1
|
Yao KS, Van de Perre D, Lei HJ, Bai H, Zhou PL, Ying GG, Van den Brink PJ. Assessing ecological responses of exposure to the pyrethroid insecticide lambda-cyhalothrin in sub-tropical freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:176022. [PMID: 39236830 DOI: 10.1016/j.scitotenv.2024.176022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Pyrethroid insecticides are widely detected in aquatic ecosystems due to their extensive use in agriculture and horticulture, which could pose a potential risk to aquatic non-target organisms. While previous ecotoxicological studies have been conducted mainly with standard tests and local species under temperate conditions, scarce information is available on the effects of pyrethroid insecticides on communities and ecosystems under (sub-)tropical conditions. A single application of lambda-cyhalothrin at concentrations of 0, 9, 30, and 100 ng/L was evaluated in outdoor mesocosms under sub-tropical conditions. Lambda-cyhalothrin was found to dissipate rapidly in the water column, with only 11 % and 7 % of the remaining dose measured at 1 and 3 days after application, respectively. Lambda-cyhalothrin concentrations disappeared considerably faster from the water compartment compared to temperate conditions. Consistent decreases in abundance were observed for Lecane lunaris at the medium and higher treatments (NOEC = 9 ng/L) and at the highest treatment (NOEC = 30 ng/L) for Keratella tropica. On the contrary, two taxa belonging to Cladocera (i.e., Ceriodaphnia sp. and Diaphanosoma sp.) showed the most prominent increase in abundance related to the lambda-cyhalothrin treatments. At the community level, a consistent no observed effect concentrations (NOECs) of 9 ng/L could be calculated for the zooplankton community. A marginal significant overall treatment related effect was observed for the macroinvertebrate community. The results of species sensitivity distribution (SSD) analysis based on results of acute toxicity experiments conducted alongside the mesocosm experiment and obtained from the literature indicated that macroinvertebrates from temperate regions may be generally more sensitive than their counterparts in (sub-)tropical regions. Overall, these findings suggest that environmentally relevant concentrations of the pyrethroid insecticide lambda-cyhalothrin may lead to different ecological outcomes in freshwater ecosystems in the (sub-)tropics relative to temperate regions.
Collapse
Affiliation(s)
- Kai-Sheng Yao
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Dimitri Van de Perre
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Hao-Jun Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Pei-Liang Zhou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
2
|
Wehrli M, Slotsbo S, Fomsgaard IS, Laursen BB, Gröning J, Liess M, Holmstrup M. A Dirt(y) World in a Changing Climate: Importance of Heat Stress in the Risk Assessment of Pesticides for Soil Arthropods. GLOBAL CHANGE BIOLOGY 2024; 30:e17542. [PMID: 39450625 DOI: 10.1111/gcb.17542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
The rise in global temperatures and increasing severity of heat waves pose significant threats to soil organisms, disrupting ecological balances in soil communities. Additionally, the implications of environmental pollution are exacerbated in a warmer world, as changes in temperature affect the uptake, transformation and elimination of toxicants, thereby increasing the vulnerability of organisms. Nevertheless, our understanding of such processes remains largely unexplored. The present study examines the impact of high temperatures on the uptake and effects of the fungicide fluazinam on the springtail Folsomia candida (Collembola, Isotomidae). Conducted under non-optimum but realistic high temperatures, the experiments revealed that increased temperature hampered detoxification processes in F. candida, enhancing the toxic effects of fluazinam. High temperatures and the fungicide exerted synergistic interactions, reducing F. candida's reproduction and increasing adult mortality beyond what would be predicted by simple addition of the heat and chemical effects. These findings highlight the need to reevaluate the current ecological risk assessment and the regulatory framework in response to climate changes. This research enhances our understanding of how global warming affects the toxicokinetics and toxicodynamics (TK-TD) of chemicals in terrestrial invertebrates. In conclusion, our results suggest that adjustments to regulatory threshold values are necessary to address the impact of a changing climate.
