1
|
Ghosh S, Chakraborty A, Das N, Bhowmick S, Majumdar KK, Bhattacharjee S, Mukherjee M, Sikdar N, Pramanik S. AS3MT Gene Variant Shows Association with Skin Lesions in an Arsenic Exposed Population of India. Biol Trace Elem Res 2025:10.1007/s12011-025-04515-2. [PMID: 39828879 DOI: 10.1007/s12011-025-04515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
AS3MT, GSTO2, and GSTP1 genes play important roles in the arsenic biotransformation pathway, while CYP2E1 gene has a prominent role in the metabolic activation of xenobiotics. Hence, polymorphisms of these genes might have an effect on arsenic biotransformation and could impact susceptibility to arsenical skin lesions in individuals of chronic arsenic toxicity. The present case-control study, comprising 148 subjects, attempted to evaluate genetic association between nine polymorphisms of AS3MT, GSTO2, GSTP1 and CYP2E1 genes and arsenical skin lesions in a West Bengal (WB) population. A statistically significant association was found between rs11191439 (AS3MT) and arsenical skin lesions (OR = 5.50, P-value = 0.01) using logistic regression with age and gender as covariates. Among non-genetic risk factors, age and groundwater arsenic were found to be significantly associated with skin lesions (P-value < 0.05). When haplotypes among the intragenic polymorphisms of AS3MT, CYP2E1 and GSTO2 genes were analyzed, 'ATA' and 'ACG' haplotypes of the AS3MT gene showed significant difference between the case and control. Multifactor dimensionality reduction (MDR) analysis was performed on the nine polymorphisms and groundwater and urinary arsenic for studying gene-environment interactions. Strong association was observed between groundwater arsenic and skin lesions relative to the SNPs (P-value < 10-5). The best model with maximum testing accuracy included one SNP from the AS3MT (rs11191439) and groundwater arsenic (P-value < 0.0001). The present study documents the first report about the association of AS3MT gene variant with skin lesions in an arsenic exposed population of WB. Presumably, this is also the first study that has used MDR to investigate gene-environment interactions in arsenic-induced toxicity.
Collapse
Affiliation(s)
- Soma Ghosh
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India.
- Dept. of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, West Bengal, India.
| | - Arijit Chakraborty
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
| | - Neelotpal Das
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Baranagar, Kolkata, 700108, India
| | - Subhamoy Bhowmick
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kunal Kanti Majumdar
- Dept. of Community Medicine, KPC Medical College and Hospital, 1F Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Samsiddhi Bhattacharjee
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, West Bengal, India
| | - Mouli Mukherjee
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Baranagar, Kolkata, 700108, India
- Estuarine and Coastal Studies Foundation, Howrah, 711101, West Bengal, India
| | - Sreemanta Pramanik
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India.
| |
Collapse
|
2
|
Kumar V, Kumar S, Dwivedi S, Agnihotri R, Sharma P, Mishra SK, Naseem M, Chauhan PS, Chauhan RS. Integrated application of selenium and silica reduce arsenic accumulation and enhance the level of metabolites in rice grains. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-19. [PMID: 39600053 DOI: 10.1080/15226514.2024.2431096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In this study, rice plants were co-exposed to selenium (Se) and silica (Si) under arsenic (As) stress to evaluate As accumulation in rice grains, associated cancer risk, and its impact on the types and numbers of grain metabolites. A total of 58 metabolites were identified, of which, 19 belong to sugars, and drastically altered during different treatments. Arsenic exposure significantly reduced monosaccharides, i.e., D-glucose (83%) >D-galactose (60%) >D-fructose (57%) >D-ribose (29%) but increased that monosaccharide units which have antioxidant properties (i.e. α-D-glucopyranoside and melibiose). However, the levels of D-galactose, fructose, and ribose were significantly increased during co-supplementation of selenite (SeIV) and Si under As stress. Other groups of rice grain metabolites, like sugar alcohols, organic acids, polyphenols, carboxylic acids, fatty acids, and phytosterols, were also significantly altered by As exposure and increased in grains of SeIV and Si supplemented rice compared to alone As exposure. In brief, rice growing in As-affected areas may have a low level of different metabolites. However, supplementation by selenite (SeIV) with Si not only increased metabolites and amylose/amylopectin ratio but also reduced ∼90% of As accumulation in grains. Thus, the use of SeIV with Si might be advantageous for the locals to provide a healthy diet of rice and limit As-induced cancer risk up to 10-fold.
