1
|
Wang Y, Lv M, Gu S, Hao C, Zhou Y, Chen L, Xu H. Synthesis and Pesticidal Activities of Ester Derivatives of the Labdane Diterpenoid Andrographolide at the C-3 Position Containing the Isoxazoline Fragment and Their Toxicology Study against Tetranychus cinnabarinus Boisduval. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25023-25033. [PMID: 39447173 DOI: 10.1021/acs.jafc.4c07412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Due to the long-term overuse of chemical pesticides, serious resistance and negative problems on human health and the ecological environment have appeared. To develop plant-product-based pesticide candidates, a series of novel andrographolide ester derivatives containing the isoxazoline skeleton were prepared at the C-3 position. Their pesticidal activities were evaluated against three typical pests such as Mythimna separata Walker, Aphis citricola Van der Goot, and Tetranychus cinnabarinus Boisduval. Against M. separata, compounds Ik, IIf, IIg, and IIk showed 1.6-1.8 times insecticidal activity compared to that of andrographolide; against A. citricola, compounds 6, Ih, and IIh possessed 3.7-3.9-fold aphicidal activity compared to that of andrographolide; against T. cinnabarinus, compounds Ib, Ig, and IIk exhibited 7.4-9.1-fold promising acaricidal activity compared to that of andrographolide. It is worth mentioning that effects of IIk on morphological changes of the treated mite cuticle layer structures were observed by the scanning electron microscope imaging method. Compound IIk can be studied as a pesticidal lead for further structural modification.
Collapse
Affiliation(s)
- Yanyan Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Siyan Gu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunyang Hao
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yimeng Zhou
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Chen
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
2
|
Su M, Bao R, Wu Y, Gao B, Xiao P, Li W. Diafenthiuron causes developmental toxicity in zebrafish (Danio rerio). CHEMOSPHERE 2023; 323:138253. [PMID: 36849025 DOI: 10.1016/j.chemosphere.2023.138253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Diafenthiuron, a broad-spectrum insecticide and acaricide used for agricultural crop protection, is highly toxic to nontarget organisms. However, the developmental toxicity of diafenthiuron and its underlying mechanisms are not fully understood. Thus, the purpose of this study was to investigate the developmental toxicity of diafenthiuron in zebrafish. Zebrafish embryos were exposed to diafenthiuron at different concentrations (0.01, 0.1, and 1 μM) from 3 to 120 h post fertilization (hpf). Diafenthiuron exposure significantly shortened the body lengths of zebrafish larvae and significantly decreased superoxide dismutase activity. It also downregulated the spatiotemporal expression of pomc and prl, marker genes involved in pituitary development. Moreover, diafenthiuron exposure downregulated the spatiotemporal expression of liver-specific marker, fabp10a, and inhibited the development of the liver, a detoxification organ. In conclusion, our data provide evidence of the developmental toxicity and hepatotoxicity of diafenthiuron in aquatic organisms, and they are instrumental for further environmental risk assessment of diafenthiuron in aquatic ecosystems.
Collapse
Affiliation(s)
- Menglan Su
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Rongkai Bao
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Yaqing Wu
- Instrumental Analysis Center of Huaqiao University, Xiamen, 361021, PR China
| | - Bo Gao
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China
| | - Peng Xiao
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, PR China.
| | - Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, PR China.
