1
|
Sahabudin E, Kubo S, Yuzir MAM, Othman N, Nadia Md Akhir F, Suzuki K, Yoneda K, Maeda Y, Suzuki I, Hara H, Iwamoto K. The cadmium tolerance and bioaccumulation mechanism of Tetratostichococcus sp. P1: insight from transcriptomics analysis. Bioengineered 2024; 15:2314888. [PMID: 38375815 DOI: 10.1080/21655979.2024.2314888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Cadmium (Cd) has become a severe issue in relatively low concentration and attracts expert attention due to its toxicity, accumulation, and biomagnification in living organisms. Cd does not have a biological role and causes serious health issues. Therefore, Cd pollutants should be reduced and removed from the environment. Microalgae have great potential for Cd absorption for waste treatment since they are more environmentally friendly than existing treatment methods and have strong metal sorption selectivity. This study evaluated the tolerance and ability of the microalga Tetratostichococcus sp. P1 to remove Cd ions under acidic conditions and reveal mechanisms based on transcriptomics analysis. The results showed that Tetratostichococcus sp. P1 had a high Cd tolerance that survived under the presence of Cd up to 100 µM, and IC50, the half-maximal inhibitory concentration value, was 57.0 μM, calculated from the change in growth rate based on the chlorophyll content. Long-term Cd exposure affected the algal morphology and photosynthetic pigments of the alga. Tetratostichococcus sp. P1 removed Cd with a maximum uptake of 1.55 mg g-1 dry weight. Transcriptomic analysis revealed the upregulation of the expression of genes related to metal binding, such as metallothionein. Group A, Group B transporters and glutathione, were also found upregulated. While the downregulation of the genes were related to photosynthesis, mitochondria electron transport, ABC-2 transporter, polysaccharide metabolic process, and cell division. This research is the first study on heavy metal bioremediation using Tetratostichococcus sp. P1 and provides a new potential microalga strain for heavy metal removal in wastewater.[Figure: see text]Abbreviations:BP: Biological process; bZIP: Basic Leucine Zipper; CC: Cellular component; ccc1: Ca (II)-sensitive cross complementary 1; Cd: Cadmium; CDF: Cation diffusion facilitator; Chl: Chlorophyll; CTR: Cu TRansporter families; DAGs: Directed acyclic graphs; DEGs: Differentially expressed genes; DVR: Divinyl chlorophyllide, an 8-vinyl-reductase; FPN: FerroportinN; FTIR: Fourier transform infrared; FTR: Fe TRansporter; GO: Gene Ontology; IC50: Growth half maximal inhibitory concentration; ICP: Inductively coupled plasma; MF: molecular function; NRAMPs: Natural resistance-associated aacrophage proteins; OD: Optical density; RPKM: Reads Per Kilobase of Exon Per Million Reads Mapped; VIT1: Vacuolar iron transporter 1 families; ZIPs: Zrt-, Irt-like proteins.
Collapse
Affiliation(s)
- Eri Sahabudin
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Shohei Kubo
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Muhamad Ali Muhammad Yuzir
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Nor'azizi Othman
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Fazrena Nadia Md Akhir
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Kengo Suzuki
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Euglena Co. Ltd, Minato‑ku, Japan
- Microalgae Production Control Technology Laboratory, Yokohama, Kanagawa, Japan
| | - Kohei Yoneda
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Maeda
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Iwane Suzuki
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hirofumi Hara
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Koji Iwamoto
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Shi C, Cheng L, Yu Y, Chen S, Dai Y, Yang J, Zhang H, Chen J, Geng N. Multi-omics integration analysis: Tools and applications in environmental toxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124675. [PMID: 39103035 DOI: 10.1016/j.envpol.2024.124675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/08/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Nowadays, traditional single-omics study is not enough to explain the causality between molecular alterations and toxicity endpoints for environmental pollutants. With the development of high-throughput sequencing technology and high-resolution mass spectrometry technology, the integrative analysis of multi-omics has become an efficient strategy to understand holistic biological mechanisms and to uncover the regulation network in specific biological processes. This review summarized sample preparation methods, integration analysis tools and the application of multi-omics integration analyses in environmental toxicology field. Currently, omics methods have been widely applied being as the sensitivity of early biological response, especially for low-dose and long-term exposure to environmental pollutants. Integrative omics can reveal the overall changes of genes, proteins, and/or metabolites in the cells, tissues or organisms, which provide new insights into revealing the overall toxicity effects, screening the toxic targets, and exploring the underlying molecular mechanism of pollutants.