Collapse
Affiliation(s)
- Vishnu Kumar
- Plant Ecology and Climate Change Science Division, CSIR - National Botanical Research Institute, Lucknow, India
- Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India
| | - Sarvesh Kumar
- Plant Ecology and Climate Change Science Division, CSIR - National Botanical Research Institute, Lucknow, India
| | - Sanjay Dwivedi
- Plant Ecology and Climate Change Science Division, CSIR - National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ruchi Agnihotri
- Plant Ecology and Climate Change Science Division, CSIR - National Botanical Research Institute, Lucknow, India
| | - Pragya Sharma
- Plant Ecology and Climate Change Science Division, CSIR - National Botanical Research Institute, Lucknow, India
| | - Shashank Kumar Mishra
- Plant Ecology and Climate Change Science Division, CSIR - National Botanical Research Institute, Lucknow, India
| | - Mariya Naseem
- Plant Ecology and Climate Change Science Division, CSIR - National Botanical Research Institute, Lucknow, India
| | - Puneet Singh Chauhan
- Plant Ecology and Climate Change Science Division, CSIR - National Botanical Research Institute, Lucknow, India
| | | |
Collapse
|
3
|
Moulick D, Ghosh D, Gharde Y, Majumdar A, Upadhyay MK, Chakraborty D, Mahanta S, Das A, Choudhury S, Brestic M, Alahmadi TA, Ansari MJ, Chandra Santra S, Hossain A. An assessment of the impact of traditional rice cooking practice and eating habits on arsenic and iron transfer into the food chain of smallholders of Indo-Gangetic plain of South-Asia: Using AMMI and Monte-Carlo simulation model. Heliyon 2024; 10:e28296. [PMID: 38560133 PMCID: PMC10981068 DOI: 10.1016/j.heliyon.2024.e28296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
The current study was designed to investigate the consequences of rice cooking and soaking of cooked rice (CR) with or without arsenic (As) contaminated water on As and Fe (iron) transfer to the human body along with associated health risk assessment using additive main-effects and multiplicative interaction (AMMI) and Monte Carlo Simulation model. In comparison to raw rice, As content in cooked rice (CR) and soaked cooked rice (SCR) enhanced significantly (at p < 0.05 level), regardless of rice cultivars and locations (at p < 0.05 level) due to the use of As-rich water for cooking and soaking purposes. Whereas As content in CR and SCR was reduced significantly due to the use of As-free water for cooking and soaking purposes. The use of As-free water (AFW) also enhanced the Fe content in CR. The overnight soaking of rice invariably enhanced the Fe content despite the use of As-contaminated water in SCR however, comparatively in lesser amount than As-free rice. In the studied area, due to consumption of As-rich CR and SCR children are more vulnerable to health hazards than adults. Consumption of SCR (prepared with AFW) could be an effective method to minimize As transmission and Fe enrichment among consumers.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Kalyani, 741235, West Bengal, India
- Plant Stress Biology & Metabolomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Dibakar Ghosh
- ICAR−Indian Institute of Water Management, Bhubaneswar, 751023, Odisha, India
| | - Yogita Gharde
- ICAR-Directorate of Weed Research, Jabalpur, 482004, Madhya Pradesh, India
| | - Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Deep Chakraborty
- Department of Environmental Science, Amity School of Life Sciences (ASLS), Amity University, Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Subrata Mahanta
- Department of Chemistry, NIT Jamshedpur, Adityapur, Jamshedpur, 831014, Jharkhand, India
| | - Anupam Das
- Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Shuvasish Choudhury
- Plant Stress Biology & Metabolomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Marian Brestic
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01, Nitra, Slovak, Slovakia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, P.O. Box 2925, Riyadh, 11461, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University, Bareilly), Moradabad, 244001, Uttar Pradesh, India
| | - Shubhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh
| |
Collapse
|
4
|
