1
|
Liu S, Yang J, Zhang N, Si H. Genome-wide analysis of non-coding RNA reveals the role of a novel miR319c for tuber dormancy release process in potato. HORTICULTURE RESEARCH 2025; 12:uhae303. [PMID: 39949878 PMCID: PMC11822407 DOI: 10.1093/hr/uhae303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/21/2024] [Indexed: 02/16/2025]
Abstract
Tuber dormancy and sprouting are significant for potato cultivation, storage, and processing. Although the substantial role of microRNAs (miRNAs) in some biological processes has been recognized, the critical role of miRNA in breaking potato tuber dormancy is not well understood to date. In this investigation, we expand research on miRNA-mediated gene regulation in tuber dormancy release. In this work, 204 known and 192 novel miRNAs were identified. One hundred thirty-six differentially expressed miRNAs (DE-miRNAs) were also screened out, of which 56 DE-miRNAs were regulated by temperature during tuber dormancy release. Additionally, degradome sequencing revealed that 821 target genes for 202 miRNAs were discovered. Among them, 63 target genes and 48 miRNAs were predicted to be involved in plant hormone signaling pathways. This study used degradome sequencing, tobacco cotransformation system, and β-glucuronidase (GUS) staining technology to confirm that stu-miR319c can target StTCP26 and StTCP27 and effectively suppress their expression. The transgenic approach exhibited that stu-miR319c overexpressed tubers sprouted in advance, while silent expression of stu-miR319c showed delayed sprouting. Treatment of wild-type tubers with exogenous MeJA revealed that 1 mg/L MeJA significantly broke dormancy and enhanced potato sprouting ability. Furthermore, transgenic tubers revealed variance in jasmonic acid (JA) content and relative expression of genes associated with the JA synthesis pathway, including StAOC, StLOX2, and StLOX4, suggesting that the miR319c may participate in the JA pathway to regulate tuber dormancy release. In summary, our research offers evidence that miRNA regulates potato dormancy release and supports the idea that stu-miR319c is a unique epigenetic regulator for dormancy-sprouting transition in potatoes.
Collapse
Affiliation(s)
- Shengyan Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
- College of Agronomy, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Yingmencun No.1, Anning District, Lanzhou 730070, China
| |
Collapse
|
2
|
Han M, Chen Z, Sun G, Feng Y, Guo Y, Bai S, Yan X. Nano-Fe 3O 4: Enhancing the tolerance of Elymus nutans to Cd stress through regulating programmed cell death. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124711. [PMID: 39128602 DOI: 10.1016/j.envpol.2024.124711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Cadmium (Cd) poses a significant threat to plant growth and the environment. Nano-Fe3O4 is effective in alleviating Cd stress in plants. Elymus nutans Griseb. is an important fodder crop on the Qinghai-Tibetan Plateau (QTP). However, the potential mechanism by which nano-Fe3O4 alleviates Cd stress in E. nutans is not well understood. E. nutans were subjected to single Cd, single nano-Fe3O4, and co-treatment with nano-Fe3O4 and Cd, and the effects on morphology, Cd uptake, antioxidant enzyme activity, reactive oxygen species (ROS) levels and programmed cell death (PCD) were studied to clarify the regulatory mechanism of nano-Fe3O4. The results showed that Cd stress significantly decreased the germination percentage and biomass of E. nutans. The photosynthetic pigment content decreased significantly under Cd stress. Cd stress also caused oxidative stress and lipid peroxidation, accumulation of excessive ROS, resulting in PCD, but the effect of nano-Fe3O4 was different. Seed germination, seedling growth, and physiological processes were analyzed to elucidate the regulatory role of nano-Fe3O4 nanoparticles in promoting photosynthesis, reducing Cd accumulation, scavenging ROS, and regulating PCD, to promote seed germination and seedling growth in E. nutans. This report provides a scientific basis for improving the tolerance of Elymus to Cd stress by using nano-Fe3O4.