Collapse
Affiliation(s)
- Chengcheng Shi
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Lin Cheng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ying Yu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Shuangshuang Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yubing Dai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiajia Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; College of Materials Science and Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
3
|
Yang F, Kong D, Liu W, Huang D, Wu H, Che X, Pan Z, Li Y. Benzophenone-4 inhibition in marine diatoms: Physiological and molecular perspectives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117021. [PMID: 39265266 DOI: 10.1016/j.ecoenv.2024.117021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Benzophenone-4 (BP-4), a widely utilized organic ultraviolet (UV) filter, is recognized as a pseudo-persistent contaminant in aquatic environments. To elucidate the effects and mechanisms of BP-4 on marine diatoms, an investigation was conducted on the growth rate, photosynthetic pigment content, photosynthetic parameters, antioxidant enzyme activity, malondialdehyde (MDA) levels, cellular structure, and transcriptome profile of the model species, Phaeodactylum tricornutum. The results showed a pronounced inhibition of algal growth upon exposure to BP-4, with a 144 h-EC50 value of 201 mg·L-1. In addition, BP-4 exposure resulted in a significant reduction in biomass, disruption of cell membrane integrity, and increased MDA accumulation, with levels escalating 3.57-fold at 125 mg·L-1 of BP-4. In the BP-4-treated samples, 1556 differentially expressed genes (DEGs) were identified, of which 985 were upregulated and 571 were downregulated. Gene ontology and KEGG pathway enrichment analysis revealed that the carbon fixation and carbon metabolism processes in P. tricornatum were disrupted in response to BP-4 exposure, along with excessive reactive oxygen species (ROS) production. The upregulation of genes associated with photosynthetic pigment (chlorophyll and carotenoids) synthesis, phospholipid synthesis, ribosome biogenesis, and translation-related pathways may be regarded as a component of P. tricornatum's tolerance mechanism towards BP-4. These results provide preliminary insights into the toxicity and tolerance mechanisms of BP-4 on P. tricornatum. They will contribute to a better understanding of the ecotoxicological impacts of BP-4 on the marine ecosystem and provide valuable information for elimination of BP-4 in aquatic environment by bioremediation.
Collapse
Affiliation(s)
- Feifei Yang
- Jiangsu Provincial Key Laboratory of Marine Bioresources and Environment/Marine Biotechnology; Jiangsu Institute of Marine Resources Development; Co-Innovation Center of Jiangsu Marine Bio-industry Technology; College of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Dexin Kong
- Jiangsu Provincial Key Laboratory of Marine Bioresources and Environment/Marine Biotechnology; Jiangsu Institute of Marine Resources Development; Co-Innovation Center of Jiangsu Marine Bio-industry Technology; College of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wenhao Liu
- Jiangsu Provincial Key Laboratory of Marine Bioresources and Environment/Marine Biotechnology; Jiangsu Institute of Marine Resources Development; Co-Innovation Center of Jiangsu Marine Bio-industry Technology; College of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dazhi Huang
- Jiangsu Provincial Key Laboratory of Marine Bioresources and Environment/Marine Biotechnology; Jiangsu Institute of Marine Resources Development; Co-Innovation Center of Jiangsu Marine Bio-industry Technology; College of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hailong Wu
- Jiangsu Provincial Key Laboratory of Marine Bioresources and Environment/Marine Biotechnology; Jiangsu Institute of Marine Resources Development; Co-Innovation Center of Jiangsu Marine Bio-industry Technology; College of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xingkai Che
- Jiangsu Province Engineering Research Center for Marine Bioresources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Zhenyi Pan
- Jiangsu Provincial Key Laboratory of Marine Bioresources and Environment/Marine Biotechnology; Jiangsu Institute of Marine Resources Development; Co-Innovation Center of Jiangsu Marine Bio-industry Technology; College of Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yongfu Li
- Jiangsu Province Engineering Research Center for Marine Bioresources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210098, China.
