1
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Xu P, Su YN, Ling C, Wang J, Zhang W. Mitochondrial dysfunction mediated by thioredoxin-interacting protein: A crucial determinant in di(2-ethylhexyl) phthalate-induced liver failure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116103. [PMID: 38359652 DOI: 10.1016/j.ecoenv.2024.116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer that can interfere with the endocrine system and cause liver damage. However, the molecular mechanism of DEHP-induced liver injury is unclear. This study aimed to investigate the effects of DEHP on liver function and its relationship with thioredoxin-interacting protein (TXNIP) and mitochondrial oxidative stress pathway. We used C57BL/6 J mice and THLE-2 liver cells as in vivo and in vitro models, respectively, and treated them with different doses of DEHP, and measured the relevant biochemical indicators and molecular markers. We found that DEHP significantly increased the expression of TXNIP and NLRP3, while decreasing the expression of mitochondrial functional proteins, such as PGC-1α, TFAM, NRF1, NDUHA9, SDHA, MFN1. This resulted in mitochondrial dysfunction, manifested by reduced ATP generation, increased inflammatory factor release, elevated liver enzyme indicators, decreased mitochondrial membrane potential and increased oxidative stress. We further demonstrated that TXNIP upregulation activated NF-κB and MAPK signaling pathways, such as NF-κB, IκB, TAB2, TRAF6, ERK1, JNK, p38 MAPK, MEK1, which exacerbated oxidative stress and inflammation, leading to liver damage. Additionally, we found that treatment with the antioxidant MitoQ partially alleviated DEHP-induced liver toxicity, while silencing TXNIP more effectively restored mitochondrial function. Our study supports the hypothesis that DEHP induces mitochondrial oxidative stress through the TXNIP signaling pathway, resulting in liver dysfunction in mice, and suggests possible links between endocrine-disrupting chemicals and human diseases.
Collapse
Affiliation(s)
- Peng Xu
- Department of Pharmacy, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China
| | - Yang-Ni Su
- Department of Pharmacy, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China
| | - Chen Ling
- Department of Pharmacy, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jing Wang
- Department of Pharmacy, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China
| | - Wang Zhang
- Department of Pharmacy, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
3
|
Yin F, Zhang X, Zhang Z, Zhang M, Yin Y, Yang Y, Gao Y. ERK/PKM2 Is Mediated in the Warburg Effect and Cell Proliferation in Arsenic-Induced Human L-02 Hepatocytes. Biol Trace Elem Res 2024; 202:493-503. [PMID: 37237135 DOI: 10.1007/s12011-023-03706-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
This study aimed to investigate the potential role of pyruvate kinase M2 (PKM2) and extracellular regulated protein kinase (ERK) in arsenic-induced cell proliferation. L-02 cells were treated with 0.2 and 0.4 μmol/L As3+, glycolysis inhibitor (2-deoxy-D-glucose,2-DG), ERK inhibitor [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)-butadiene, U0126] or transfected with PKM2 plasmid. Cell viability, proliferation, lactate acid production, and glucose intake capacity were determined by CCK-8 assay, EdU assay, lactic acid kit and 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose (2-NBDG) uptake kit, respectively. Also, levels of PKM2, phospho-PKM2S37, glucose transporter protein 1 (GLUT1), lactate dehydrogenase A (LDHA), ERK, and phospho-ERK were detected using Western blot and the subcellular localization of PKM2 in L-02 cells was detected by immunocytochemistry (ICC). Treatment with 0.2 and 0.4 μmol/L As3+ for 48 h increased the viability and proliferation of L-02 cells, the proportion of 2-NBDG+ cell and lactic acid in the culture medium, and GLUT1, LDHA, PKM2, phospho-PKM2S37, and phospho-ERK levels and PKM2 in nucleus. Compared with the 0.2 μmol/L As3+ treatment group, the lactic acid in the culture medium, cell proliferation and cell viability, and the expression of GLUT1 and LDHA were reduced in the group co-treated with siRNA-PKM2 and arsenic or in the group co-treated with U0126. Moreover, the arsenic-increased phospho-PKM2S37/PKM2 was decreased by U0126. Therefore, ERK/PKM2 plays a key role in the Warburg effect and proliferation of L-02 cells induced by arsenic, and also might be involved in arsenic-induced upregulation of GLUT1 and LDHA. This study provides a theoretical basis for further elucidating the carcinogenic mechanism of arsenic.