Collapse
Affiliation(s)
- Mengli Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Genlou Sun
- Department of Biology, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Yuxi Feng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuxia Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shiqie Bai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Yu Y, Alseekh S, Zhu Z, Zhou K, Fernie AR. Multiomics and biotechnologies for understanding and influencing cadmium accumulation and stress response in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2641-2659. [PMID: 38817148 PMCID: PMC11536459 DOI: 10.1111/pbi.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals faced by plants and, additionally, via the food chain, threatens human health. It is principally dispersed through agro-ecosystems via anthropogenic activities and geogenic sources. Given its high mobility and persistence, Cd, although not required, can be readily assimilated by plants thereby posing a threat to plant growth and productivity as well as animal and human health. Thus, breeding crop plants in which the edible parts contain low to zero Cd as safe food stuffs and harvesting shoots of high Cd-containing plants as a route for decontaminating soils are vital strategies to cope with this problem. Recently, multiomics approaches have been employed to considerably enhance our understanding of the mechanisms underlying (i) Cd toxicity, (ii) Cd accumulation, (iii) Cd detoxification and (iv) Cd acquisition tolerance in plants. This information can be deployed in the development of the biotechnological tools for developing plants with modulated Cd tolerance and detoxification to safeguard cellular and genetic integrity as well as to minimize food chain contamination. The aim of this review is to provide a current update about the mechanisms involved in Cd uptake by plants and the recent developments in the area of multiomics approach in terms of Cd stress responses, as well as in the development of Cd tolerant and low Cd accumulating crops.
Collapse
Affiliation(s)
- Yan Yu
- School of AgronomyAnhui Agricultural UniversityHefeiChina
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Saleh Alseekh
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Zonghe Zhu
- School of AgronomyAnhui Agricultural UniversityHefeiChina
| | - Kejin Zhou
- School of AgronomyAnhui Agricultural UniversityHefeiChina
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| |
Collapse
|
4
|
Jin J, Yang L, Fan D, Li L, Hao Q. Integration analysis of miRNA-mRNA pairs between two contrasting genotypes reveals the molecular mechanism of jujube (Ziziphus jujuba Mill.) response to high-temperature stress. BMC PLANT BIOLOGY 2024; 24:612. [PMID: 38937704 PMCID: PMC11209981 DOI: 10.1186/s12870-024-05304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
With global warming, high temperature (HT) has become one of the most common abiotic stresses resulting in significant crop yield losses, especially for jujube (Ziziphus jujuba Mill.), an important temperate economic crop cultivated worldwide. This study aims to explore the coping mechanism of jujube to HT stress at the transcriptional and post-transcriptional levels, including identifying differentially expressed miRNAs and mRNAs as well as elucidating the critical pathways involved. High-throughput sequencing analyses of miRNA and mRNA were performed on jujube leaves, which were collected from "Fucumi" (heat-tolerant) and "Junzao" (heat-sensitive) cultivars subjected to HT stress (42 °C) for 0, 1, 3, 5, and 7 days, respectively. The results showed that 45 known miRNAs, 482 novel miRNAs, and 13,884 differentially expressed mRNAs (DEMs) were identified. Among them, integrated analysis of miRNA target genes prediction and mRNA-seq obtained 1306 differentially expressed miRNAs-mRNAs pairs, including 484, 769, and 865 DEMIs-DEMs pairs discovered in "Fucuimi", "Junzao" and two genotypes comparative groups, respectively. Furthermore, functional enrichment analysis of 1306 DEMs revealed that plant-pathogen interaction, starch and sucrose metabolism, spliceosome, and plant hormone signal transduction were crucial pathways in jujube leaves response to HT stress. The constructed miRNA-mRNA network, composed of 20 DEMIs and 33 DEMs, displayed significant differently expressions between these two genotypes. This study further proved the regulatory role of miRNAs in the response to HT stress in plants and will provide a theoretical foundation for the innovation and cultivation of heat-tolerant varieties.
Collapse
Affiliation(s)
- Juan Jin
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi, Xinjiang, 830091, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, Xinjiang, 830091, China
| | - Lei Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi, Xinjiang, 830091, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, Xinjiang, 830091, China
| | - Dingyu Fan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi, Xinjiang, 830091, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, Xinjiang, 830091, China
| | - Lili Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi, Xinjiang, 830091, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, Xinjiang, 830091, China
| | - Qing Hao
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China.
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi, Xinjiang, 830091, China.
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, Xinjiang, 830091, China.