| |
Collapse
|
4
|
Xu P, Tu X, An Z, Mi W, Wan D, Bi Y, Song G. Cadmium-Induced Physiological Responses, Biosorption and Bioaccumulation in Scenedesmus obliquus. TOXICS 2024; 12:262. [PMID: 38668485 PMCID: PMC11054603 DOI: 10.3390/toxics12040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024]
Abstract
Cadmium ion (Cd2+) is a highly toxic metal in water, even at low concentrations. Microalgae are a promising material for heavy metal remediation. The present study investigated the effects of Cd2+ on growth, photosynthesis, antioxidant enzyme activities, cell morphology, and Cd2+ adsorption and accumulation capacity of the freshwater green alga Scenedesmus obliquus. Experiments were conducted by exposing S. obliquus to varying concentrations of Cd2+ for 96 h, assessing its tolerance and removal capacity towards Cd2+. The results showed that higher concentrations of Cd2+ (>0.5 mg L-1) reduced pigment content, inhibited algal growth and electron transfer in photosynthesis, and led to morphological changes such as mitochondrial disappearance and chloroplast deformation. In this process, S. obliquus counteracted Cd2+ toxicity by enhancing antioxidant enzyme activities, accumulating starch and high-density granules, and secreting extracellular polymeric substances. When the initial Cd2+ concentration was less than or equal to 0.5 mg L-1, S. obliquus was able to efficiently remove over 95% of Cd2+ from the environment through biosorption and bioaccumulation. However, when the initial Cd2+ concentration exceeded 0.5 mg L-1, the removal efficiency decreased slightly to about 70%, with biosorption accounting for more than 60% of this process, emerging as the predominant mechanism for Cd2+ removal. Fourier transform infrared correlation spectroscopy analysis indicated that the carboxyl and amino groups of the cell wall were the key factors in removing Cd2+. In conclusion, S. obliquus has considerable potential for the remediation of aquatic environments with Cd2+, providing algal resources for developing new microalgae-based bioremediation techniques for heavy metals.
Collapse
Affiliation(s)
- Pingping Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Tu
- Geophysical Exploration Brigade of Hubei Geological Bureau, Wuhan 430056, China;
| | - Zhengda An
- College of Life Science, Wuhan University, Wuhan 430072, China;
| | - Wujuan Mi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
| | - Dong Wan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
| | - Gaofei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (P.X.); (W.M.); (D.W.); (Y.B.)
| |
Collapse
|
5
|
Dedman CJ, Barton S, Fournier M, Rickaby REM. The cellular response to ocean warming in Emiliania huxleyi. Front Microbiol 2023; 14:1177349. [PMID: 37256052 PMCID: PMC10225680 DOI: 10.3389/fmicb.2023.1177349] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
Marine phytoplankton contribute substantially to the global flux of carbon from the atmosphere to the deep ocean. Sea surface temperatures will inevitably increase in line with global climate change, altering the performance of marine phytoplankton. Differing sensitivities of photosynthesis and respiration to temperature, will likely shift the strength of the future oceanic carbon sink. To further clarify the molecular mechanisms driving these alterations in phytoplankton function, shotgun proteomic analysis was carried out on the globally-occurring coccolithophore Emiliania huxleyi exposed to moderate- (23°C) and elevated- (28°C) warming. Compared to the control (17°C), growth of E. huxleyi increased under elevated temperatures, with higher rates recorded under moderate- relative to elevated- warming. Proteomic analysis revealed a significant modification of the E. huxleyi cellular proteome as temperatures increased: at lower temperature, ribosomal proteins and photosynthetic machinery appeared abundant, as rates of protein translation and photosynthetic performance are restricted by low temperatures. As temperatures increased, evidence of heat stress was observed in the photosystem, characterized by a relative down-regulation of the Photosystem II oxygen evolving complex and ATP synthase. Acclimation to elevated warming (28°C) revealed a substantial alteration to carbon metabolism. Here, E. huxleyi made use of the glyoxylate cycle and succinate metabolism to optimize carbon use, maintain growth and maximize ATP production in heat-damaged mitochondria, enabling cultures to maintain growth at levels significantly higher than those recorded in the control (17°C). Based on the metabolic changes observed, we can predict that warming may benefit photosynthetic carbon fixation by E. huxleyi in the sub-optimal to optimal thermal range. Past the thermal optima, increasing rates of respiration and costs of repair will likely constrain growth, causing a possible decline in the contribution of this species to the oceanic carbon sink depending on the evolvability of these temperature thresholds.
Collapse
Affiliation(s)
- Craig J. Dedman
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| | - Samuel Barton
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| | - Marjorie Fournier
- Advanced Proteomics Facility, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
6
|
Kolackova M, Janova A, Dobesova M, Zvalova M, Chaloupsky P, Krystofova O, Adam V, Huska D. Role of secondary metabolites in distressed microalgae. ENVIRONMENTAL RESEARCH 2023; 224:115392. [PMID: 36746204 DOI: 10.1016/j.envres.2023.115392] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Proficient photosynthetic microalgae/cyanobacteria produce a remarkable amount of various biomolecules. Secondary metabolites (SM) represent high value products for global biotrend application. Production improvement can be achieved by nutritional, environmental, and physiological stress as a first line tools for their stimulation. In recent decade, an increasing interest in algal stress biology and omics techniques have deepened knowledge in this area. However, deep understanding and connection of specific stress elucidator are missing. Hence, the present review summarizes recent evidence with an emphasis on the carotenoids, phenolic, and less-discussed compounds (glycerol, proline, mycosporins-like amino acids). Even when they are synthesized at very low concentrations, it highlights the need to expand knowledge in this area using genome-editing tools and omics approaches.
