1
|
McKechnie AE, Freeman MT, Kemp R, Wolter K, Naidoo V. Effects of lead on avian thermoregulation in the heat: An experimental test with pied crows (Corvus albus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104519. [PMID: 39059727 DOI: 10.1016/j.etap.2024.104519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Many of the negative physiological effects of lead involve the hypothalamus, but the possibility that thermoregulation is affected has received little attention. We tested the hypothesis that lead exposure reduces avian thermoregulatory performance under hot conditions in pied crows (Corvus albus) experimentally exposed to lead in their diet. Crows in our high lead treatment (blood [Pb] = 87.3 ± 44.7 μg dL-1) showed significantly higher air temperature (Tair) inflections for evaporative water loss (EWL) and resting metabolic rate (RMR) compared to control (6.4 ± 1.8 μg dL-1) or intermediate (53.9 ± 23.7 μg dL-1) lead groups, which did not differ. EWL, RMR and body temperature (Tb) all increased more rapidly at Tair > Tb in the high lead treatment. In contrast, neither maximum Tair tolerated by the crows nor maximum Tb varied with treatment. Our data reveal that water and energy balance during hot weather is affected by lead exposure.
Collapse
Affiliation(s)
- Andrew E McKechnie
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, South Africa; DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, South Africa.
| | - Marc T Freeman
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, South Africa; DSI-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, South Africa
| | - Ryno Kemp
- Vulture Programme (VulPro), Plot 121, Rietfontein 0216, South Africa
| | - Kerri Wolter
- Vulture Programme (VulPro), Plot 121, Rietfontein 0216, South Africa
| | - Vinny Naidoo
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, South Africa
| |
Collapse
|
2
|
Janas K, Gudowska A, Drobniak SM. Avian colouration in a polluted world: a meta-analysis. Biol Rev Camb Philos Soc 2024; 99:1261-1277. [PMID: 38494176 DOI: 10.1111/brv.13067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
Brilliant, diverse colour ornaments of birds were one of the crucial cues that led Darwin to the idea of sexual selection. Although avian colouration plays many functions, including concealment, thermoregulation, or advertisement as a distasteful prey, a quality-signalling role in sexual selection has attracted most research attention. Sexually selected ornaments are thought to be more susceptible to external stressors than naturally selected traits, and as such, they might be used as a test for environmental quality. For this reason, the last two decades have seen numerous studies on the impact of anthropogenic pollution on the expression of various avian colour traits. Herein, we provide the first meta-analytical summary of these results and examine whether there is an interaction between the mechanism of colour production (carotenoid-based, melanin-based and structural) and the type of anthropogenic factor (categorised as heavy metals, persistent organic pollutants, urbanisation, or other). Following the assumption of heightened condition dependence of ornaments under sexual selection, we also expected the magnitude of effect sizes to be higher in males. The overall effect size was close to significance and negative, supporting a general detrimental impact of anthropogenic pollutants on avian colouration. In contrast to expectations, there was no interaction between pollution types and colour-producing mechanisms. Yet there were significant differences in sensitivity between colour-producing mechanisms, with carotenoid-based colouration being the most affected by anthropogenic environmental disturbances. Moreover, we observed no significant tendency towards heightened sensitivity in males. We identified a publication gap on structural colouration, which, compared to pigment-based colouration, remains markedly understudied and should thus be prioritised in future research. Finally, we call for the unification of methods used in colour quantification in ecological research to ensure comparability of results among studies.