| |
Collapse
|
5
|
Hao XH, Liu KX, Zhang MY. Effect of exogenous γ-aminobutyric acid on physiological property, antioxidant activity, and cadmium uptake of quinoa seedlings under cadmium stress. Biosci Rep 2024; 44:BSR20240215. [PMID: 38828664 PMCID: PMC11208129 DOI: 10.1042/bsr20240215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Increasing cadmium (Cd) pollution has negative effects on quinoa growth and production. Gamma-aminobutyric acid (GABA) confers plants with stress resistance to heavy metals; however, the mechanism remains unclear. We explored the effects of exogenous GABA on the physiological characteristics, antioxidant capacity, and Cd accumulation of quinoa seedlings under Cd stress using hydroponic experiments. Partial least-squares regression was used to identify key physical and chemical indices of seedlings affecting Cd accumulation. Compared with those of the CK group, exposure to 10 and 25 µmol·L-1 Cd significantly reduced the photosynthetic pigment contents, photosynthesis, and biomass accumulation of quinoa seedlings; resulted in shorter and thicker roots; decreased the length of the lateral roots; decreased the activities of superoxide dismutase (SOD) and peroxide (POD); and increased H2O2 and malondialdehyde (MDA) contents. Exogenous GABA reduced the Cd content in the stem/leaves and roots of quinoa seedlings under Cd stress by 13.22-21.63% and 7.92-28.32%, decreased Cd accumulation by 5.37-6.71% and 1.91-4.09%, decreased the H2O2 content by 38.21-47.46% and 45.81-55.73%, and decreased the MDA content by 37.65-48.12% and 29.87-32.51%, respectively. GABA addition increased the SOD and POD activities in the roots by 2.78-5.61% and 13.81-18.33%, respectively, under Cd stress. Thus, exogenous GABA can reduce the content and accumulation of Cd in quinoa seedlings by improving the photosynthetic characteristics and antioxidant enzyme activity and reducing the degree of lipid peroxidation in the cell membrane to alleviate the toxic effect of Cd stress on seedling growth.
Collapse
Affiliation(s)
- Xiao Hua Hao
- Department of Biology, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Ke Xin Liu
- Department of Biology, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Meng Yuan Zhang
- Department of Biology, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| |
Collapse
|
6
|
Zhang C, Wang D, Li Y, Wang Z, Wu Z, Zhang Q, Jia H, Dong X, Qi L, Shi J, Shang Z. Gibberellin Positively Regulates Tomato Resistance to Tomato Yellow Leaf Curl Virus (TYLCV). PLANTS (BASEL, SWITZERLAND) 2024; 13:1277. [PMID: 38732492 PMCID: PMC11085062 DOI: 10.3390/plants13091277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a prominent viral pathogen that adversely affects tomato plants. Effective strategies for mitigating the impact of TYLCV include isolating tomato plants from the whitefly, which is the vector of the virus, and utilizing transgenic lines that are resistant to the virus. In our preliminary investigations, we observed that the use of growth retardants increased the rate of TYLCV infection and intensified the damage to the tomato plants, suggesting a potential involvement of gibberellic acid (GA) in the conferring of resistance to TYLCV. In this study, we employed an infectious clone of TYLCV to inoculate tomato plants, which resulted in leaf curling and growth inhibition. Remarkably, this inoculation also led to the accumulation of GA3 and several other phytohormones. Subsequent treatment with GA3 effectively alleviated the TYLCV-induced leaf curling and growth inhibition, reduced TYLCV abundance in the leaves, enhanced the activity of antioxidant enzymes, and lowered the reactive oxygen species (ROS) levels in the leaves. Conversely, the treatment with PP333 exacerbated TYLCV-induced leaf curling and growth suppression, increased TYLCV abundance, decreased antioxidant enzyme activity, and elevated ROS levels in the leaves. The analysis of the gene expression profiles revealed that GA3 up-regulated the genes associated with disease resistance, such as WRKYs, NACs, MYBs, Cyt P450s, and ERFs, while it down-regulated the DELLA protein, a key agent in GA signaling. In contrast, PP333 induced gene expression changes that were the opposite of those caused by the GA3 treatment. These findings suggest that GA plays an essential role in the tomato's defense response against TYLCV and acts as a positive regulator of ROS scavenging and the expression of resistance-related genes.
Collapse
Affiliation(s)
- Chenwei Zhang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Modern Agricultural Science and Technology Laboratory, Shijiazhuang University, Shijiazhuang 050035, China
| | - Dandan Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Yan Li
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Zifan Wang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Zhiming Wu
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050031, China;
| | - Qingyin Zhang
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Hongwei Jia
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
- College of Agricultural and Forestry Technology, Hebei North University, Zhangjiakou 075000, China;
| | - Xiaoxu Dong
- College of Agricultural and Forestry Technology, Hebei North University, Zhangjiakou 075000, China;
| | - Lianfen Qi
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Jianhua Shi
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, China; (C.Z.); (D.W.); (Y.L.); (Z.W.); (Q.Z.); (H.J.); (L.Q.)
