound Tl and As in soils and sediments in a typical Tl/As-contaminated area. Ultrafiltration results revealed on average > 60% of Tl and As in soil solution (< 220 nm) coexisted in colloidal form whereas Tl and As in sediment solution primarily existed in the truly dissolved state (< 10 kDa) due to increased acidity. Using AF4-UV-ICP-MS and STEM-EDS, we identified Fe-bearing WDCs in association with aluminosilicate minerals and organic matter were main carriers of Tl and As. SAED further verified jarosite nanoparticles were important components of soil WDC, directly participating in the migration of Tl and As. Notably, high pollution levels and solution pH promoted the release of Tl/As-containing WDCs. This study provides quantitative and visual insights into the distribution of Tl and As in WDC, highlighting the important roles of Fe-bearing WDC, soil solution pH and pollution level in the potential mobilization of Tl and As in contaminated soils and sediments.
Collapse
Affiliation(s)
- Yanpei Du
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lingfeng Shi
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyang Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Juan Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Rongrong Ying
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Pengjie Hu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peter Christie
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
5
|
Chen M, Kong Y, Zheng W, Liu J, Wang Y, Wang Y. Accumulation and risk assessment of mercury in soil as influenced by mercury mining/smelting in Tongren, Southwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:83. [PMID: 38367093 DOI: 10.1007/s10653-024-01860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/04/2024] [Indexed: 02/19/2024]
Abstract
To investigate the influence of mercury (Hg) mining/smelting on the surrounding soil environment, ninety soil samples were collected around Hg mining/smelting areas in Tongren city, Guizhou Province, Southwest China. The total mercury (THg), methylmercury (MeHg), bioavailability and fractions of Hg in the soil and their potential risk were evaluated. The results showed that Hg mining/smelting significantly increased the soil pH and decreased the soil organic matter content (p < 0.05). The THg content in the surrounding soil was much higher than that at the control site, with almost all the samples exceeding the national standard in China (3.4 mg/kg, GB15618-2018). Similarly, the concentrations of MeHg (0.09-2.74 μg/kg) and bioavailable Hg (0.64-62.94 μg/kg) in these soil samples were also significantly higher than those in the control site. However, the MeHg/THg ratio was significantly lower in mining/smelting influenced soils (0.01-0.68%) than in control soils (0.60-3.72%). Fraction analysis revealed that residual (RES-Hg) and organic matter-bounded (OM-Hg) Hg accounted for more than 50% of the THg. Ecological risk assessment revealed that the potential ecological risk for most of the Hg mining/smelting-influenced soils (30.16 ≤ Er ≤ 2280.02) were higher than those at the control site (15.12 ≤ Er ≤ 27.1). In addition, these Hg mining/smelting-influenced soils posed acceptable noncarcinogenic risks to adults (except for two soil samples), with hazard indices (HIs) ranging from 0.04 to 1.11 and a mean HI of 0.44. However, children suffer serious noncarcinogenic risks, with HIs ranging from 0.34 to 7.43 and a mean HI of 3.10.
Collapse
Affiliation(s)
- Ming Chen
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Yuke Kong
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Wenxiu Zheng
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Jinhui Liu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Yong Wang
- School of Material and Chemical Engineering, Tongren University, Tongren, 554300, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China.
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Zhang P, Yang M, Lan J, Huang Y, Zhang J, Huang S, Yang Y, Ru J. Water Quality Degradation Due to Heavy Metal Contamination: Health Impacts and Eco-Friendly Approaches for Heavy Metal Remediation. TOXICS 2023; 11:828. [PMID: 37888679 PMCID: PMC10611083 DOI: 10.3390/toxics11100828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Water quality depends on its physicochemical and biological parameters. Changes in parameters such as pH, temperature, and essential and non-essential trace metals in water can render it unfit for human use. Moreover, the characteristics of the local environment, geological processes, geochemistry, and hydrological properties of water sources also affect water quality. Generally, groundwater is utilized for drinking purposes all over the globe. The surface is also utilized for human use and industrial purposes. There are several natural and anthropogenic activities responsible for the heavy metal contamination of water. Industrial sources, including coal washery, steel industry, food processing industry, plastic processing, metallic work, leather tanning, etc., are responsible for heavy metal contamination in water. Domestic and agricultural waste is also responsible for hazardous metallic contamination in water. Contaminated water with heavy metal ions like Cr (VI), Cd (II), Pb (II), As (V and III), Hg (II), Ni (II), and Cu (II) is responsible for several health issues in humans, like liver failure, kidney damage, gastric and skin cancer, mental disorders and harmful effects on the reproductive system. Hence, the evaluation of heavy metal contamination in water and its removal is needed. There are several physicochemical methods that are available for the removal of heavy metals from water, but these methods are expensive and generate large amounts of secondary pollutants. Biological methods are considered cost-effective and eco-friendly methods for the remediation of metallic contaminants from water. In this review, we focused on water contamination with toxic heavy metals and their toxicity and eco-friendly bioremediation approaches.