| |
Collapse
|
3
|
Konestabo HS, Birkemoe T, Leinaas HP, van Gestel CAM, Sengupta S, Borgå K. Pesticide effects on the abundance of springtails and mites in field mesocosms at an agricultural site. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1450-1461. [PMID: 36319919 PMCID: PMC9652236 DOI: 10.1007/s10646-022-02599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The use of pesticides to protect crops often affects non-target organisms vital to ecosystem functioning. A functional soil mesofauna is important for decomposition and nutrient cycling processes in agricultural soils, which generally have low biodiversity. To assess pesticide effects on natural soil communities we enclosed intact soil cores in situ in an agricultural field in 5 cm wide mesocosms. We used two types of mesh lids on the mesocosms, allowing or preventing migration of mesofauna. The mesocosms were exposed to the insecticide imidacloprid (0, 0.1, 1, and 10 mg/kg dry soil) and left in the field for 20 days. Overall, regardless of lid type, mesocosm enclosure did not affect springtail or mite abundances during the experiment when compared with undisturbed soil. Imidacloprid exposure reduced the abundance of both surface- and soil-living springtails in a concentration-dependent manner, by 65-90% at the two highest concentrations, and 21-23% at 0.1 mg/kg, a concentration found in some agricultural soils after pesticide application. Surface-living springtails were more affected by imidacloprid exposure than soil-living ones. In contrast, neither predatory nor saprotrophic mites showed imidacloprid-dependent changes in abundance, concurring with previous findings indicating that mites are generally less sensitive to neonicotinoids than other soil organisms. The possibility to migrate did not affect the springtail or mite abundance responses to imidacloprid. We show that under realistic exposure concentrations in the field, soil arthropod community composition and abundance can be substantially altered in an organism-dependent manner, thus affecting the soil community diversity.
Collapse
Affiliation(s)
- Heidi Sjursen Konestabo
- Department of Biosciences, University of Oslo, Oslo, Norway.
- The Science Library, University of Oslo, Oslo, Norway.
| | - Tone Birkemoe
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | | | - Katrine Borgå
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Li JY, Chen YT, Wang QY, Zheng LZ, Fu JW, Shi MZ. Sublethal and Transgenerational Toxicities of Chlorfenapyr on Biological Traits and Enzyme Activities of Paracoccus marginatus (Hemiptera: Pseudococcidae). INSECTS 2022; 13:874. [PMID: 36292822 PMCID: PMC9603968 DOI: 10.3390/insects13100874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Papaya mealybug, Paracoccus marginatus Williams and Granara de Willink (Hemiptera: Pseudococcidae), is an economically important, invasive insect that is now distributed worldwide. Chlorfenapyr has been demonstrated to have a significant control effect on P. marginatus. In order to evaluate the sublethal and transgenerational effects of chlorfenapyr on P. marginatus, the life table data of three consecutive generations were collected and analyzed by the age stage, two-sex life table method, and the enzyme activities were assayed using a spectrophotometer. The results showed that exposure to the insecticide had significant effects on the biological traits of subsequent generations of P. marginatus, and a higher intrinsic rate of increase (r), finite rate of increase (λ), net reproductive rate (R0), and a shorter mean generation time (T) were observed in the chlorfenapyr-treated F1 mealybugs. Enzyme activity assays showed that chlorfenapyr significantly inhibited the activities of catalase (CAT) and peroxidase (POD) while activating the activities of superoxide dismutase (SOD), which suggested that SOD, CAT, and POD may play an important role in the self-defense of P. marginatus against chlorfenapyr. These results conclusively demonstrated that exposure of P. marginatus to sublethal concentrations of chlorfenapyr induced hormetic effects on the F1 generation while having negative effects on the F0 and F3 generations.
