1
|
Grimmelpont M, Lefrançois C, Panisset Y, Jourdon G, Receveur J, Le Floch S, Boudenne JL, Labille J, Milinkovitch T. Avoidance behaviour and toxicological impact of sunscreens in the teleost Chelon auratus. MARINE POLLUTION BULLETIN 2023; 194:115245. [PMID: 37517278 DOI: 10.1016/j.marpolbul.2023.115245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
There is increasing evidence that sunscreen, more specifically the organic ultra-violet filters (O-UVFs), are toxic for aquatic organisms. In the present study, we simulated an environmental sunscreen exposure on the teleost fish, Chelon auratus. The first objective was to assess their spatial avoidance of environmental concentrations of sunscreen products (i.e. a few μg.L-1 of O-UVFs). Our results showed that the fish did not avoid the contaminated area. Therefore, the second objective was to evaluate the toxicological impacts of such pollutants after 35 days exposure to concentrations of a few μg.L-1 of O-UVFs. At the individual level, O-UVFs increased the hepatosomatic index which could suggest pathological alterations of the liver or the initiation of the detoxification processes. At the cellular level, a significant increase of malondialdehyde was measured in the muscle of fish exposed to O-UVFs which suggests a failure of antioxidant defences and/or an excess of reactive oxygen species.
Collapse
Affiliation(s)
- Margot Grimmelpont
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | - Christel Lefrançois
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| | - Yannis Panisset
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Guilhem Jourdon
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France
| | - Justine Receveur
- Centre de Documentation de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux (CEDRE), 715 rue Alain Colas, CS41836-F-29218 Brest Cedex 2, France.
| | - Stéphane Le Floch
- Centre de Documentation de Recherche et d'Expérimentations sur les Pollutions Accidentelles des Eaux (CEDRE), 715 rue Alain Colas, CS41836-F-29218 Brest Cedex 2, France.
| | | | - Jérôme Labille
- Aix Marseille Univ, CNRS, IRD, INRAe, Coll France, CEREGE, Aix-en-Provence, France.
| | - Thomas Milinkovitch
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, F-17042 La Rochelle Cedex 01, France.
| |
Collapse
|
2
|
Wei XF, Liu YJ, Li SW, Ding L, Han SC, Chen ZX, Lu H, Wang P, Sun YC. Stress response and tolerance mechanisms of NaHCO 3 exposure based on biochemical assays and multi-omics approach in the liver of crucian carp (Carassius auratus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114633. [PMID: 36889228 DOI: 10.1016/j.ecoenv.2023.114633] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The development and utilization of saline-alkaline water, an important backup resource, has received widespread attention. However, the underuse of saline-alkaline water, threatened by the single species of saline-alkaline aquaculture, seriously affects the development of the fishery economy. In this work, a 30-day NaHCO3 stress experimental study combined with analyses of untargeted metabolomics, transcriptome, and biochemical approaches was conducted on crucian carp to provide a better understanding of the saline-alkaline stress response mechanism in freshwater fish. This work revealed the relationships among the biochemical parameters, endogenous differentially expressed metabolites (DEMs), and differentially expressed genes (DEGs) in the crucian carp livers. The biochemical analysis showed that NaHCO3 exposure changed the levels of several physiological parameters associated with the liver, including antioxidant enzymes (SOD, CAT, GSH-Px), MDA, AKP, and CPS. According to the metabolomics study, 90 DEMs are involved in various metabolic pathways such as ketone synthesis and degradation metabolism, glycerophospholipid metabolism, arachidonic acid metabolism, and linoleic acid metabolism. In addition, transcriptomics data analysis showed that a total of 301 DEGs were screened between the control group and the high NaHCO3 concentration group, of which 129 up-regulated genes and 172 down-regulated genes. Overall, NaHCO3 exposure could cause lipid metabolism disorders and induce energy metabolism imbalance in the crucian carp liver. Simultaneously, crucian carp might regulate its saline-alkaline resistance mechanism by enhancing the synthesis of glycerophospholipid metabolism, ketone bodies, and degradation metabolism, at the same time increasing the vitality of antioxidant enzymes (SOD, CAT, GSH-Px) and nonspecific immune enzyme (AKP). Herein, all results will provide new insights into the molecular mechanisms underlying the stress responses and tolerance to saline-alkaline exposure in crucian carp.
Collapse
Affiliation(s)
- Xiao-Feng Wei
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Ying-Jie Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shan-Wei Li
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lu Ding
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shi-Cheng Han
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Zhong-Xiang Chen
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Hang Lu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Peng Wang
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China.
| | - Yan-Chun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|