| | - Zhonglin Shang
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
7
|
Yang X, Chen Y, Liu W, Huang T, Yang Y, Mao Y, Meng Y. Combined transcriptomics and metabolomics to analyse the response of Cuminum cyminum L. under Pb stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171497. [PMID: 38453091 DOI: 10.1016/j.scitotenv.2024.171497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Lead (Pb) can disrupt plant gene expression, modify metabolite contents, and influence the growth of plants. Cuminum cyminum L. is highly adaptable to adversity, but molecular mechanism by which it responds to Pb stress is unknown. For this study, transcriptomic and metabolomic sequencing was performed on root tissues of C. cyminum under Pb stress. Our results showed that high Pb stress increased the activity of peroxidase (POD), the contents of malondialdehyde (MDA) and proline by 80.03 %, 174.46 % and 71.24 %, respectively. Meanwhile, Pb stress decreased the activities of superoxide dismutase (SOD) and catalase (CAT) as well as contents of soluble sugars and GSH, which thus affected the growth of C. cyminum. In addition, Pb stress influenced the accumulation and transport of Pb in C. cyminum. Metabolomic results showed that Pb stress affected eight metabolic pathways involving 108 differentially expressed metabolites, primarily amino acids, organic acids, and carbohydrates. The differentially expressed genes identified through transcriptome analysis were mainly involved the oxidation reductase activity, transmembrane transport, phytohormone signaling, and MAPK signaling pathway. The results of this study will help to understand the molecular mechanisms of C. cyminum response to Pb stress, and provide a basis for screening seeds with strong resistance to heavy metals.
Collapse
Affiliation(s)
- Xinlong Yang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China
| | - Yinguang Chen
- School of Environment Science and Engineering, Tongji University, Shanghai 200092, China
| | - Weiguo Liu
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China.
| | - Tingwen Huang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China
| | - Yang Yang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China
| | - Yuqing Mao
- Wuwei Academy of Agricultural Sciences, Wuwei 733000, China
| | - Yao Meng
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China; Key Laboratory of Oasis Ecology of Education Ministry, Urumqi 830017, China
| |
Collapse
|
8
|
Wang K, Li S, Yang Z, Chen C, Fu Y, Du H, Sun H, Li J, Zhao Q, Du C. L-type lectin receptor-like kinase OsCORK1 as an important negative regulator confers copper stress tolerance in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132214. [PMID: 37544174 DOI: 10.1016/j.jhazmat.2023.132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Copper (Cu) is vital for plant growth but becomes toxic in excess, posing potential threats to human health. Although receptor-like kinases (RLKs) have been studied in plant response to abiotic stresses, their roles in Cu stress response remain poorly understood. Therefore, we aimed to evaluate Cu toxicity effects on rice and elucidate its potential molecular mechanisms. Specifically, rice lectin-type RLK OsCORK1 (Copper-response receptor-like kinase 1) function in Cu stress response was investigated. RNA sequencing and expression assays revealed that OsCORK1 is mainly expressed in roots and leaves, and its expression was significantly induced by Cu stress time- and dose-dependently. Kinase activity assays demonstrated OsCORK1 as a Mn2+-preferred functional kinase. Genetically, OsCORK1 gene-edited mutants exhibited increased tolerance to Cu stress and reduced Cu accumulation compared to the wild type (WT). Conversely, OsCORK1 overexpression compromised the Cu stress tolerance observed in OsCORK1 gene-edited mutants. OsCORK1 gene-edited mutants slightly damaged the root tips compared to the WT under Cu stress. Furthermore, OsCORK1 was demonstrated to modulate Cu stress tolerance by mainly altering cell wall components, particularly lignin, in rice. Overall, OsCORK1 is an important negative regulator of Cu stress tolerance, providing a potential gene target to reduce Cu pollution in rice production.
Collapse
Affiliation(s)
- Ke Wang
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Shen Li
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhaoyan Yang
- Office of Information Management, Henan Agricultural University, Zhengzhou 450046, China
| | - Cong Chen
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Yihan Fu
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Haitao Du
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongzheng Sun
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Junzhou Li
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Quanzhi Zhao
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Rice Industrial Technology Research Institute, Guizhou University, Guiyang 550025, China
| | - Changqing Du
- Key Laboratory of Henan Rice Biology, Collaborative Innovation Center of Henan Grain Crops, Post-doctoral station in Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
9
|
Riyazuddin R, Singh K, Iqbal N, Labhane N, Ramteke P, Singh VP, Gupta R. Unveiling the biosynthesis, mechanisms, and impacts of miRNAs in drought stress resilience in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107978. [PMID: 37660607 DOI: 10.1016/j.plaphy.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Drought stress is one of the most serious threats to sustainable agriculture and is predicted to be further intensified in the coming decades. Therefore, understanding the mechanism of drought stress tolerance and the development of drought-resilient crops are the major goals at present. In recent years, noncoding microRNAs (miRNAs) have emerged as key regulators of gene expressions under drought stress conditions and are turning out to be the potential candidates that can be targeted to develop drought-resilient crops in the future. miRNAs are known to target and decrease the expression of various genes to govern the drought stress response in plants. In addition, emerging evidence also suggests a regulatory role of long non-coding RNAs (lncRNAs) in the regulation of miRNAs and the expression of their target genes by a process referred as miRNA sponging. In this review, we present the regulatory roles of miRNAs in the modulation of drought-responsive genes along with discussing their biosynthesis and action mechanisms. Additionally, the interactive roles of miRNAs with phytohormone signaling components have also been highlighted to present the global view of miRNA functioning under drought-stress conditions.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary.