Collapse
Affiliation(s)
- Jian-Yu Li
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Engineering Research Center for Green Pest Management, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yan-Ting Chen
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Engineering Research Center for Green Pest Management, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Qiu-Yue Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Engineering Research Center for Green Pest Management, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Li-Zhen Zheng
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Engineering Research Center for Green Pest Management, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Jian-Wei Fu
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
| | - Meng-Zhu Shi
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Engineering Research Center for Green Pest Management, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350001, China
| |
Collapse
|
5
|
Chen L, Pan M, Hu D. An overview on the green synthesis and removal methods of pyridaben. Front Chem 2022; 10:975491. [PMID: 35910743 PMCID: PMC9329628 DOI: 10.3389/fchem.2022.975491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridaben is an acaricide widely used around the world to control phytophagous mites, white flies, aphids, and thrips. It is highly toxic to nontarget organisms such as predatory mites, bees, and fishes. Therefore, the occurrence and removal of pyridaben in food and the environment are worthy of concern. This mini-review focuses on pyridaben residue levels in crops, aquatic systems, and soils, as well as the green synthesis and removal of pyridaben. During the period of 2010–2022, pyridaben was reported in monitoring studies on fruits, vegetables, herbs, bee products, aquatic systems, and soils. Vegetable and agricultural soil samples exhibited the highest detection rates and residue levels. One-pot synthesis offers a green chemistry and sustainable alternative for the synthesis of pyridaben. Among traditional home treatments, peeling is the most effective way to remove pyridaben from crops. Magnetic solid-phase extraction technology has emerged as a powerful tool for the adsorption and separation of pyridaben. Photocatalytic methods using TiO2 as a catalyst were developed as advanced oxidation processes for the degradation of pyridaben in aqueous solutions. Current gaps in pyridaben removal were proposed to provide future development directions for minimizing the exposure risk of pyridaben residues to human and nontarget organisms.
Collapse
|
6
|
He Y, Du G, Xie S, Long X, He X, Zhu Y, Chen B. The Acaricidal Potential of a New Agent GC16 for Tetranychus pueraricola (Acari: Tetranychidae) Based on Developmental Performance and Physiological Enzyme Activity. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:814-825. [PMID: 35512629 DOI: 10.1093/jee/toac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 06/14/2023]
Abstract
The spider mite, Tetranychus pueraricola (Ehara & Gotoh; Acari: Tetranychidae), is a serious pest in agriculture and horticulture. Application of chemical pesticides is the main mode of this pest control. Due to pesticide residues and resistance-induced resurgence of pests, there is a need to discover alternatives for spider mite management. GC16 comprises a mixture of calcium chloride (CaCl2, 45%) and lecithin (55%), which was recently found to have acaricidal properties. We evaluated the sublethal effects of GC16 on T. pueraricola using life table and enzyme [catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), carboxylesterase (CarE), glutathione S-transferases (GST), and Ca2+-ATPase (Ca2+-ATP)] activity assays. The results showed that fecundity of T. pueraricola increased at LC30 but decreased at LC50 of GC16. The intrinsic rate of increase (r) of T. pueraricola decreased under the LC30 and LC50 of GC16. GC16 concentration and exposure time significantly influenced the activities of CAT, POD, CarE, GST, and Ca2+-ATP in adult mites. Twelve hours later after the treatment, GST and Ca2+-ATP activities were significantly inhibited by LC30 but enhanced by LC50. Moreover, the demographic parameter r and enzyme activities were negatively correlated. In sum, sublethal amounts of GC16 had an adverse effect on mites, and there was a trade-off between developmental performance and physiological enzyme activity of mites under GC16 stress, and GC16 showed an acaricidal potential for T. pueraricola. This work provides guidance for the application of GC16 to control T. pueraricola.