Collapse
Affiliation(s)
- Katarzyna Janas
- Ornithological Station, Museum and Institute of Zoology, Polish Academy of Sciences, Gdańsk, Poland
| | - Agnieszka Gudowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Environmental and Earth Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
3
|
Zhang Y, Pei X, Jing L, Zhang Q, Zhao H. Lead induced cerebellar toxicology of developmental Japanese quail (Coturnix japonica) via oxidative stress-based Nrf2/Keap1 pathway inhibition and glutathione-mediated apoptosis signaling activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124114. [PMID: 38718965 DOI: 10.1016/j.envpol.2024.124114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Lead (Pb) is a heavy metal that has been recognized as a neurotoxin, meaning it can cause harmful effects on the nervous system. However, the neurotoxicology of Pb to birds still needs further study. In this study, we examined the neurotoxic effects of Pb exposure on avian cerebellum by using an animal model-Japanese quail (Coturnix japonica). The one-week old male chicks were exposed to 50, 200 and 500 mg/kg Pb of environmental relevance in the feed for five weeks. The results showed Pb caused cerebellar microstructural damages charactered by deformation of neuroglia cells, granule cells and Purkinje cells with Nissl body changes. Moreover, cerebellar neurotransmission was disturbed by Pb with increasing acetylcholine (ACh) and decreasing acetylcholinesterase (AChE), dopamine (DA), γ-Aminobutyric Acid (GABA) and Na+/K+ ATPase. Meanwhile, cerebellar oxidative stress was caused by Pb exposure represented by increasing reactive oxygen species (ROS) and malondialdehyde (MDA) as well as decreasing catalase (CAT), glutathione peroxidase (GPX), glutathione (GSH) and superoxide dismutase (SOD). Moreover, RNA-Seq analysis showed that molecular signaling pathways in the cerebellum were disrupted by Pb exposure. In particular, the disruption of nuclear factor erythroid-2-related factor 2 (Nfr2)/kelch-like ECH-associated protein 1 (Keap1) pathway and glutathione metabolism pathway indicated increasing cell apoptosis and functional disorder in the cerebellum. The present study revealed that Pb induced cerebellar toxicology through structural injury, oxidative stress, neurotransmission interference and abnormal apoptosis.
Collapse
Affiliation(s)
- Yuxin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiaoqing Pei
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Lingyang Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Qingyu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
4
|
Di Liberto JF, Griffith SC, Hall CJ, Mendelsohn AS, Swaddle JP. Exposure to Sublethal Concentrations of Lead (Pb) Affects Ecologically Relevant Behaviors in House Sparrows (Passer domesticus). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:199-216. [PMID: 38598146 PMCID: PMC11032286 DOI: 10.1007/s00244-024-01062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Global contamination of environments with lead (Pb) poses threats to many ecosystems and populations. While exposure to Pb is toxic at high concentrations, recent literature has shown that lower concentrations can also cause sublethal, deleterious effects. However, there remains relatively little causal investigation of how exposure to lower concentrations of environmental Pb affects ecologically important behaviors. Behaviors often represent first-line responses of an organism and its internal physiological, molecular, and genetic responses to a changing environment. Hence, better understanding how behaviors are influenced by pollutants such as Pb generates crucial information on how species are coping with the effects of pollution more broadly. To better understand the effects of sublethal Pb on behavior, we chronically exposed adult wild-caught, captive house sparrows (Passer domesticus) to Pb-exposed drinking water and quantified a suite of behavioral outcomes: takeoff flight performance, activity in a novel environment, and in-hand struggling and breathing rate while being handled by an experimenter. Compared to controls (un-exposed drinking water), sparrows exposed to environmentally relevant concentrations of Pb exhibited decreases in takeoff flight performance and reduced movements in a novel environment following 9-10 weeks of exposure. We interpret this suite of results to be consistent with Pb influencing fundamental neuro-muscular abilities, making it more difficult for exposed birds to mount faster movements and activities. It is likely that suppression of takeoff flight and reduced movements would increase the predation risk of similar birds in the wild; hence, we also conclude that the effects we observed could influence fitness outcomes for individuals and populations altering ecological interactions within more naturalistic settings.
Collapse
Affiliation(s)
- Joseph F Di Liberto
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biology, William & Mary, Williamsburg, VA, USA.
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Cara J Hall
- Department of Biology, William & Mary, Williamsburg, VA, USA
| | | | - John P Swaddle
- Department of Biology, William & Mary, Williamsburg, VA, USA
- Institute for Integrative Conservation, William & Mary, Williamsburg, VA, USA
| |
Collapse
|
5
|
Lu C, Gudowska A, Rutkowska J. What do zebra finches learn besides singing? Systematic mapping of the literature and presentation of an efficient associative learning test. Anim Cogn 2023; 26:1489-1503. [PMID: 37300600 PMCID: PMC10442275 DOI: 10.1007/s10071-023-01795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The process of learning in birds has been extensively studied, with a focus on species such as pigeons, parrots, chickens, and crows. In recent years, the zebra finch has emerged as a model species in avian cognition, particularly in song learning. However, other cognitive domains such as spatial memory and associative learning could also be critical to fitness and survival, particularly during the intensive juvenile period. In this systematic review, we provide an overview of cognitive studies on zebra finches, with a focus on domains other than song learning. Our findings indicate that spatial, associative, and social learning are the most frequently studied domains, while motoric learning and inhibitory control have been examined less frequently over 30 years of research. All of the 60 studies included in this review were conducted on captive birds, limiting the generalizability of the findings to wild populations. Moreover, only two of the studies were conducted on juveniles, highlighting the need for more research on this critical period of learning. To address this research gap, we propose a high-throughput method for testing associative learning performance in a large number of both juvenile and adult zebra finches. Our results demonstrate that learning can occur in both age groups, thus encouraging researchers to also perform cognitive tests on juveniles. We also note the heterogeneity of methodologies, protocols, and subject exclusion criteria applied by different researchers, which makes it difficult to compare results across studies. Therefore, we call for better communication among researchers to develop standardised methodologies for studying each cognitive domain at different life stages and also in their natural conditions.