| | - Kalpita Singh
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary; Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462, Martonvásár, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Nitin Labhane
- Department of Botany, Bhavan's College Andheri West, Mumbai, 400058, India.
| | - Pramod Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Nagpur, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Ravi Gupta
- College of General Education, Kookmin University, 02707, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Panchal A, Maurya J, Seni S, Singh RK, Prasad M. An insight into the roles of regulatory ncRNAs in plants: An abiotic stress and developmental perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107823. [PMID: 37327647 DOI: 10.1016/j.plaphy.2023.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/29/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023]
Abstract
Different environmental cues lead to changes in physiology, biochemistry and molecular status of plant's growth. Till date, various genes have been accounted for their role in regulating plant development and response to abiotic stress. Excluding genes that code for a functional protein in a cell, a large chunk of the eukaryotic transcriptome consists of non-coding RNAs (ncRNAs) which lack protein coding capacity but are still functional. Recent advancements in Next Generation Sequencing (NGS) technology have led to the unearthing of different types of small and large non-coding RNAs in plants. Non-coding RNAs are broadly categorised into housekeeping ncRNAs and regulatory ncRNAs which work at transcriptional, post-transcriptional and epigenetic levels. Diverse ncRNAs play different regulatory roles in nearly all biological processes including growth, development and response to changing environments. This response can be perceived and counteracted by plants using diverse evolutionarily conserved ncRNAs like miRNAs, siRNAs and lncRNAs to participate in complex molecular regimes by activating gene-ncRNA-mRNA regulatory modules to perform the downstream function. Here, we review the current understanding with a focus on recent advancements in the functional studies of the regulatory ncRNAs at the nexus of abiotic stresses and development. Also, the potential roles of ncRNAs in imparting abiotic stress tolerance and yield improvement in crop plants are also discussed with their future prospects.
Collapse
Affiliation(s)
- Anurag Panchal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Jyoti Maurya
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Sushmita Seni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
11
|
Zhang J, Diao F, Hao B, Xu L, Jia B, Hou Y, Ding S, Guo W. Multiomics reveals Claroideoglomus etunicatum regulates plant hormone signal transduction, photosynthesis and La compartmentalization in maize to promote growth under La stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115128. [PMID: 37315361 DOI: 10.1016/j.ecoenv.2023.115128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Rare earth elements (REEs) have been widely used in traditional and high-tech fields, and high doses of REEs are considered a risk to the ecosystem. Although the influence of arbuscular mycorrhizal fungi (AMF) in promoting host resistance to heavy metal (HM) stress has been well documented, the molecular mechanism by which AMF symbiosis enhances plant tolerance to REEs is still unclear. A pot experiment was conducted to investigate the molecular mechanism by which the AMF Claroideoglomus etunicatum promotes maize (Zea mays) seedling tolerance to lanthanum (La) stress (100 mg·kg-1 La). C. etunicatum symbiosis significantly improved maize seedling growth, P and La uptake and photosynthesis. Transcriptome, proteome, and metabolome analyses performed alone and together revealed that differentially expressed genes (DEGs) related to auxin /indole-3-acetic acid (AUX/IAA) and the DEGs and differentially expressed proteins (DEPs) related to ATP-binding cassette (ABC) transporters, natural resistance-associated macrophage proteins (Nramp6), vacuoles and vesicles were upregulated. In contrast, photosynthesis-related DEGs and DEPs were downregulated, and 1-phosphatidyl-1D-myo-inositol 3-phosphate (PI(3)P) was more abundant under C. etunicatum symbiosis. C. etunicatum symbiosis can promote plant growth by increasing P uptake, regulating plant hormone signal transduction, photosynthesis and glycerophospholipid metabolism pathways and enhancing La transport and compartmentalization in vacuoles and vesicles. The results provide new insights into the promotion of plant REE tolerance by AMF symbiosis and the possibility of utilizing AMF-maize interactions in REE phytoremediation and recycling.