Shao J, Lai C, Zheng Q, Luo Y, Li C, Zhang B, Sun Y, Liu S, Shi Y, Li J, Zhao Z, Guo L. Effects of dietary arsenic exposure on liver metabolism in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116147. [PMID: 38460405 DOI: 10.1016/j.ecoenv.2024.116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Arsenic, a ubiquitous environmental toxicant with various forms and complex food matrix interactions, can reportedly exert differential effects on the liver compared to drinking water exposure. To examine its specific liver-related harms, we targeted the liver in C57BL/6 J mice (n=48, 8-week-old) fed with arsenic-contaminated food (30 mg/kg) for 60 days, mimicking the rice arsenic composition observed in real-world scenarios (iAsV: 7.3%, iAsIII: 72.7%, MMA: 1.0%, DMA: 19.0%). We then comprehensively evaluated liver histopathology, metabolic changes, and the potential role of the gut-liver axis using human hepatocellular carcinoma cells (HepG2) and microbiota/metabolite analyses. Rice arsenic exposure significantly altered hepatic lipid (fatty acids, glycerol lipids, phospholipids, sphingolipids) and metabolite (glutathione, thioneine, spermidine, inosine, indole-derivatives, etc.) profiles, disrupting 33 metabolic pathways (bile secretion, unsaturated fatty acid biosynthesis, glutathione metabolism, ferroptosis, etc.). Pathological examination revealed liver cell necrosis/apoptosis, further confirmed by ferroptosis induction in HepG2 cells. Gut microbiome analysis showed enrichment of pathogenic bacteria linked to liver diseases and depletion of beneficial strains. Fecal primary and secondary bile acids, short-chain fatty acids, and branched-chain amino acids were also elevated. Importantly, mediation analysis revealed significant correlations between gut microbiota, fecal metabolites, and liver metabolic alterations, suggesting fecal metabolites may mediate the impact of gut microbiota and liver metabolic disorders. Gut microbiota and its metabolites may play significant roles in arsenic-induced gut-liver injuries. Overall, our findings demonstrate that rice arsenic exposure triggers oxidative stress, disrupts liver metabolism, and induces ferroptosis.
Collapse
Affiliation(s)
- Junli Shao
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chengze Lai
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiuyi Zheng
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yu Luo
- Guangzhou Liwan District Center for Disease Control and Prevention, Guangzhou, Guangdong 510176, China
| | - Chengji Li
- Yunfu Disease Control and Prevention Center, Guangdong Province 527300, China
| | - Bin Zhang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yanqin Sun
- Department of Pathology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China
| | - Shizhen Liu
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yingying Shi
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jinglin Li
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Zuguo Zhao
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
5
|
Peng Z, Lin C, Fan K, Ying J, Li H, Qin J, Qiu R. The use of urea hydrogen peroxide as an alternative N-fertilizer to reduce accumulation of arsenic in rice grains. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119489. [PMID: 37918231 DOI: 10.1016/j.jenvman.2023.119489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
A greenhouse experiment was conducted to examine the effects of urea hydrogen peroxide (UHP) on reducing the accumulation of As in rice grains. The results show that UHP effectively triggered Fenton-like reaction by reacting with Fe2+ in the paddy soils. This significantly inhibited the activities of As(V)-reducing microbes, causing impediment of As(V)-As(III) conversion following inundation of dryland crop soils for paddy rice cultivation. As-methylating microbes were also inhibited, adversely affecting As methylation in the soils. These processes led to the reduction in phyto-availability of As in the soil solutions for uptake by rice plant roots, and consequently reduced the accumulation of As in the rice grains. In this study, an UHP application rate of 0.0625% on three occasions (tillering, heading and filling) during the rice growth period was sufficient to lower the rice grain-borne As concentration to below 0.2 mg/kg, meeting the quality standard set by the Chinese government. No additive effect on reducing grain-borne As was observed for the joint application of UHP and biochar or biochar composite. The use of UHP for soil fertilization had no adverse impact on rice yield in comparison with the application of urea at an equal amount of nitrogen.
