1
|
Lu J, Zhu Y, Wei S, Huang S, Zu Y, Chen L. Comprehensive transcriptome analysis unravels the perturbated cardiovascular-related molecular mechanisms of tilapia under high-temperature stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101324. [PMID: 39298880 DOI: 10.1016/j.cbd.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
With the ongoing intensification of global warming, thermal stress poses significant challenges to tilapia aquaculture. However, the molecular mechanisms underlying the cardiac response of tilapia to high temperatures remain largely unexplored. To address this knowledge gap, we investigated the effects of high-temperature stress on the transcriptomic landscape of the tilapia heart. RNA sequencing was performed on the hearts of Oreochromis aureus (AR), Oreochromis niloticus (NL), and hybrids (O. niloticus ♀ × O. aureus ♂, AN) under treatments of 28 °C, 36 °C, and 39 °C. Using a multi-method approach, including Differentially Expressed Genes analysis, Weighted Gene Co-expression Network Analysis, Fuzzy C-Means, Self-Organizing Map, and Support Vector Machine-Recursive Feature Elimination, we identified six marker genes at 39 °C (AR: ptges3, tuba1a; NL: ran, tcima; AN: slc16a1, fam184b). These genes exhibited strong positive correlations and increased expression under high-temperature conditions. Gene Set Enrichment Analysis and GENIE3 revealed that these marker genes closely regulate three cardiovascular-related pathways: adrenergic signaling in cardiomyocytes, vascular smooth muscle contraction, and cardiac muscle contraction. We hypothesize that the synergistic inhibition of these pathways by marker genes leads to the deterioration of cardiovascular function. In summary, thermal stress activates marker genes, which in turn inhibit cardiovascular pathways, impairing cardiac performance. We propose that these marker genes could serve as dynamic thermal indicators of cardiac performance in tilapia. Additionally, our findings provide theoretical support for improving the management of tilapia farming under high-temperature stress.
Collapse
Affiliation(s)
- Jigang Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yihao Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Shicen Wei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Siqi Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yao Zu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China.
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, PR China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
2
|
Liu Y, Bai S, Li X, Jin C, Wang Z, Zhai J, Li W, Li H, Liu J, Zhang Q. Chronic low salinity stress rescued masculinization effect in farmed Cynoglossus semilaevis population. MARINE POLLUTION BULLETIN 2024; 200:116074. [PMID: 38290369 DOI: 10.1016/j.marpolbul.2024.116074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
Salinity, being an indispensable abiotic factor crucial for the survival of marine organisms, has demonstrated diverse alterations globally in response to the current trend of global warming. In this study, the effect of chronic low salinity stress on teleosts' sex differentiation was investigated using Cynoglossus semilaevis, an economically important fish with both genetic and environmental sex determination system. The cultivation experiment was conducted employing artificially simulated seawater of 20 ppt and ambient sea water of 30 ppt to rear juveniles C. semilaevis. Throughout the experiment, the growth performance was assessed and the histology of gonadal development was examined, a significantly lower masculinization rate was observed in LS group. To gain further insights, transcriptome analysis was conducted using raw reads obtained from 53 libraries derived from gonads of 55 days post fertilization (dpf) and 100 dpf juveniles in both LS and CT groups. GO/KEGG enrichment were further proceeded, Terms and pathways involved in reproduction ability, germ cell proliferation, immune function, steroid metabolism etc., were illuminated and a possible crosstalk between HPI and HPG axis was proposed. WGCNA was conducted and two hub genes, hspb8-like and Histone H2A.V were exhibited to be of great significance in the changes of masculinization rate. Our findings provided solid reference for sex differentiation study of GSD + ESD species in a constantly changing ocean environment, as well as practice guiding significance for the environmental management for the culture of C. semilaevis.
Collapse
Affiliation(s)
- Yuxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Shujun Bai
- Laboratory of Fisheries Oceanography, College of Fisheries, Ocean University of China, Qingdao, China
| | - Xiaoqi Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Chaofan Jin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Zhigang Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Jieming Zhai
- Laizhou Mingbo Aquatic Co., Ltd., Laizhou, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic Co., Ltd., Laizhou, China
| | - Hengde Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
3
|
Wang M, Wu S, Ding H, Wang M, Ma J, Xiao J, Wang B, Bao Z, Hu J. Dietary antarctic krill improves antioxidant capacity, immunity and reduces lipid accumulation, insights from physiological and transcriptomic analysis of Plectropomus leopardus. BMC Genomics 2024; 25:210. [PMID: 38408914 PMCID: PMC10895837 DOI: 10.1186/s12864-024-10099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Due to its enormous biomass, Antarctic krill (Euphausia superba) plays a crucial role in the Antarctic Ocean ecosystem. In recent years, Antarctic krill has found extensive application in aquaculture, emerging as a sustainable source of aquafeed with ideal nutritional profiles. However, a comprehensive study focused on the detailed effects of dietary Antarctic krill on aquaculture animals, especially farmed marine fishes, is yet to be demonstrated. RESULTS In this study, a comparative experiment was performed using juvenile P. leopardus, fed with diets supplemented with Antarctic krill (the krill group) or without Antarctic krill (the control group). Histological observation revealed that dietary Antarctic krill could reduce lipid accumulation in the liver while the intestine exhibited no obvious changes. Enzyme activity measurements demonstrated that dietary Antarctic krill had an inhibitory effect on oxidative stress in both the intestine and the liver. By comparative transcriptome analysis, a total of 1,597 and 1,161 differentially expressed genes (DEGs) were identified in the intestine and liver, respectively. Functional analysis of the DEGs showed multiple enriched terms significantly related to cholesterol metabolism, antioxidants, and immunity. Furthermore, the expression profiles of representative DEGs, such as dhcr7, apoa4, sc5d, and scarf1, were validated by qRT-PCR and fluorescence in situ hybridization. Finally, a comparative transcriptome analysis was performed to demonstrate the biased effects of dietary Antarctic krill and astaxanthin on the liver of P. leopardus. CONCLUSIONS Our study demonstrated that dietary Antarctic krill could reduce lipid accumulation in the liver of P. leopardus, enhance antioxidant capacities in both the intestine and liver, and exhibit molecular-level improvements in lipid metabolism, immunity, and antioxidants. It will contribute to understanding the protective effects of Antarctic krill in P. leopardus and provide insights into aquaculture nutritional strategies.