Collapse
Affiliation(s)
- Peng Zhang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Mingjie Yang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Jingjing Lan
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Yan Huang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Jinxi Zhang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Shuangshuang Huang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Yashi Yang
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| | - Junjie Ru
- School of Hydraulic Engineering, Wanjiang University of Technology, Ma’anshan 243031, China; (M.Y.); (J.L.); (Y.H.); (J.Z.); (S.H.); (Y.Y.)
| |
Collapse
|
7
|
He Y, Luo Y, Wei C, Long L, Wang C, Wu Y. Effects of dissolved organic matter derived from cow manure on heavy metal(loid)s and bacterial community dynamics in mercury-thallium mining waste slag. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5857-5877. [PMID: 37178440 DOI: 10.1007/s10653-023-01607-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Organic amendments in aided phytostabilization of waste slag containing high levels of heavy metal (loid)s (HMs) are an important way to control the release of HMs in situ. However, the effects of dissolved organic matter (DOM) derived from organic amendments on HMs and microbial community dynamics in waste slag are still unclear. Here, the effect of DOM derived from organic amendments (cow manure) on the geochemical behaviour of HMs and the bacterial community dynamics in mercury (Hg)-thallium (Tl) mining waste slag were investigated. The results showed that the Hg-Tl mining waste slag without the addition of DOM continuously decreased the pH and increased the EC, Eh, SO42-, Hg, and Tl levels in the leachate with increasing incubation time. The addition of DOM significantly increased the pH, EC, SO42-, and arsenic (As) levels but decreased the Eh, Hg, and Tl levels. The addition of DOM significantly increased the diversity and richness of the bacterial community. The dominant bacterial phyla (Proteobacteria, Firmicutes, Acidobacteriota, Actinobacteriota, and Bacteroidota) and genera (Bacillus, Acinetobacter, Delftia, Sphingomonas, and Enterobacter) were changed in association with increases in DOM content and incubation time. The DOM components in the leachate were humic-like substances (C1 and C2), and the DOC content and maximum fluorescence intensity (FMax) values of C1 and C2 in the leachate decreased and first increased and then decreased with increasing incubation time. The correlations between HMs and DOM and the bacterial community showed that the geochemical behaviours of HMs in Hg-Tl mining waste slag were directly influenced by DOM-mediated properties and indirectly influenced by DOM regulation of bacterial community changes. Overall, these results indicated that DOM properties associated with bacterial community changes increased As mobilization but decreased Hg and Tl mobilization from Hg-Tl mining waste slag.
Collapse
Affiliation(s)
- Yu He
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Youfa Luo
- Key Laboratory of Kast Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China.
| | - Chaoxiao Wei
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Licui Long
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Chi Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
8
|
Shi T, Zhan P, Shen Y, Wang H, Wu C, Li J. Using multi-technology to characterize transboundary Hg pollution in the largest presently active Hg deposit in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82124-82141. [PMID: 37322398 DOI: 10.1007/s11356-023-28080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Active Hg mines are primary sources of Hg contamination in the environment of mining districts and surrounding areas. Alleviation of Hg pollution requires knowledge of pollution sources, migration, and transform pathways across various environmental media. Accordingly, the Xunyang Hg-Sb mine, the largest active Hg deposit in China, presently was selected as the study area. GIS, TIMA, EPMA, μ-XRF, TEM-EDS, and Hg stable isotopes were adopted to investigate the spatial distribution, mineralogical characteristics, in situ microanalysis, and pollution sources of Hg in the environment medium at the macro- and micro-levels. The total Hg concentration in samples showed a regional distribution, with higher levels in areas close to the mining operations. The in situ distribution of Hg in soil was mainly associated with the mineralogical phases of quartz, and Hg was also correlated with Sb and S. Hg was also found to be rich mainly in quartz minerals in the sediment and showed different distributions of Sb. Hg hotspots had S abundances and contained no Sb and O. The contributions from the anthropogenic sources to soil Hg were estimated to be 55.35%, among which 45.97% from unroasted Hg ore and 9.38% from tailing. Natural input of soil Hg due to pedogenic processes accounted for 44.65%. Hg in corn grain was mainly derived from the atmosphere. This study will provide a scientific basis for assessing the current environmental quality in this area and minimizing further impacts that affect the nearby environmental medium.