Collapse
Affiliation(s)
- ChuChu Lu
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Gudowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
6
|
Lv Y, Zhang QD, Chang LM, Yang DL, Riaz L, Li C, Chen XH, Jiang JP, Zhu W. Multi-omics provide mechanistic insight into the Pb-induced changes in tadpole fitness-related traits and environmental water quality. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114207. [PMID: 36274322 DOI: 10.1016/j.ecoenv.2022.114207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Water pollution from lead/Pb2+ poses a significant threat to aquatic ecosystems, and its repercussions on aquatic animals have received considerable attention. Although Pb2+ has been found to affect numerous aspects of animals, including individual fitness, metabolic status, and symbiotic microbiota, few studies have focused on the associations between Pb2+-induced variations in fitness, metabolome, symbiotic microbiome, and environmental parameters in the same system, limiting a comprehensive understanding of ecotoxicological mechanisms from a holistic perspective. Moreover, most ecotoxicological studies neglected the potential contributions of anions to the consequences generated by inorganic lead compounds. We investigated the effects of Pb(NO3)2 at environmentally relevant concentrations on the Rana omeimontis tadpoles and the water quality around them, using blank and NaNO3-treated groups as control. Results showed that Pb(NO3)2 not only induced a rise in water nitrite level, but exposure to this chemical also impaired tadpole fitness-related traits (e.g., growth and development). The impacts on tadpoles were most likely a combination of Pb2+ and NO3-. Tissue metabolomics revealed that Pb(NO3)2 exposure influenced animal substrate (i.e., carbohydrate, lipid, and amino acid) and prostaglandin metabolism. Pb(NO3)2 produced profound shifts in gut microbiota, with increased Proteobacteria impairing Firmicutes, resulting in higher aerobic and possibly pathogenic bacteria. NaNO3 also influenced tadpole metabolome and gut microbiome, in a manner different to that of Pb(NO3)2. The presence of NO3- seemed to counteract some changes caused by Pb2+, particularly on the microbiota. Piecewise structural equation model and correlation analyses demonstrated connections between tissue metabolome and gut microbiome, and the variations in tadpole phenotypic traits and water quality were linked to changes in tissue metabolome and gut microbiome. These findings emphasized the important roles of gut microbiome in mediating the effects of toxin on aquatic ecosystem. Moreover, it is suggested to consider the influences of anions in the risk assessment of heavy metal pollutions.
Collapse
Affiliation(s)
- Yan Lv
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Qun-De Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Li-Ming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Duo-Li Yang
- Department of Animal Sciences, University of California Davis, Davis, CA 95616, USA
| | - Luqman Riaz
- Department of Environmental Sciences, University of Narowal, 51750 Punjab, Pakistan
| | - Cheng Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiao-Hong Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - Jian-Ping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
7
|
Townsend AK, Sewall KB, Leonard AS, Hawley DM. Infectious disease and cognition in wild populations. Trends Ecol Evol 2022; 37:899-910. [PMID: 35872026 DOI: 10.1016/j.tree.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Infectious disease is linked to impaired cognition across a breadth of host taxa and cognitive abilities, potentially contributing to variation in cognitive performance within and among populations. Impaired cognitive performance can stem from direct damage by the parasite, the host immune response, or lost opportunities for learning. Moreover, cognitive impairment could be compounded by factors that simultaneously increase infection risk and impair cognition directly, such as stress and malnutrition. As highlighted in this review, however, answers to fundamental questions remain unresolved, including the frequency, duration, and fitness consequences of infection-linked cognitive impairment in wild animal populations, the cognitive abilities most likely to be affected, and the potential for adaptive evolution of cognition in response to accelerating emergence of infectious disease.