Collapse
Affiliation(s)
- Fanshuo Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Xin Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Zaihong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yunyi Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, No.157 Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health of P. R. China, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
4
|
Fu Y, Yu B, Wang Q, Lu Z, Zhang H, Zhang D, Luo F, Liu R, Wang L, Chu Y. Oxidative stress-initiated one-carbon metabolism drives the generation of interleukin-10-producing B cells to resolve pneumonia. Cell Mol Immunol 2024; 21:19-32. [PMID: 38082147 PMCID: PMC10757717 DOI: 10.1038/s41423-023-01109-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/07/2023] [Indexed: 01/01/2024] Open
Abstract
The metabolic reprogramming underlying the generation of regulatory B cells during infectious diseases remains unknown. Using a Pseudomonas aeruginosa-induced pneumonia model, we reported that IL-10-producing B cells (IL-10+ B cells) play a key role in spontaneously resolving infection-mediated inflammation. Accumulated cytosolic reactive oxygen species (ROS) during inflammation were shown to drive IL-10+ B-cell generation by remodeling one-carbon metabolism. Depletion of the enzyme serine hydroxymethyltransferase 1 (Shmt1) led to inadequate one-carbon metabolism and decreased IL-10+ B-cell production. Furthermore, increased one-carbon flux elevated the levels of the methyl donor S-adenosylmethionine (SAM), altering histone H3 lysine 4 methylation (H3K4me) at the Il10 gene to promote chromatin accessibility and upregulate Il10 expression in B cells. Therefore, the one-carbon metabolism-associated compound ethacrynic acid (EA) was screened and found to potentially treat infectious pneumonia by boosting IL-10+ B-cell generation. Overall, these findings reveal that ROS serve as modulators to resolve inflammation by reprogramming one-carbon metabolism pathways in B cells.
Collapse
Affiliation(s)
- Ying Fu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qi Wang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhou Lu
- Zhongshan Hospital Institute of Clinical Science, Zhongshan Hospital, Shanghai, China
| | - Hushan Zhang
- Zhaotong Health Vocational College, Zhaotong, Yunnan, China
| | - Dan Zhang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Ronghua Liu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Deng J, Pan T, Liu Z, McCarthy C, Vicencio JM, Cao L, Alfano G, Suwaidan AA, Yin M, Beatson R, Ng T. The role of TXNIP in cancer: a fine balance between redox, metabolic, and immunological tumor control. Br J Cancer 2023; 129:1877-1892. [PMID: 37794178 PMCID: PMC10703902 DOI: 10.1038/s41416-023-02442-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is commonly considered a master regulator of cellular oxidation, regulating the expression and function of Thioredoxin (Trx). Recent work has identified that TXNIP has a far wider range of additional roles: from regulating glucose and lipid metabolism, to cell cycle arrest and inflammation. Its expression is increased by stressors commonly found in neoplastic cells and the wider tumor microenvironment (TME), and, as such, TXNIP has been extensively studied in cancers. In this review, we evaluate the current literature regarding the regulation and the function of TXNIP, highlighting its emerging role in modulating signaling between different cell types within the TME. We then assess current and future translational opportunities and the associated challenges in this area. An improved understanding of the functions and mechanisms of TXNIP in cancers may enhance its suitability as a therapeutic target.
Collapse
Affiliation(s)
- Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caitlin McCarthy
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Jose M Vicencio
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Giovanna Alfano
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Ali Abdulnabi Suwaidan
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Mingzhu Yin
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Richard Beatson
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London (UCL), Rayne 9 Building, London, WC1E 6JF, UK.
| | - Tony Ng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- UCL Cancer Institute, University College London, London, UK.
- Cancer Research UK City of London Centre, London, UK.
| |
Collapse
|