Collapse
Affiliation(s)
- Micha Wehrli
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | - Stine Slotsbo
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | | | - Bente B Laursen
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Jonas Gröning
- UFZ - Helmholtz Centre for Environmental Research, -Ecotoxicology, Leipzig, Germany
| | - Matthias Liess
- UFZ - Helmholtz Centre for Environmental Research, -Ecotoxicology, Leipzig, Germany
- Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
3
|
Shen C, Pan X, Wu X, Xu J, Zheng Y, Dong F. Prediction of Potential Risk for Flupyradifurone and Its Transformation Products to Hydrobionts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15151-15163. [PMID: 38941616 DOI: 10.1021/acs.jafc.4c03004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Flupyradifurone (FPF) is considered the latest generation of neonicotinoid insecticides. Here, we investigated the toxicity and ecological risk of FPF and its aerobic transformation products (TPs) to aquatic species using the method of prediction. We found that FPF exhibited moderate or high toxicity to some aquatic species. The 5% hazardous concentration of FPF was 3.84 μg/L for aquatic organisms. We obtained 91 aerobic TPs for FPF, and almost half of FPF TPs exhibited toxicity to fish or Daphnia. Eleven of the TPs of FPF exhibited a high or moderate risk to aquatic ecosystems. All FPF TPs with high and moderate risks contained a 6-chloropyridine ring structure, indicating that the derivant of a pyridine ring exhibits potential risks to aquatic ecosystems. Our results provide insight into the potential risk of FPF to aquatic ecosystems and could be used to help set criteria to control pollution caused by FPF.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- East China Branch of the National Center for Agricultural Biosafety Sciences/Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
4
|
Lima BSA, Martínez LC, Rocha FAD, Plata-Rueda A, Zanuncio JC, Motta JVO, Silva LLD, Schultz H, Nere PHA, Serrão JE. Effects of the insecticide flupyradifurone on Anticarsia gemmatalis caterpillar and its predator Podisus nigrispinus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43927-43940. [PMID: 38913262 DOI: 10.1007/s11356-024-34010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
The caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae) is a prevalent pest in soybean plantations, managed using both natural and synthetic chemical products. However, the emergence of resistance in some populations emphasizes the need to explore alternative insecticides. Flupyradifurone, a neurotoxic insecticide, has not been previously used for controlling A. gemmatalis. This study evaluated the potential of flupyradifurone in the management of A. gemmatalis. Initially, the toxicity and anti-feeding effects, as well as histopathological and cytotoxic impacts, of flupyradifurone on A. gemmatalis were evaluated. Subsequently, the indirect effects of flupyradifurone on the midgut and fat body of the predator Podisus nigrispinus (Hemiptera: Pentatomidae) were verified. The results indicate the susceptibility of caterpillars to flupyradifurone, with an LC50 of 5.10 g L-1. Furthermore, the insecticide adversely affects survival, induces an anti-feeding response, and inflicts damage on the midgut of the caterpillars. However, flupyradifurone also leads to side effects in the predator P. nigrispinus through indirect intoxication of the caterpillars, including midgut and fat body damage. While flupyradifurone demonstrates toxicity to A. gemmatalis, suggesting its potential for the chemical control of this pest, the indirect negative effects on the predator indicate the need for its controlled use in integrated pest management programs with the insecticide and the predator.
Collapse
Affiliation(s)
| | | | | | | | - José Cola Zanuncio
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Laryssa Lemos da Silva
- Departamento de Biologia Geral/BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil
| | - Halina Schultz
- Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - José Eduardo Serrão
- Departamento de Biologia Geral/BIOAGRO, Universidade Federal de Viçosa, Viçosa, 36570-900, Brazil.
| |
Collapse
|
5
|
Zhou X, Ming R, Guo M, Jiao H, Cui H, Hu D, Lu P. Characterization of imidacloprid-induced hepatotoxicity and its mechanisms based on a metabolomic approach in Xenopus laevis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161794. [PMID: 36707007 DOI: 10.1016/j.scitotenv.2023.161794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The toxic effects of imidacloprid are attracting increased concern because of its widespread use in agriculture and its persistence in the aquatic environment. Imidacloprid bioaccumulates and triggers various morphological and behavioral responses in amphibians, but the toxic effects and mechanism of imidacloprid in amphibians remain uncertain. In this study, the acute toxicity and chronic effects of imidacloprid on Xenopus laevis were studied. Acute toxicity for 96 h revealed that imidacloprid had an LC50 value of 74.18 mg/L. After exposure for 28 d under 1/10 and 1/100 LC50, liver samples from X. laevis were employed for biochemical analyses, pathological studies, and nontargeted metabolomics to systematically assess the toxic effects and mechanisms of imidacloprid. The results showed that oxidative stress and hepatic tissue morphology changes were observed in treated X. laevis liver. Twelve metabolites involved in metabolic pathway were altered between the control and high exposure groups and twenty-one metabolites were altered between the control and low exposure group. Eight metabolic pathways exposed to high levels and nine metabolic pathways exposed to low level of imidacloprid were disturbed. These pathways were primarily related to amino acid metabolism, lipid metabolism, and nucleotide metabolism. Our research provides essential information to evaluate the potential toxicity of imidacloprid to nontarget aquatic organisms.