Collapse
Affiliation(s)
- Andrea K Townsend
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA.
| | - Kendra B Sewall
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anne S Leonard
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Michelangeli M, Martin JM, Pinter-Wollman N, Ioannou CC, McCallum ES, Bertram MG, Brodin T. Predicting the impacts of chemical pollutants on animal groups. Trends Ecol Evol 2022; 37:789-802. [PMID: 35718586 DOI: 10.1016/j.tree.2022.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 12/21/2022]
Abstract
Chemical pollution is among the fastest-growing agents of global change. Synthetic chemicals with diverse modes-of-action are being detected in the tissues of wildlife and pervade entire food webs. Although such pollutants can elicit a range of sublethal effects on individual organisms, research on how chemical pollutants affect animal groups is severely lacking. Here we synthesise research from two related, but largely segregated fields - ecotoxicology and behavioural ecology - to examine pathways by which chemical contaminants could disrupt processes that govern the emergence, self-organisation, and collective function of animal groups. Our review provides a roadmap for prioritising the study of chemical pollutants within the context of sociality and highlights important methodological advancements for future research.
Collapse
Affiliation(s)
- Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden; School of Biological Sciences, Monash University, Melbourne, 3800, Australia.
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, 3800, Australia
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-7246, USA
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Bristol BS8 1QU, UK
| | - Erin S McCallum
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| |
Collapse
|
9
|
Chételat J, Cousens B, Hebert CE, Jung TS, Mundy L, Thomas PJ, Zhang S. Isotopic evidence for bioaccumulation of aerosol lead in fish and wildlife of western Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119074. [PMID: 35231539 DOI: 10.1016/j.envpol.2022.119074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Lead (Pb) is a toxic element which is released as a result of anthropogenic activities, and Pb stable isotope ratios provide a means to distinguish sources and transport pathways in receiving environments. In this study, isotopes of bioaccumulated Pb (204Pb, 206Pb, 207Pb, 208Pb) were examined for diverse terrestrial and aquatic biota from three areas in western Canada: (a) otter, marten, gulls, terns, and wood frogs in the Alberta Oil Sands Region (AOSR), (b) fish, plankton, and gulls of Great Slave Lake (Yellowknife, Northwest Territories), and (c) wolverine from the Yukon. Aquatic and terrestrial biota from different habitats and a broad geographic area showed a remarkable similarity in their Pb isotope composition (grand mean ± 1 standard deviation: 206Pb/207Pb = 1.189 ± 0.007, 208Pb/207Pb = 2.435 ± 0.009, n = 116). Comparisons with Pb isotope ratios of local sources and environmental receptors showed that values in biota were most similar to those of atmospheric Pb, either measured in local aerosols influenced by industrial activities in the AOSR or in lichens (an aerosol proxy) near Yellowknife and in the Yukon. Biotic Pb isotope ratios were different from those of local geogenic Pb. Although the Pb isotope measurements could not unambiguously identify the specific anthropogenic sources of atmospheric Pb in biota, initial evidence points to the importance of fossil fuels currently used in transportation and power generation. Further research should characterize bioavailable chemical species of Pb in aerosols and important emission sources in western Canada.
Collapse
Affiliation(s)
- John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, K1A 0H3, Canada.
| | - Brian Cousens
- Isotope Geochemistry and Geochronology Research Centre, Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| | - Craig E Hebert
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, K1A 0H3, Canada
| | - Thomas S Jung
- Yukon Department of Environment, Whitehorse, Yukon, Y1A 2C6, Canada
| | - Lukas Mundy
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, K1A 0H3, Canada
| | - Philippe J Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, K1A 0H3, Canada
| | - Shuangquan Zhang
- Isotope Geochemistry and Geochronology Research Centre, Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
10
|
Cronin AD, Smit JAH, Muñoz MI, Poirier A, Moran PA, Jerem P, Halfwerk W. A comprehensive overview of the effects of urbanisation on sexual selection and sexual traits. Biol Rev Camb Philos Soc 2022; 97:1325-1345. [PMID: 35262266 PMCID: PMC9541148 DOI: 10.1111/brv.12845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022]
Abstract
Urbanisation can affect mating opportunities and thereby alter inter- and intra-sexual selection pressures on sexual traits. Biotic and abiotic urban conditions can influence an individual's success in pre- and post-copulatory mating, for example through impacts on mate attraction and mate preference, fertilisation success, resource competition or rival interactions. Divergent sexual selection pressures can lead to differences in behavioural, physiological, morphological or life-history traits between urban and non-urban populations, ultimately driving adaptation and speciation. Most studies on urban sexual selection and mating interactions report differences between urban and non-urban populations or correlations between sexual traits and factors associated with increased urbanisation, such as pollution, food availability and risk of predation and parasitism. Here we review the literature on sexual selection and sexual traits in relation to urbanisation or urban-associated conditions. We provide an extensive list of abiotic and biotic factors that can influence processes involved in mating interactions, such as signal production and transmission, mate choice and mating opportunities. We discuss all relevant data through the lens of two, non-mutually exclusive theories on sexual selection, namely indicator and sensory models. Where possible, we indicate whether these models provide the same or different predictions regarding urban-adapted sexual signals and describe different experimental designs that can be useful for the different models as well as to investigate the drivers of sexual selection. We argue that we lack a good understanding of: (i) the factors driving urban sexual selection; (ii) whether reported changes in traits result in adaptive benefits; and (iii) whether these changes reflect a short-term ecological, or long-term evolutionary response. We highlight that urbanisation provides a unique opportunity to study the process and outcomes of sexual selection, but that this requires a highly integrative approach combining experimental and observational work.