Collapse
Affiliation(s)
- Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Mingyi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Jiayi Ma
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Jie Xiao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| |
Collapse
|
4
|
Yan D, Long X, Zhang X, Dong X, Wang Z, Jiang H, An M, Chen J, Gan L. Identification and characterization of long non-coding RNAs in intestinal immune regulation of largemouth bass, Micropterus salmoides, under acute heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101132. [PMID: 37643563 DOI: 10.1016/j.cbd.2023.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Long noncoding RNAs (lncRNAs), which are RNA molecules that do not code for proteins and have a length exceeding 200 base pairs, have been found to play a crucial role in regulating intestinal immunity. The high mortality of various fish species induced by high temperatures is known to be associated with enteritis. Our investigation demonstrated that acute heat stress was responsible for inducing fish enteritis. However, the specific lncRNAs involved this process remains unknown. In this current study, we utilized intestinal sequencing data from the largemouth bass species Micropterus salmoides under acute heat stress, resulting in a total of 347,351,492 clean reads obtained from six cDNA libraries. A total of 3399 novel lncRNA transcripts originating from 2488 distinct lncRNA genes were successfully identified. Consistent with previous findings in other fish species, these lncRNAs demonstrated comparatively shorter transcript lengths when compared to protein-coding genes. Furthermore, a total of 216 novel lncRNA exhibited differential expression (DE) in the intestine of largemouth bass, meeting the criteria of absolute log2 fold change exceeding 2 and a p-value below 0.05. Additionally, these DE-lncRNAs were found to regulate 210 neighboring genes in a cis-regulatory manner. An examination of GO/KEGG enrichment revealed a notable enrichment of immune regulation (p < 0.05) among these cis-genes, with lncRNA MSTRG.8573.1 playing a significant role in regulating the jak-stat signaling pathway during this process. This study presents a comprehensive inventory of novel DE-lncRNA implicated in the development of enteritis in largemouth bass under acute heat stress. These findings offer valuable insights for future investigations on the regulation of lncRNAs to mitigate heat stress-induced fish enteritis.
Collapse
Affiliation(s)
- Dadong Yan
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xinran Long
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiaohong Zhang
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xianghong Dong
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhenlu Wang
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Haibo Jiang
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Miao An
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiangfeng Chen
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Lei Gan
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education (Guizhou University), Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Han P, Qiao Y, He J, Wang X. Stress responses to warming in Japanese flounder (Paralichthys olivaceus) from different environmental scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165341. [PMID: 37414161 DOI: 10.1016/j.scitotenv.2023.165341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/18/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Japanese flounder (Paralichthys olivaceus) is one of cold-water species widely farmed in Asia. In recent years, the increased frequency of extreme weather events caused by global warming has led to serious impact on Japanese flounder. Therefore, it is crucial to understand the effects of representative coastal economic fish under increasing water temperature. In this study, we investigated the histological and apoptosis responses, oxidative stress and transcriptomic profile in the liver of Japanese flounder exposed to gradual temperature rise (GTR) and abrupt temperature rise (ATR). The histological results showed liver cells in ATR group were the most serious in all three groups including vacuolar degeneration and inflammatory infiltration, and had more apoptosis cells than GTR group detected by TUNEL staining. These further indicated ATR stress caused more severe damage than GTR stress. Compared with control group, the biochemical analysis showed significantly changes in two kinds of heat stress, including GPT, GOT and D-Glc in serum, ATPase, Glycogen, TG, TC, ROS, SOD and CAT in liver. In addition, the RNA-Seq was used to analyze the response mechanism in Japanese flounder liver after heat stress. A total of 313 and 644 differentially expressed genes (DEGs) were identified in GTR and ATR groups, respectively. Further pathway enrichment of these DEGs revealed that heat stress affected cell cycle, protein processing and transportation, DNA replication and other biological processes. Notably, protein processing pathway in the endoplasmic reticulum (ER) was enriched significantly in KEGG and GSEA enrichment analysis, and the expression of ATF4 and JNK was significantly up-regulated in both GTR and ATR groups, while CHOP and TRAF2 were high expressed in GTR and ATR groups, respectively. In conclusion, heat stress could cause tissue damage, inflammation, oxidative stress and ER stress in the liver of Japanese flounder. The present study would provide insight into the reference for the adaptive mechanisms of economic fish in face of increasing water temperature caused by global warming.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Yingjie Qiao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China.
| | - Jiayi He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|