Collapse
Affiliation(s)
- Zhenni Peng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125, Australia
| | - Kaiqing Fan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jidong Ying
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Huashou Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Junhao Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
6
|
Eikelboom M, Wang Y, Portlock G, Gourain A, Gardner J, Bullen J, Lewtas P, Carriere M, Alvarez A, Kumar A, O'Prey S, Tölgyes T, Omanović D, Bhowmick S, Weiss D, Salaun P. Voltammetric determination of inorganic arsenic in mildly acidified (pH 4.7) groundwaters from Mexico and India. Anal Chim Acta 2023; 1276:341589. [PMID: 37573093 DOI: 10.1016/j.aca.2023.341589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 08/14/2023]
Abstract
Routine monitoring of inorganic arsenic in groundwater using sensitive, reliable, easy-to-use and affordable analytical methods is integral to identifying sources, and delivering appropriate remediation solutions, to the widespread global issue of arsenic pollution. Voltammetry has many advantages over other analytical techniques, but the low electroactivity of arsenic(V) requires the use of either reducing agents or relatively strong acidic conditions, which both complicate the analytical procedures, and require more complex material handling by skilled operators. Here, we present the voltammetric determination of total inorganic arsenic in conditions of near-neutral pH using a new commercially available 25 μm diameter gold microwire (called the Gold Wirebond), which is described here for the first time. The method is based on the addition of low concentrations of permanganate (10 μM MnO4-) which fulfils two roles: (1) to ensure that all inorganic arsenic is present as arsenate by chemically oxidising arsenite to arsenate and, (2) to provide a source of manganese allowing the sensitive detection of arsenate by anodic stripping voltammetry at a gold electrode. Tests were carried out in synthetic solutions of various pH (ranging from 4.7 to 9) in presence/absence of chloride. The best response was obtained in 0.25 M chloride-containing acetate buffer resulting in analytical parameters (limit of detection of 0.28 μg L-1 for 10 s deposition time, linear range up to 20 μg L-1 and a sensitivity of 63.5 nA ppb-1. s-1) better than those obtained in acidic conditions. We used this new method to measure arsenic concentrations in contrasting groundwaters: the reducing, arsenite-rich groundwaters of India (West Bengal and Bihar regions) and the oxidising, arsenate-rich groundwaters of Mexico (Guanajuato region). Very good agreement was obtained in all groundwaters with arsenic concentrations measured by inductively coupled plasma-mass spectrometry (slope = +1.029, R2 = 0.99). The voltammetric method is sensitive, faster than other voltammetric techniques for detection of arsenic (typically 10 min per sample including triplicate measurements and 2 standard additions), easier to implement than previous methods (no acidic conditions, no chemical reduction required, reproducible sensor, can be used by non-voltammetric experts) and could enable cheaper groundwater surveying campaigns with in-the-field analysis for quick data reporting, even in remote communities.
Collapse
Affiliation(s)
- Martijn Eikelboom
- School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP, Liverpool, UK.
| | - Yaxuan Wang
- School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP, Liverpool, UK
| | - Gemma Portlock
- School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP, Liverpool, UK
| | - Arthur Gourain
- School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP, Liverpool, UK
| | - Joseph Gardner
- School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP, Liverpool, UK
| | - Jay Bullen
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Paul Lewtas
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia
| | - Matthieu Carriere
- Caminos de Agua, José María Correa 23A, Colonia Santa Cecilia, 37727, San Miguel de Allende, Gto, Mexico
| | - Alexandra Alvarez
- Caminos de Agua, José María Correa 23A, Colonia Santa Cecilia, 37727, San Miguel de Allende, Gto, Mexico
| | - Arun Kumar
- Mahavir Cancer Sansthan and Research Centre, Phulwarisharif, Patna, 801505, Bihar, India
| | | | | | - Dario Omanović
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Subhamoy Bhowmick
- Kolkata Zonal Center CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal, 700107, India
| | - Dominik Weiss
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Pascal Salaun
- School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP, Liverpool, UK.