Collapse
Affiliation(s)
- Taoran Shi
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Pei Zhan
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yaqin Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hongyan Wang
- Beijing Dabeinong Technology Group Co., Ltd., Beijing, 100000, China
| | - Chunfa Wu
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
9
|
Li X, Wu Y, Wang H, Wen J, Zhu M. Effects of microorganisms on the migration and transformation of typical heavy metal (loid)s in mercury-thallium mining waste slag during the combined application of fish manure and natural minerals. CHEMOSPHERE 2023:139385. [PMID: 37394189 DOI: 10.1016/j.chemosphere.2023.139385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/05/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Mercury-thallium mining waste slag has the characteristics of extremely acidic, low fertility and highly toxic polymetallic composite pollution, making it difficult to be treated. We use nitrogen- and phosphorus-rich natural organic matter (fish manure) and calcium- and phosphorus-rich natural minerals (carbonate and phosphate tailings) individually or in combination to amend the slag, analyze their effects on the migration and transformation of potentially toxic elements (Tl and As) in the waste slag. We set up sterile and non-sterile treatments specifically to further investigate the direct or indirect effect of microorganisms attached to added organic matter on Tl and As. The results showed that addition of fish manure and natural minerals to the non-sterile treatments promoted the release of As and Tl, resulting in an increase in As and Tl concentrations in the tailing lixiviums from 0.57 to 2.38-6.37 μg/L and from 69.92 to 107.51-157.21 μg/L, respectively. Sterile treatments promoted the release of As (from 0.28 to 49.88-104.18 μg/L) and inhibited the release of Tl (from 94.53 to 27.60-34.50 μg/L). Use of fish manure and natural minerals alone or in combination significantly reduced the biotoxicity of the mining waste slag, in which the combination was more efficient. XRD analysis showed that microorganisms in the medium promoted the dissolution of jarosite and other minerals, which indicated that the release and migration of As and Tl in Hg-Tl mining waste slag were closely related to microbial activities. Furthermore, metagenomic sequencing revealed that microorganisms such as Prevotella, Bacteroides, Geobacter, and Azospira, which were abundant in the non-sterile treatments, had remarkable resistance to a variety of highly toxic heavy metals and could affect the dissolution of minerals and the release and migration of heavy metals through redox reactions. Our results may aid in the rapid soilless ecological restoration of related large multi-metal waste slag dumps.
Collapse
Affiliation(s)
- Xingying Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China; Guizhou Hostile Environment Ecological Restoration Technology Engineering Research Centre, Guizhou University, Guiyang, 550025, China.
| | - Hui Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Jichang Wen
- New Rural Development Research Institute, Guizhou University, Guiyang, 550025, China
| | - Mei Zhu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
10
|
Chen W, Huangfu X, Xiong J, Liu H, He Q. Dynamic retention of thallium(I) on humic acid: Novel insights into the heterogeneous complexation ability and responsiveness. WATER RESEARCH 2023; 239:120053. [PMID: 37182311 DOI: 10.1016/j.watres.2023.120053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Widely distributed soil humic acid (HA) would significantly affect the environmental migration behavior of Tl(I), but a quantitative and mechanistic understanding of the dynamic Tl(I) retention process on HA is limited. A unified kinetic model was established by coupling the humic ion-binding model with a stirred-flow kinetic model, which quantified the complexation constants and responsiveness coefficients during dynamic Tl(I)-HA complexation. Furthermore, the heterogeneous complexation mechanism of HA and Tl(I) was revealed by batch adsorption experiments, stirred-flow migration experiments, and 2D-FTIR-COS analysis. An increase in pH significantly improved the responsiveness of HA organic binding sites, promoting Tl(I) dynamic retention. Monodentate carboxyl groups induced rapid Tl(I) complexation (kd = 1.9 min-1) in strongly acidic environments. Under weakly acidic conditions, Tl(I) retention on HA was mainly attributed to the synergistic complexation effect of carboxyl and amide groups. Among the groups, multidentate carboxyl-phenolic hydroxyl sites could achieve sustained Tl(I) retention due to their stable complexing properties (logK = 4.48∼7.46) and slow response (kd = 1.1 × 10-3 min-1). These findings are crucial for a comprehensive understanding of the environmental interactions of Tl(I) with humic substances in swamp environments.