Collapse
Affiliation(s)
- Jingxia Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Chemistry, School of Chemistry and Environment, Inner Mongolia Normal University, Hohhot 010021, China
| | - Fengwei Diao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lei Xu
- Service Support Center, Ecology and Environmental Department of Inner Mongolia Autonomous Region, Hohhot 010010, China
| | - Bingbing Jia
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yazhou Hou
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Shengli Ding
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
12
|
Adhikari A, Roy D, Adhikari S, Saha S, Ghosh PK, Shaw AK, Hossain Z. microRNAomic profiling of maize root reveals multifaceted mechanisms to cope with Cr (VI) stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107693. [PMID: 37060869 DOI: 10.1016/j.plaphy.2023.107693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 05/07/2023]
Abstract
Chromium (Cr) contamination of soil and water poses serious threats to agricultural crop production. MicroRNAs (miRNAs) are conserved, non-coding small RNAs that play pivotal roles in plant growth, development and stress responses through fine-tuning of post-transcriptional gene expression. To better understand the molecular circuit of Cr-responsive miRNAs, two sRNA libraries were prepared from control and Cr (VI) [100 ppm] exposed maize roots. Using deep sequencing, we identified 80 known (1 up and 79 down) and 18 downregulated novel miRNAs from Cr (VI) challenged roots. Gene ontology (GO) analysis reveals that predicted target genes of Cr (VI) responsive miRNAs are potentially involved in diverse cellular and biological processes including plant growth and development (miR159c, miR164d, miR319b-3p and zma_25.145), redox homeostasis (miR528-5p, miR396a-5p and zma_9.132), heavy metal uptake and detoxification (miR159f-5p, 164e-5p, miR408a, miR444f and zma_2.127), signal transduction (miR159f, miR160a-5p, miR393a-5p, miR408-5p and zma_43.158), cell signalling (miR156j, 159c-5p, miR166c-5p and miR398b). Higher accumulation of Cr in maize roots might be due to upregulation of ABC transporter G family member 29 targeted by miR444f. Instead of isolated increase in SOD expression, significant decline in GSH:GSSH ratio and histochemical staining strongly suggest Cr (VI) stress mediated disruption of ROS scavenging machinery thus unbalancing normal cellular homeostasis. Moreover, miR159c-mediated enhanced expression of GAMYB might be a reason for impaired root growth under Cr (VI) stress. In a nutshell, the present microRNAomic study sheds light on the miRNA-target gene regulatory network involved in adaptive responses of maize seedlings to Cr (VI) stress.
Collapse
Affiliation(s)
- Ayan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Doyel Roy
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sinchan Adhikari
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Shrabani Saha
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Pratyush Kanti Ghosh
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arun Kumar Shaw
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Zahed Hossain
- Plant Stress and Molecular Biology Laboratory, Department of Botany, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
13
|
Liu Z, Wu X, Hou L, Ji S, Zhang Y, Fan W, Li T, Zhang L, Liu P, Yang L. Effects of cadmium on transcription, physiology, and ultrastructure of two tobacco cultivars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161751. [PMID: 36690104 DOI: 10.1016/j.scitotenv.2023.161751] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metal pollutants worldwide. Tobacco is an important cash crop; however, the accumulation of Cd in its biomass is very high. Cadmium may enter the body of smokers with contaminated tobacco and the surrounding environment via smoke. Therefore, it is important to understand the mechanisms of Cd accumulation and tolerance in tobacco plants, especially in the leaves. In this study, the effects of Cd on the growth, accumulation, and biochemical indices of two tobacco varieties, K326 (Cd resistant) and NC55 (Cd sensitive), were studied through transcriptomic and physiological experiments. Transcriptome and physiological analyses showed differences in the expression of Cd transport and Cd resistance related genes between NC55 and K326 under Cd stress. The root meristem cells of NC55 were more severely damaged. The antioxidant enzyme activity, ABA and ZT content, chlorophyll content, photosynthetic rate, and nitrogen metabolism enzyme activity in K326 leaves were higher than in NC55. These data elucidate the mechanisms of low Cd accumulation and high Cd tolerance in K326 leaves and provide a theoretical basis for cultivating tobacco varieties with low Cd accumulation and high Cd resistance.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Lei Hou
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Shengzhe Ji
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Yao Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Weiru Fan
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Tong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
| |
Collapse
|
14
|
Wang B, Yang R, Zhang Z, Huang S, Ji Z, Zheng W, Zhang H, Zhang Y, Feng F. Integration of miRNA and mRNA analysis reveals the role of ribosome in to anti-artificial aging in sweetcorn. Int J Biol Macromol 2023; 240:124434. [PMID: 37062384 DOI: 10.1016/j.ijbiomac.2023.124434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023]
Abstract
Sweetcorn is a kind of maize with high sugar content and has poor seed aging tolerance, which seriously limits its production. However, few studies have explored the artificial aging (AA) tolerance by miRNA-mRNA integration analysis in sweetcorn. Here, we characterized the physiological, biochemical and transcriptomic changes of two contrasting lines K62 and K107 treated with AA during time series. Both the germination indexes and antioxidant enzymes showed significant difference between two lines. The MDA content of AA-tolerant genotype K62 was significantly lower than that of K107 on the fourth and sixth day. Subsequently, 157 differentially expressed miRNAs (DEMIs) and 8878 differentially expressed mRNAs (DEMs) were identified by RNA-seq analysis under aging stress. The "ribosome" and "peroxisome" pathways were enriched to respond to aging stress, genes for both large units and small ribosomal subunits were significantly upregulated expressed and higher translation efficiency might exist in K62. Thirteen pairs of miRNA-target genes were obtained, and 8 miRNA-mRNA pairs might involve in ribosome protein and translation process. Our results elucidate the mechanism of sweetcorn response to AA at miRNA-mRNA level, and provide a new insight into sweetcorn AA response to stress.