| |
Collapse
|
7
|
Mondal R, Pal P, Biswas S, Chattopadhyay A, Bandyopadhyay A, Mukhopadhyay A, Mukhopadhyay PK. Attenuation of sodium arsenite mediated ovarian DNA damage, follicular atresia, and oxidative injury by combined application of vitamin E and C in post pubertal Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2701-2720. [PMID: 37129605 DOI: 10.1007/s00210-023-02491-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Arsenic being a toxic metalloid ubiquitously persists in environment and causes several health complications including female reproductive anomalies. Epidemiological studies documented birth anomalies due to arsenic exposure. Augmented reactive oxygen species (ROS) generation and quenched antioxidant pool are foremost consequences of arsenic threat. On the contrary, Vitamin E (VE) and C (VC) are persuasive antioxidants and conventionally used in toxicity management. Present study was designed to explore the extent of efficacy of combined VE and VC (VEC) against Sodium arsenite (NaAsO2) mediated ovarian damage. Thirty-six female Wistar rats were randomly divided into three groups (Grs) and treated for consecutive 30 days; Gr I (control) was vehicle fed, Gr II (treated) was gavaged with NaAsO2 (3 mg/kg/day), Gr III (supplement) was provided with VE (400 mg/kg/day) & VC (200 mg/kg/day) along with NaAsO2. Marked histological alterations were evidenced by disorganization in oocyte, granulosa cells and zona pellucida layers in treated group. Considerable reduction of different growing follicles along with increased atretic follicles was noted in treated group. Altered activities ofΔ5 3β-Hydroxysteroid dehydrogenase and 17β-Hydroxysteroid dehydrogenase accompanied by reduced luteinizing hormone, follicle-stimulating hormone and estradiol levels were observed in treated animals. Irregular estrous cyclicity pattern was also observed due to NaAsO2 threat. Surplus ROS production affected ovarian antioxidant strata as evidenced by altered oxidative stress markers. Provoked oxidative strain further affects DNA status of ovary. However, supplementation with VEC caused notable restoration from such disparaging effects of NaAsO2 toxicities. Antioxidant and antiapoptotic attributes of those vitamins might be liable for such restoration.
Collapse
Affiliation(s)
- Rubia Mondal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Priyankar Pal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Sagnik Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Alok Chattopadhyay
- Department of Physiology, Harimohan Ghose College, Affiliated to University of Calcutta, Kolkata, India
| | - Amit Bandyopadhyay
- Sports and Exercise Physiology Laboratory, Department of Physiology, University Colleges of Science & Technology, University of Calcutta, Kolkata, India
| | | | | |
Collapse
|
8
|
Das A, Joardar M, Chowdhury NR, Mridha D, De A, Majumder S, Das J, Majumdar KK, Roychowdhury T. Significance of the prime factors regulating arsenic toxicity and associated health risk: a hypothesis-based investigation in a critically exposed population of West Bengal, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3423-3446. [PMID: 36335536 DOI: 10.1007/s10653-022-01422-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/20/2022] [Indexed: 06/01/2023]
Abstract
The suffering from arsenic toxicity is a long-standing concern in Asian countries. The role of the key factors (arsenic intake, age and sex) regulating arsenic toxicity is aimed to evaluate for a severely exposed population from Murshidabad district, West Bengal. Mean arsenic concentrations in drinking water supplied through tube well, Sajaldhara treatment plant and pipeline were observed as 208, 27 and 54 µg/l, respectively. Urinary arsenic concentration had been observed as < 3-42.1, < 3-56.2 and < 3-80 µg/l in children, teenagers and adults, respectively. Mean concentrations of hair and nail arsenic were found to be 0.84 and 2.38 mg/kg; 3.07 and 6.18 mg/kg; and 4.41 and 9.07 mg/kg, respectively, for the studied age-groups. Water arsenic was found to be associated with hair and nail (r = 0.57 and 0.60), higher than urine (r = 0.37). Arsenic deposition in biomarkers appeared to be dependent on age; however, it is independent of sex. Principal component analysis showed a direct relationship between dietary intake of arsenic and chronic biomarkers. Nail was proved as the most fitted biomarker of arsenic toxicity by Dunn's post hoc test. Monte Carlo sensitivity analysis and cluster analysis showed that the most significant factor regulating health risk is 'concentration of arsenic' than 'exposure duration', 'body weight' and 'intake rate'. The contribution of arsenic concentration towards calculated health risk was highest in teenagers (45.5-61.2%), followed by adults (47.8-49%) and children (21-27.6%). Regular and sufficient access to arsenic-safe drinking water is an immediate need for the affected population.