Collapse
Affiliation(s)
- Wanpeng Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiaoliu Huangfu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Jiaming Xiong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Hongxia Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Wen J, Wu Y, Zhu X, Lan M, Li X. Influence mechanism of plant litter mediated reduction of iron and sulfur on migration of potentially toxic elements from mercury-thallium mine waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 332:121742. [PMID: 37121301 DOI: 10.1016/j.envpol.2023.121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/09/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
The decomposition of plant litter in soil changes soil nutrient content and plays an important role in regulating soil pH and availability of potentially toxic elements (PTEs). However, there remains limited studies on the mechanism under which litter influences the transport of PTEs in the process of ecological restoration. This study examined the effect of plant litter decomposition mediated reduction of iron and sulfur components on migration of PTEs from mercury-thallium mine waste. The results showed that the four kinds of litter alleviated the acidity of the waste, especially the Bpa and Tre litter. The nitro and nitroso groups produced by the decomposition of the litter were adsorbed onto the waste, thereby providing an electron transfer medium for iron reducing microorganisms, such as Geobacter. This promoted the reduction and release of Fe3+ to Fe2+ and reduced the electronegativity (El) value of waste. The reduced El promoted the adsorption of metal cations such as Hg and Tl to maintain electrical neutrality. However, it was not conducive to the adsorption of oxygen containing anions of As and Sb. An increase in litter resulted in an increase in reductivity of mercury-thallium mine waste. This maintained the reduction of Fe3+ to Fe2+ and changed or destroyed the structure of silicate minerals. PTEs, such as Tl, Hg, As, and Sb, were released, resulting in reductions in their residual fraction. However, the strong reduction conditions, especially the decomposition of Bpa, caused part of the released Hg(II) combining with S2- produced by the reduction of SO42- to form insoluble HgS, thereby reducing its migration. The findings could provide a theoretical basis to guide the situ-control and ecological restoration of PTEs in waste slag site.
Collapse
Affiliation(s)
- Jichang Wen
- Institute of New Rural Development, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Xinwei Zhu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Meiyan Lan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Xinying Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
12
|
Ma T, Luo H, Sun J, Pan Y, Huang K, Lu G, Dang Z. Metal distribution behavior based on soil aggregate size in a post-restoration coastal mining area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161285. [PMID: 36587688 DOI: 10.1016/j.scitotenv.2022.161285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Soil aggregate size plays an important role in controlling the distribution and transport of metals. Metals immobilized in soil particles will pose potential risks through production/sink flow and infiltration. This study explored the distribution behavior of metals based on soil aggregate size in a restored coastal mining area by establishing Structural Equation Model (SEM) and column experiments. The results showed that hydrological factors and a high degree of weathering accelerated the dissolution of metals from the mine, the desorption of Wa-NH4+-N, the release of F-, and the leaching of NO3-. Driven by soil properties, natural factors, and anthropogenic activities, the total metal content (Totalmetal) of Cr, Ni, Zn, Mn, and As showed significant spatial heterogeneity compared to Cd, Co, Cu, and Pb. The geochemical fraction of metals (Geometal) indicated that Cd, Co, Pb, Zn, As, and Cu are mainly present in iron‑manganese oxidation bound, organically bound, and residual fractions. The results of SEM showed that the physicochemical properties, Wa-NH4+-N, nitrate nitrogen, and inorganic anions of the soil could explain 69.1 %, 76.4 %, 97.1 %, and 80.0 % of the variation in Kd-Mn, Kd-Pb, Kd-Ni, and Kd-Zn, respectively. While Kd-Cd, Kd-Cu, and Kd-Cr could be predicted by the Totalmetal, but the Geometal seemed to have little influence on metal Kd. The results of column experiments showed that macroaggregates (>0.25 mm) significantly affected the distribution of Co, Cr, Cu, Mn, Ni, Pb, and Zn in the topsoil. The severe disruption of soil aggregate structure resulted in small fluctuations of anthropogenic Cu, Mn, Pb, Zn, and As in different layers of deep soil. In addition, mineral composition in >0.15 mm particle size was more likely to change. Overall, the hydrological cycle of coastal mines increases the uncertainty of their response to risk. Our study provides a basis for future strategies for priority control and risk prevention.