Collapse
Affiliation(s)
- Bo Wang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ruichun Yang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zili Zhang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Silin Huang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zhaoqian Ji
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Wenbo Zheng
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huaxing Zhang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yafeng Zhang
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Faqiang Feng
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
15
|
Li J, Bi H. Molecular mechanisms of atrazine toxicity on H19-7 hippocampal neurons revealed by integrated miRNA and mRNA "omics". ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114681. [PMID: 36841081 DOI: 10.1016/j.ecoenv.2023.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Atrazine (ATR) is a widely applied herbicide in Asia and South America with slow natural degradation and documented deleterious effects on human and animal health, including hippocampal toxicity. However, relatively little is known about the molecular mechanisms responsible for ATR-induced hippocampal damage. Screening for differentially expressed mRNAs and microRNAs (miRNAs), and construction of potential miRNA-mRNA regulatory networks can reveal such mechanisms, so we analyzed the mRNA and miRNA expression profiles of rat hippocampus-derived H19-7 cells in response to ATR (500 μM) and conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG) analyses. Integration of miRNA sequencing (miRNA-seq) and mRNA sequencing (mRNA-seq) results identified 114 differentially expressed miRNAs (DEMIs, 40 upregulated and 74 downregulated), and 510 differentially expressed mRNAs (DEMs, 177 upregulated and 333 downregulated) targeted by these DEMIs. The top 10 hub mRNAs (Fos, Prkcb, Ncf1, Vcam1, Atf3, Pak3, Pak1, Cacna1s, Junb, and Ccl2) and 19 related miRNAs (rno-miR-194-5p, rno-miR-24-3p, rno-miR-3074, rno-miR-1949, rno-miR-218a-1-3p, rno-miR-1843a-5p, rno-miR-1843b-5p, rno-miR-296-3p, rno-miR-320-3p, rno-miR-219a-1-3p, rno-miR-122-5p, rno-miR-1839-5p, rno-miR-1843a-3p, rno-miR-215, rno-miR-3583-3p, rno-miR-194-3p, rno-miR-128-1-5p, rno-miR-1956-5p, and rno-miR-466b-2-3p) were validated by quantitative real-time PCR. GO analysis indicated that these DEMs were enriched in genes associated with synaptic plasticity and antioxidant capacity, while KEGG analysis suggested that enriched DEMs were involved in calcium signaling, axon guidance, MAPK signaling, and glial carcinogenesis. The miRNA-mRNA regulatory network identified here may provide potential biomarkers and novel strategies for the treatment of hippocampal neurotoxicity induced by ATR.
Collapse
Affiliation(s)
- Jianan Li
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou 221000, China.
| | - Haoran Bi
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, 209 Tongshan Road, Yun Long District, Xuzhou 221000, China.