Collapse
Affiliation(s)
- Andrew D Cronin
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Judith A H Smit
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Matías I Muñoz
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Armand Poirier
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Peter A Moran
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Paul Jerem
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Wouter Halfwerk
- Department of Ecological Sciences, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
11
|
The Impact of Pb from Ammunition on the Vegetation of a Bird Shooting Range. SUSTAINABILITY 2022. [DOI: 10.3390/su14053124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hunting with lead ammunition represents a source of heavy metal pollution to the environment that can be potentially high at the local scale. Intensive hunting of small game species can concentrate high levels of ammunition discharging in small areas. This type of hunting is a relevant economic resource for private landowners in some regions of Spain, and current legislation allows the use of lead ammunition in these scenarios. It becomes, therefore, highly relevant to study whether this activity may pose concerns to the conservation of the environment in the areas where it takes place. Using a red-legged partridge (Alectoris rufa) shooting range as a study area, we examined the effect of intensive hunting on this species on the vegetation present. We found significantly higher lead levels in the sprouts of plants of shooting areas related to control sites of the same property where partridge shooting does not occur. We found differences in the presence of lead between sprouts of different plant species. In addition, old sprouts of existing vegetation in shooting areas also showed higher lead levels than newly emerged sprouts of the same plants. These results demonstrate the impact of lead ammunition on vegetation in terms of persistence over time and differences between species. Further analyses using chemical and ecotoxicological data are necessary to evaluate the extent of environmental pollution risks. Our results provide new support in favor of the use of alternative ammunition, with particular emphasis on scenarios where hunting activity is intensive.
Collapse
|
12
|
Zhu Y, Wang X, Wang P, Zhu J, He Y, Jia X, Chang F, Wang H, Hu G. Two-dimensional BCN nanosheets self-assembled with hematite nanocrystals for sensitively detecting trace toxic Pb(II) ions in natural water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112745. [PMID: 34481349 DOI: 10.1016/j.ecoenv.2021.112745] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
In the present work, hematite-boron-carbonitride (Fe2O3-BCN) nanosheets were synthesized by a simple hydrothermal reaction and the following high temperature treatment. The morphology, structure and chemical composition of the as-prepared material were carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The Fe2O3-BCN nanosheets were used to modified on the surface of the glassy carbon electrode to fabricate an electrochemical sensor for lead ions (Pb(II)) via differential pulse anodic stripping voltammetry (DPASV). At the same time, the influence of the modification concentration, solution acidity, deposition potential and deposition time on response peak current of Pb(II) at the Fe2O3-BCN-based electrochemical sensor was well investigated. Under the optimized conditions, the electrochemical signal and concentration of Pb(II) show two-stage linear relationship in the range of 0.5 - 40 μg/L and 40 -140 μg/L, with a limit of detection (LOD) of 0.129 μg/L. The Fe2O3-BCN-based electrochemical sensor shows excellent selectivity and anti-interference ability in the anti-interference experiments and actual sample analysis experiments, revealing its broad application in environmental monitoring of Pb(II).
Collapse
Affiliation(s)
- Yelin Zhu
- School of Electronic Communication Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China; College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinzhong Wang
- School of Electronic Communication Technology, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yingnan He
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Xiuxiu Jia
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Huaisheng Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|