Collapse
Affiliation(s)
- Tengfei Ma
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hanjin Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yan Pan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221000, China
| | - Kaibo Huang
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
13
|
Wen J, Wu Y, Lu Q, Li X, Yang L, Duan Z. Releasing Characteristics and Biological Toxicity of the Heavy Metals from Waste of Mercury-Thalliummine in Southwest Guizhou of China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:1111-1120. [PMID: 33538842 DOI: 10.1007/s00128-021-03117-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
In this paper, the releasing characteristics and biological toxicity of Tl, Hg, As and Sb in waste of Lanmuchang mercury-thallium mine were studied. The results indicated that strong acidity can significantly promote the release of Tl from waste. With the increase of pH, the release of Sb grew steadily, while Hg and As showed a trend of first increasing and then decreasing. Fe2(SO4)3 contributed less to the release of As and Sb than to that of Hg and Tl. FeCl3 significantly inhibited the release of As, Sb and Tl. In the leaching experiments of litter and root exudates, the lixiviums appeared neutral, and the litter and root exudates solution significantly reduced the release of Tl, and showed less toxicity to luminescent bacteria. However, they promoted the release of Hg, As and Sb at different levels.
Collapse
Affiliation(s)
- Jichang Wen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystem Observation and Research Station, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Institute of Applied Ecology, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Qian Lu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Xinlong Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Lin Yang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Zhibin Duan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
14
|
Yang Y, Huang Y, Tang X, Li Y, Liu J, Li H, Cheng X, Pei X, Duan H. Responses of fungal communities along a chronosequence succession in soils of a tailing dam with reclamation by Heteropogon contortus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112270. [PMID: 33932655 DOI: 10.1016/j.ecoenv.2021.112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/26/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Phytoremediation can obviously change the fungal communities in the soils, which will significantly impact carbon (C) and nitrogen (N) cycling in ecological system. So far, the relationship between soil fungal communities and environmental factors is still poorly understood along a long chronosequence. In this study, fungal communities in the surface and rhizosphere soils of a tailing dam with Heteropogon contortus phytoremediation were investigated to explore the evolution of fungal community in a span of 50 years. The results showed that microbial community diversity increases along with time series of Heteropogon contortus phytoremediation. The dominant Dothideomycetes (20.86%), Agaricomycetes (18.09%), and Arthoniomycetes (1.69%) in rhizosphere soils were relatively higher than those in topsoil (13.9%, 2.65%, and 0.20%) at class level. Spearman correction analysis by phylum level was conducted to detect whether microflora was related to soil Physico-chemical properties, which affecting the composition of fungal communities along with the Heteropogon contortus phytoremediation. The nitrogen cycle indicators represented good linear correlations as chronosequence goes on, the indexes in the rhizosphere soil were much higher than those in the surface soils and the highest level has occurred in the 47-year-old Heteropogon contortus phytoremediation. The relative abundance of plant pathogen, wood saprotroph, dung saprotroph, and Arbuscular Mycorrhizal showed an upward tendency in rhizosphere soils along with the Heteropogon contortus phytoremediation. The highest soil fungal communities abundance and diversity were possibly attributed to the high-quality Heteropogon contortus litter returning to the ground and artificial disturbance treatments. Such changes in soil fungal communities might demonstrate a significant step forward and provided theoretical support for the biological governance of Heteropogon contortus phytoremediation in 50 years. Our study provides an insight on microbial communities connecting with soil C, N, P and S cycles and community functions in a complex plant-fungal-soil system along a long chronosequence in mine micro-ecology.
Collapse
Affiliation(s)
- Ying Yang
- College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Yi Huang
- College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China.
| | - Xue Tang
- College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Ying Li
- College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Jianing Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Hanyu Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xin Cheng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xiangjun Pei
- College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Haoran Duan
- College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| |
Collapse
|