| |
Collapse
|
16
|
Kumar K, Shinde A, Aeron V, Verma A, Arif NS. Genetic engineering of plants for phytoremediation: advances and challenges. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2023; 32:12-30. [PMID: 0 DOI: 10.1007/s13562-022-00776-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/22/2022] [Indexed: 05/27/2023]
|
17
|
Jiao P, Ma R, Wang C, Chen N, Liu S, Qu J, Guan S, Ma Y. Integration of mRNA and microRNA analysis reveals the molecular mechanisms underlying drought stress tolerance in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2022; 13:932667. [PMID: 36247625 PMCID: PMC9557922 DOI: 10.3389/fpls.2022.932667] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/02/2022] [Indexed: 05/24/2023]
Abstract
Drought is among the most serious environmental issue globally, and seriously affects the development, growth, and yield of crops. Maize (Zea mays L.), an important crop and industrial raw material, is planted on a large scale worldwide and drought can lead to large-scale reductions in maize corn production; however, few studies have focused on the maize root system mechanisms underlying drought resistance. In this study, miRNA-mRNA analysis was performed to deeply analyze the molecular mechanisms involved in drought response in the maize root system under drought stress. Furthermore, preliminary investigation of the biological function of miR408a in the maize root system was also conducted. The morphological, physiological, and transcriptomic changes in the maize variety "M8186" at the seedling stage under 12% PEG 6000 drought treatment (0, 7, and 24 h) were analyzed. With prolonged drought stress, seedlings gradually withered, the root system grew significantly, and abscisic acid, brassinolide, lignin, glutathione, and trehalose content in the root system gradually increased. Furthermore, peroxidase activity increased, while gibberellic acid and jasmonic acid gradually decreased. Moreover, 32 differentially expressed miRNAs (DEMIRs), namely, 25 known miRNAs and 7 new miRNAs, and 3,765 differentially expressed mRNAs (DEMRs), were identified in maize root under drought stress by miRNA-seq and mRNA-seq analysis, respectively. Through combined miRNA-mRNA analysis, 16 miRNA-target gene pairs, comprising 9 DEMIRs and 15 DEMRs, were obtained. In addition, four metabolic pathways, namely, "plant hormone signal transduction", "phenylpropane biosynthesis", "glutathione metabolism", and "starch and sucrose metabolism", were predicted to have important roles in the response of the maize root system to drought. MiRNA and mRNA expression results were verified by real-time quantitative PCR. Finally, miR408a was selected for functional analysis and demonstrated to be a negative regulator of drought response, mainly through regulation of reactive oxygen species accumulation in the maize root system. This study helps to elaborate the regulatory response mechanisms of the maize root system under drought stress and predicts the biological functions of candidate miRNAs and mRNAs, providing strategies for subsequent mining for, and biological breeding to select for, drought-responsive genes in the maize root system.
Collapse
Affiliation(s)
- Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ruiqi Ma
- College of Plant Science, Jilin University, Changchun, China
| | - Chunlai Wang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nannan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jing Qu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
18
|
Li Z, Tong Z, He F, Li X, Sun J. Integrated mRNA and microRNA expression analysis of root response to phosphate deficiency in Medicago sativa. FRONTIERS IN PLANT SCIENCE 2022; 13:989048. [PMID: 36176687 PMCID: PMC9513243 DOI: 10.3389/fpls.2022.989048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/24/2022] [Indexed: 05/31/2023]
Abstract
The deficiency of available phosphate significantly limits plant growth and development. This study sought to investigate how alfalfa (Medicago sativa), a high-yielding and high-quality forage widely cultivated worldwide, responds to phosphate deficiency stress by integrating transcriptional and post-transcriptional data. In this study, 6,041 differentially expressed genes (DEGs) were identified in alfalfa roots under phosphate deficiency conditions. Furthermore, psRNATarget, RNAhybrid, and TargetFinder were used to predict the target genes of 137 differentially expressed miRNAs (DEMs) in the root. In total, 3,912 DEGs were predicted as target genes. Pearson correlation analysis revealed 423 pairs of miRNA-mRNA regulatory relationships. MiRNA negatively regulates mRNA involved in regulatory pathways of phosphate deficiency responses in alfalfa. miR156e targeted squamosa promoter-binding-like protein 13A (SPL13), miR160c targeted auxin response factor 18 (ARF18), and miR2587a controlled glycolysis and citrate cycle via Phosphoenolpyruvate carboxykinase (ATP) (PCKA). Novel-miR27 regulated SPX domain-containing protein that controls phosphate transport in alfalfa root, novel-miR3-targeted sulfoquinovosyl transferase SQD2 controlled sulfolipid synthesis and glutathione S-transferase (GST; mediated by miR169j/k and novel-miR159) regulated glutathione metabolism. miR399l regulated auxin-responsive protein SAUR72 involved in IAA signal transduction, while abscisic acid receptor PYL4 (regulated by novel-miR205 and novel-miR83) participated in ABA signal transduction. Combined miRNA-mRNA enrichment analysis showed that most miRNAs regulate the phosphate starvation response of alfalfa by modulating target genes involved in carbohydrate metabolism, sulfolipid metabolism, glutathione metabolism, and hormone signal transduction. Therefore, this study provides new insights into the post-transcriptional regulation mechanism of phosphate deficiency responses and new perspectives on phosphate assimilation pathways in alfalfa and other legumes.
Collapse
Affiliation(s)
- Zhenyi Li
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Zongyong Tong
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng He
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianglin Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Sun
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|