Collapse
Affiliation(s)
- Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Anna Janova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Monika Zvalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Zhang B, Tang Y, Yu F, Peng Z, Yao S, Deng X, Long H, Wang X, Huang K. Translatomics and physiological analyses of the detoxification mechanism of green alga Chlamydomonas reinhardtii to cadmium toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130990. [PMID: 36860060 DOI: 10.1016/j.jhazmat.2023.130990] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) is one of the most toxic pollutants found in aquatic ecosystems. Although gene expression in algae exposed to Cd has been studied at the transcriptional level, little is known about Cd impacts at the translational level. Ribosome profiling is a novel translatomics method that can directly monitor RNA translation in vivo. Here, we analyzed the translatome of the green alga Chlamydomonas reinhardtii following treatment with Cd to identify the cellular and physiological responses to Cd stress. Interestingly, we found that the cell morphology and cell wall structure were altered, and starch and high-electron-density particles accumulated in the cytoplasm. Several ATP-binding cassette transporters that responded to Cd exposure were identified. Redox homeostasis was adjusted to adapt to Cd toxicity, and GDP-L-galactose phosphorylase (VTC2), glutathione peroxidase (GPX5), and ascorbate were found to play important roles in maintaining reactive oxygen species homeostasis. Moreover, we found that the key enzyme of flavonoid metabolism, i.e., hydroxyisoflavone reductase (IFR1), is also involved in the detoxification of Cd. Thus, in this study, translatome and physiological analyses provided a complete picture of the molecular mechanisms of green algae cell responses to Cd.
Collapse
Affiliation(s)
- Baolong Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Yuxin Tang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Fei Yu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Zhao Peng
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Sheng Yao
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Xun Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China.
| |
Collapse
|
8
|
Transcriptomic and Physiological Responses of Chlorella pyrenoidosa during Exposure to 17α-Ethinylestradiol. Int J Mol Sci 2022; 23:ijms23073583. [PMID: 35408944 PMCID: PMC8999151 DOI: 10.3390/ijms23073583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
17α-ethinylestradiol (17α-EE2) is frequently detected in water bodies due to its use being widespread in the treatment of prostate and breast cancer and in the control of alopecia, posing a threat to humans and aquatic organisms. However, studies on its toxicity to Chlorella pyrenoidosa have been limited to date. This study investigated the effects of 17α-EE2 on the growth, photosynthetic activity, and antioxidant system of C. pyrenoidosa and revealed related molecular changes using transcriptomic analysis. The cell density of algae was inhibited in the presence of 17α-EE2, and cell morphology was also altered. Photosynthetics were damaged, while reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) content increased. Further transcriptomic analysis revealed that the pathways of photosynthesis and DNA replication were affected at three concentrations of 17α-EE2, but several specific pathways exhibited various behaviors at different concentrations. Significant changes in differentially expressed genes and their enrichment pathways showed that the low-concentration group was predominantly impaired in photosynthesis, while the higher-concentration groups were biased towards oxidative and DNA damage. This study provides a better understanding of the cellular and molecular variations of microalgae under 17α-EE2 exposure, contributing to the environmental risk assessment of such hazardous pollutants on aquatic organisms.