Collapse
Affiliation(s)
- Yanyan He
- School of Agriculture, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Guangzu Du
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Shunxia Xie
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xiaoming Long
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Xiahong He
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Youyong Zhu
- School of Agriculture, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Bin Chen
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
7
|
The Insecticidal Efficacy and Physiological Action Mechanism of a Novel Agent GC16 against Tetranychus pueraricola (Acari: Tetranychidae). INSECTS 2022; 13:insects13050433. [PMID: 35621769 PMCID: PMC9146473 DOI: 10.3390/insects13050433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Simple Summary Spider mite is major pest in agriculture and have developed resistance to commonly used pesticides. Therefore, it is urgent to discover new pesticides to control the pest. In order to provide alternatives for its management, we evaluated the effectiveness of a new agent GC16 against the spider mite Tetranychus pueraricola. Then, we preliminarily revealed the its acaricidal mechanism of action based on the damage of cuticle and organelles of mites. We confirmed that GC16 has a good controlling effect on T. pueraricola and it is not harmful to Picromerus lewisi and Harmonia axyridis. Our research provides not only an alternative pesticide for the management of spider mites, but also guidance for the application of GC16 in sustainable agriculture. Abstract Chemical control plays a crucial role in pest management but has to face challenges due to insect resistance. It is important to discover alternatives to traditional pesticides. The spider mite Tetranychus pueraricola (Ehara & Gotoh) (Acari: Tetranychidae) is a major agricultural pest that causes severe damage to many crops. GC16 is a new agent that consists of a mixture of Calcium chloride (CaCl2) and lecithin. To explore the acaricidal effects and mode of action of GC16 against T. pueraricola, bioassays, cryogenic scanning electron microscopy (cryo-SEM) and transmission electron microscopy (TEM) were performed. GC16 had lethal effects on the eggs, larvae, nymphs, and adults of T. pueraricola, caused the mites to dehydrate and inactivate, and inhibited the development of eggs. GC16 displayed contact toxicity rather than stomach toxicity through the synergistic effects of CaCl2 with lecithin. Cryo-SEM analysis revealed that GC16 damaged T. pueraricola by disordering the array of the cuticle layer crest. Mitochondrial abnormalities were detected by TEM in mites treated by GC16. Overall, GC16 had the controlling efficacy on T. pueraricola by cuticle penetration and mitochondria dysfunction and had no effects on Picromerus lewisi and Harmonia axyridis, indicating that GC16 is likely a new eco-friendly acaricide.
Collapse
|
8
|
Lin T, Zeng Z, Chen Y, You Y, Hu J, Yang F, Wei H. Compatibility of six reduced-risk insecticides with Orius strigicollis (Heteroptera: Anthocoridae) predators for controlling Thrips hawaiiensis (Thysanoptera: Thripidae) pests. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112812. [PMID: 34571423 DOI: 10.1016/j.ecoenv.2021.112812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Contact toxicity assessments of six reduced risk insecticides were carried out to compare their selectivity and sensitivity toward the minute pirate bug Orius strigicollis and its prey Thrips hawaiiensis. Additionally, and their potential exposure risk were evaluated for O. strigicollis. The LR50 value of acetamiprid, emamectin benzoate, cyetpyrafen, and indoxacarb to T. hawaiiensis were 0.126, 2.093, 7.486, and 2.264 g a.i. ha-1, respectively, far less than the maximum field recommended rate (MFRR) for each. These four insecticides showed higher selectivity for predator and prey with selectivity ratio values of 37.3, 14.8, 22.1, and 119.3, respectively. However, the LR50 value of acetamiprid and emamectin benzoate were lower than MFRR, and unacceptable (approximately unacceptable for emamectin benzoate) risk to O. strigicollis in in-field, and the opposite results were shown in cyetpyrafen and indoxacarb. Although T. hawaiiensis was more sensitive to abamectin than O. strigicollis, the insecticide had poor selectivity for both test insects. The LR50 value of spirotetramat was more than 3 fold MFRR for T. hawaiiensis and O. strigicollis, showing extremely low contact toxicity and selectivity. In general, acetamiprid, emamectin benzoate, cyetpyrafen, and indoxacarb showed high bioactivity against T. hawaiiensis, but only cyetpyrafen and indoxacarb could be well compatible with O. strigicollis, the combination of two insecticides with O. strigicollis indicated a potential strategy for the efficient and safe control of T. hawaiiensis.
Collapse
Affiliation(s)
- Tao Lin
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China; Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian 350013, PR China
| | - Zhaohua Zeng
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China; Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian 350013, PR China
| | - Yixin Chen
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China; Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian 350013, PR China
| | - Yong You
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China; Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian 350013, PR China
| | - Jinfeng Hu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China; Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian 350013, PR China
| | - Fenghua Yang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China; Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian 350013, PR China
| | - Hui Wei
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, PR China; Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Fujian 350013, PR China.
| |
Collapse
|