Collapse
Affiliation(s)
- Xia Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Renyue Ming
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Meiting Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hui Jiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Honghao Cui
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ping Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
6
|
Ben Halima N, Álvarez-Fernández L, Blanco-Paniagua E, Abid-Essefi S, Guedri Y, Merino G. In vitro interaction of the pesticides flupyradifurone, bupirimate and its metabolite ethirimol with the ATP-binding cassette transporter G2 (ABCG2). Toxicol Lett 2023; 380:23-30. [PMID: 37011773 DOI: 10.1016/j.toxlet.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/06/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
ABCG2 is an ATP-binding cassette efflux transporter that is expressed in absorptive and excretory organs such as liver, intestine, kidney, brain and testis where it plays a crucial physiological and toxicological role in protecting cells against xenobiotics, affecting pharmacokinetics of its substrates. In addition, the induction of ABCG2 expression in mammary gland during lactation is related to active secretion of many toxicants into milk. In this study, the in vitro interactions between ABCG2 and three pesticides flupyradifurone, bupirimate and its metabolite ethirimol were investigated to check whether these compounds are substrates and/or inhibitors of this transporter. Using in vitro transepithelial assays with cells transduced with murine, ovine and human ABCG2, we showed that ethirimol and flupyradifurone were transported efficiently by murine Abcg2 and ovine ABCG2 but not by human ABCG2. Bupirimate was not found to be an in vitro substrate of ABCG2 transporter. Accumulation assays using mitoxantrone in transduced MDCK-II cells suggest that none of the tested pesticides were efficient ABCG2 inhibitors, at least in our experimental conditions. Our studies disclose that ethirimol and flupyradifurone are in vitro substrates of murine and ovine ABCG2, opening the possibility of a potential relevance of ABCG2 in the toxicokinetics of these pesticides.
Collapse
Affiliation(s)
- Nada Ben Halima
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia; Faculty of Pharmacy, University of Monastir, Tunisia
| | - Laura Álvarez-Fernández
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana, 24071 Leon, Spain
| | - Esther Blanco-Paniagua
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana, 24071 Leon, Spain
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Yosra Guedri
- Department of Nephrology, Dialysis, and Renal Transplantation, Sahloul Universitary Hospital, Sousse, Tunisia
| | - Gracia Merino
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana, 24071 Leon, Spain.
| |
Collapse
|
7
|
Huang A, Mangold-Döring A, Guan H, Boerwinkel MC, Belgers D, Focks A, Van den Brink PJ. The effect of temperature on toxicokinetics and the chronic toxicity of insecticides towards Gammarus pulex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158886. [PMID: 36167137 DOI: 10.1016/j.scitotenv.2022.158886] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 05/14/2023]
Abstract
A comprehensive understanding of chemical toxicity and temperature interaction is essential to improve ecological risk assessment under climate change. However, there is only limited knowledge about the effect of temperature on the toxicity of chemicals. To fill this knowledge gap and to improve our mechanistic understanding of the influence of temperature, the current study explored toxicokinetics and the chronic toxicity effects of two insecticides, imidacloprid (IMI) and flupyradifurone (FPF), on Gammarus pulex at different temperatures (7-24 °C). In the toxicokinetics tests, organisms were exposed to IMI or FPF for 2 days and then transferred to clean water for 3 days of elimination at 7, 18, or 24 °C. In the chronic tests, organisms were exposed to the individual insecticides for 28 days at 7, 11, or 15 °C. Our research found that temperature impacted the toxicokinetics and the chronic toxicity of both IMI and FPF, while the extent of such impact differed for each insecticide. For IMI, the uptake rate and biotransformation rate increased with temperature, and mortality and food consumption inhibition was enhanced by temperature. While for FPF, the elimination rate increased with temperature at a higher rate than the increasing uptake rate, resulting in a smaller pronounced effect of temperature on mortality compared to IMI. In addition, the adverse effects of the insecticides on sublethal endpoints (food consumption and dry weight) were exacerbated by elevated temperatures. Our results highlight the importance of including temperature in the ecological risk assessment of insecticides in light of global climate change.
Collapse
Affiliation(s)
- Anna Huang
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands.
| | - Annika Mangold-Döring
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands
| | - Huitong Guan
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands
| | | | - Dick Belgers
- Wageningen Environmental Research, Wageningen, the Netherlands
| | - Andreas Focks
- Wageningen Environmental Research, Wageningen, the Netherlands; Institute of Mathematics, Osnabrück University, Germany
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, the Netherlands; Wageningen Environmental Research, Wageningen, the Netherlands
| |
Collapse
|