Collapse
|
9
|
Nowicka B. Heavy metal-induced stress in eukaryotic algae-mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16860-16911. [PMID: 35006558 PMCID: PMC8873139 DOI: 10.1007/s11356-021-18419-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 04/15/2023]
Abstract
Heavy metals is a collective term describing metals and metalloids with a density higher than 5 g/cm3. Some of them are essential micronutrients; others do not play a positive role in living organisms. Increased anthropogenic emissions of heavy metal ions pose a serious threat to water and land ecosystems. The mechanism of heavy metal toxicity predominantly depends on (1) their high affinity to thiol groups, (2) spatial similarity to biochemical functional groups, (3) competition with essential metal cations, (4) and induction of oxidative stress. The antioxidant response is therefore crucial for providing tolerance to heavy metal-induced stress. This review aims to summarize the knowledge of heavy metal toxicity, oxidative stress and antioxidant response in eukaryotic algae. Types of ROS, their formation sites in photosynthetic cells, and the damage they cause to the cellular components are described at the beginning. Furthermore, heavy metals are characterized in more detail, including their chemical properties, roles they play in living cells, sources of contamination, biochemical mechanisms of toxicity, and stress symptoms. The following subchapters contain the description of low-molecular-weight antioxidants and ROS-detoxifying enzymes, their properties, cellular localization, and the occurrence in algae belonging to different clades, as well as the summary of the results of the experiments concerning antioxidant response in heavy metal-treated eukaryotic algae. Other mechanisms providing tolerance to metal ions are briefly outlined at the end.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
10
|
Zheng JL, Wang D, Chen X, Song HZ, Xiang LP, Yu HX, Peng LB, Zhu QL. Nutritional-status dependent effects of microplastics on activity and expression of alkaline phosphatase and alpha-amylase in Brachionus rotundiformis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150213. [PMID: 34571232 DOI: 10.1016/j.scitotenv.2021.150213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Tissue-nonspecific alkaline phosphatase (ALPL) and alpha-amylase (AMY) are essential in the immune and digestive systems, respectively. Microplastics (MPs) pose a risk to zooplankton which may be in a state of feeding, starvation, or subsequent refeeding. However, molecular characterization of both enzymes and the regulated mechanisms affected by nutritional statuses and MPs remain unclear in zooplankton. In the present study, four full-length genes encoding ALPL and two genes encoding AMY were cloned and characterized from an isolated marine rotifer, Brachionus rotundiformis, including alplA, alplB, alplC, alplD, amy2a, and amy2al. AMY activity and expression of amy2a and amy2al were reduced by starvation and recovered after refeeding compared with feeding. ALPL activity remained unchanged among different statuses, while alplA, alplB and alplD were down-regulated by starvation and refeeding compared with feeding. ALPL activity was not affected by exposure to 10, 100 and 1000 μg/L MPs in rotifers subjected to feeding, starvation and refeeding, whereas AMY activity was significantly enhanced by 1000 μg/L MPs in rotifers subjected to refeeding. Gene expression of the tested genes, except amy2a, was significantly responsive to MPs, especially in the feeding rotifers, depending on MPs concentrations and nutritional statuses. Two-way ANOVA confirmed that these changes were strongly associated with the interaction between MPs concentrations and nutritional statuses. The present study is the first to demonstrate a nutritional status-dependent impact of MPs on immune and digestive responses, and provides more sensitive molecular biomarkers for assessing MPs toxicity using the species as model animals.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Dan Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao Chen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hong-Zi Song
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Li-Ping Xiang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Han-Xiu Yu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Li-Bin Peng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qing-Ling Zhu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
11
|
Hu W, Zhu QL, Zheng JL, Wen ZY. Cadmium induced oxidative stress, endoplasmic reticulum (ER) stress and apoptosis with compensative responses towards the up-regulation of ribosome, protein processing in the ER, and protein export pathways in the liver of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106023. [PMID: 34798301 DOI: 10.1016/j.aquatox.2021.106023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The present study identified that exposure to 5, 10, and 20 µg/L Cd for 48 days reduced growth, increased Cd accumulation and levels of reactive oxygen species (ROS) and lipid peroxidation, and induced ER stress and cellular apoptosis in the liver in a dose-dependent manner. However, the survival rate was not affected by Cd. The increased production of ROS might result from reduced catalase (CAT) and copper/zinc-superoxide dismutase (Cu/Zn-SOD) activities, which might trigger ER stress pathways and subsequently induce apoptotic responses, ultimately leading to growth inhibition. Transcriptomic analyses indicated that the differentially expressed genes (DEGs) involved in metabolic pathways were significantly enriched and dysregulated by Cd, suggesting that metabolic disturbances may contribute to Cd toxicity. However, there were increases in glutathione peroxidase (GPX) activity, protein levels of metallothioneins (MTs) and heat shock protein 70 (HSP70), and mRNA levels of sod1, cat, gpx, mt2, and hsp70. Furthermore, DEGs related to ribosome, protein processing in the ER, and protein export pathways were significantly enriched and up-regulated by Cd. These increases may be compensatory responses following oxidative stress, ER stress, and apoptosis to resist negative effects. Taken together, we demonstrated that environmentally relevant levels of Cd induced adaptive responses with compensatory mechanisms in fish, which may help to maintain fish survival at the cost of growth.
Collapse
Affiliation(s)
- Wei Hu
- School of Animal Science, Yangtze University, Jingzhou, 424020, PR China
| | - Qing-Ling Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Zheng-Yong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, China
| |
Collapse
|