Collapse
Affiliation(s)
- Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | | | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Sharmistha Majumder
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Jagyashila Das
- National Institute of Biomedical Genomics, Kalyani, India
| | - Kunal Kanti Majumdar
- Department of Community Medicine, KPC Medical College and Hospital, Jadavpur, Kolkata, 700032, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
9
|
Abtahi M, Dobaradaran S, Koolivand A, Jorfi S, Saeedi R. Assessment of cause-specific mortality and disability-adjusted life years (DALYs) induced by exposure to inorganic arsenic through drinking water and foodstuffs in Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159118. [PMID: 36181805 DOI: 10.1016/j.scitotenv.2022.159118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/27/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
The health risk and burden of disease induced by exposure to inorganic arsenic (iAs) through drinking water and foodstuffs in Iran were assessed. The iAs levels in drinking water and foodstuffs (15 food groups) in the country were determined through systematic review of three international databases (PubMed, Scopus, and Web of Science) and meta-analysis. Based on the results of the systematic review and meta-analysis, the average iAs levels in drinking water and all the food groups at the national level were lower than the maximum permissible levels. The total average non-carcinogenic risk of dietary exposure to iAs in terms of hazard index (HI) was 3.4. The average incremental lifetime cancer risk (ILCR) values of dietary exposure to iAs were determined to be 1.5 × 10-3 for skin cancer, 1.0 × 10-3 for lung cancer, and 4.0 × 10-4 for bladder cancer. Over two-thirds of the non-carcinogenic and carcinogenic risk of dietary exposure to iAs was attributed to bread and cereals, drinking water, and rice. The total annual cancer incidence, deaths, disability-adjusted life years (DALYs), death rate, and DALY rate (per 100,000 people) were assessed to be 3347 (95 % uncertainty interval: 1791 to 5999), 1302 (697 to 2336), 72,606 (38,833 to 130,228), 1.6 (0.87 to 2.9), and 91 (49 to 160). The contribution of mortality in the attributable burden of disease was 95.1 %. The contributions of the causes in the attributable burden of disease were 72 % for lung cancer, 16 % for bladder cancer, and 12 % for skin cancer. Due to the significant attributable burden of disease, national and subnational action plans consisting of multi-disciplinary approaches for risk management of dietary exposure to iAs, especially for the higher arsenic-affected areas and high-risk population groups in the country are recommended.
Collapse
Affiliation(s)
- Mehrnoosh Abtahi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Ali Koolivand
- Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sahand Jorfi
- Environmental Technology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Bundschuh J, Niazi NK, Alam MA, Berg M, Herath I, Tomaszewska B, Maity JP, Ok YS. Global arsenic dilemma and sustainability. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129197. [PMID: 35739727 DOI: 10.1016/j.jhazmat.2022.129197] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is one of the most prolific natural contaminants in water resources, and hence, it has been recognized as an emerging global problem. Arsenic exposure through food exports and imports, such as As-contaminated rice and cereal-based baby food, is a potential risk worldwide. However, ensuring As-safe drinking water and food for the globe is still not stated explicitly as a right neither in the United Nations' Universal Declaration of Human Rights and the 2030 Sustainable Development Goals (SDGs) nor the global UNESCO priorities. Despite these omissions, addressing As contamination is crucial to ensure and achieve many of the declared human rights, SDGs, and global UNESCO priorities. An international platform for sharing knowledge, experience, and resources through an integrated global network of scientists, professionals, and early career researchers on multidisciplinary aspects of As research can act as an umbrella covering the activities of UN, UNESCO, and other UN organizations. This can deal with the mitigation of As contamination, thus contributing to global economic development and human health. This article provides a perspective on the global As problem for sustainable As mitigation on a global scale by 2030.
Collapse
Affiliation(s)
- Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350 Queensland, Australia; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Min-Hsiung, Chiayi County, 62102, Taiwan.
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Mohammad Ayaz Alam
- Departamento de Geología, Facultad de Ingeniería, Universidad de Atacama, Avenida Copayapu 485, Copiapó, Región de Atacama, Chile
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Indika Herath
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350 Queensland, Australia; Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Barbara Tomaszewska
- AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland
| | - Jyoti Prakash Maity
- Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India; Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|