1
|
S Algethami J, Al-Saidi HM, Alosaimi EH, A Alnaam Y, Al-Ahmary KM, Khan S. Recent Advancements in Fluorometric and Colorimetric Detection of Cd 2+ Using Organic Chemosensors: A Review (2019-2024). Crit Rev Anal Chem 2024:1-20. [PMID: 38655923 DOI: 10.1080/10408347.2024.2339968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In recent decades, heavy metal ions have emerged as a significant global environmental concern, posing threats to the delicate balance of ecosystems worldwide. Their introduction into ecosystems occurs through various activities and poses a serious risk to human health. Among heavy metal ions, Cd2+ is recognized as a highly toxic pollutant. Its widespread use contributes to its accumulation in the environment. Chronic exposure to Cd2+ ions present serious risks to both the environment and human health. Therefore, the detection of these metal ions are very important. Organic fluorometric and colorimetric detection have emerged as promising tools for this purpose, offering advantages such as high sensitivity, selectivity, and sometimes reversibility. This review offers a comprehensive overview of the recent advancements in the fluorometric and colorimetric detection of Cd2+ using organic chemosensors from 2019 to 2024. We delve into key aspects of these studies, including the design strategies employed to design novel chemosensors and the underlying sensing mechanisms. Furthermore, we explore the diverse applications of these organic chemosensors, ranging from environmental monitoring to biomedical diagnostics. By analyzing the latest research findings, this review aims to offer insights into the current state-of-the-art in the field of Cd2+ detection using organic chemosensors. Additionally, it highlights the potential opportunities and challenges that lie ahead, paving the way for future advancements in this important area of research.
Collapse
Affiliation(s)
- Jari S Algethami
- Department of Chemistry, College of Science and Arts, and Advanced Materials and Nano-Research Centre (AMNRC), Najran University, Najran, Saudi Arabia
- Science and Engineering Research Center, Najran University, Najran, Saudi Arabia
| | - Hamed M Al-Saidi
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eid H Alosaimi
- Department of Chemistry, College of Science, University of Bisha, Bisha, Saudi Arabia
| | - Yaser A Alnaam
- Clinical Laboratory Sciences Department, Prince Sultan Military College of Health Sciences, PSMCHS, Dhahran, Saudi Arabia
| | | | - Sikandar Khan
- Department of Chemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
2
|
Liu S, Yin Y, Liu S, Wang C, Sun W, Hu X. Shining a light on liver health: advancements in fluorescence-enhanced enzyme biosensors for early disease detection. Front Bioeng Biotechnol 2024; 12:1392857. [PMID: 38707500 PMCID: PMC11066187 DOI: 10.3389/fbioe.2024.1392857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Early detection of liver diseases holds paramount importance in optimizing treatment outcomes and prognosis, thereby significantly enhancing the likelihood of recovery while mitigating the risk of progression to liver cancer. Liver diseases encompass a spectrum of conditions, each potentially manifesting distinct enzymatic profiles. Monitoring these enzymes in situ facilitates timely intervention and therapeutic management. In recent years, the field of biosensor technology has witnessed remarkable advancement, owing to strides in biomedicine and computational sciences. Biosensors have garnered widespread utility across medical and biological domains, spanning the detection of disease biomarkers, drug release tracking, ion imaging, and fluorescence imaging within living organisms. These applications have markedly enhanced imaging resolution and have the potential to refine disease diagnosis accuracy for clinicians. A pivotal aspect in the successful application of this technology lies in the construction of fluorescence probes adept at swiftly and selectively identifying target enzymes by amalgamating liver disease enzymes with fluorescence probe technology. However, research in this niche area remains relatively scarce. Building upon this foundational understanding, the present review delineates the utilization of biosensors in the early diagnosis of liver disease. Serving as a theoretical framework, this review envisages the development of high-performance biosensors tailored for the early detection of liver cancer. Furthermore, it offers insights into the potential of biosensor technology to progress and broaden its practical applications, thus contributing to the advancement of diagnostic methodologies in liver disease management.
Collapse
Affiliation(s)
- Shifeng Liu
- Department of the Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yatong Yin
- Qingdao Maternal and Child Health and Family Planning Service Center, Qingdao, China
| | - Shihai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Congxiao Wang
- Department of the Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenshe Sun
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Xiaokun Hu
- Department of the Interventional Medical Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Zhang Z, Zou Y, Liu J. A single 8-hydroxyquinoline-appended bile acid fluorescent probe obtained by click chemistry for solvent-dependent and distinguishable sensing of zinc(II) and cadmium(II). LUMINESCENCE 2024; 39:e4610. [PMID: 37880919 DOI: 10.1002/bio.4610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Construction of fluorescent probes for zinc ion (Zn2+ ) and cadmium ion (Cd2+ ) is significant for the safety of humans. However, the discriminating recognition of Zn2+ and Cd2+ by a single probe remains challenging owing to their similar properties. Herein, a novel deoxycholic acid derivative containing 8-hydroxyquinoline fluorophore has been facilely synthesized through click chemistry to form a clamp-like probe. Using its perfect bonding cavity from 1,2,3-triazole and quinoline, this molecule showed favorable solvent-dependent fluorescent responses and distinguished Zn2+ and Cd2+ in different solvents. In ethanol aqueous solution, it displayed good selectivity and ratiometric fluorescence to Zn2+ with 30 nm spectroscopic red-shifts. In acetonitrile aqueous solution, it exhibited good selectivity and ratiometric fluorescence to Cd2+ with 18 nm spectroscopic red-shifts. Moreover, the unique microstructural features of the probe in assembly were used to reflect its recognition processes. Due to its merits of low detection limit and instant response time, the probe was utilized for sensing Zn2+ and Cd2+ in water, beer and urine with high accuracy. Meanwhile, this probe served as a handy tool and was employed to obtain inexpensive test strips for the prompt and semiqualitative analysis of Zn2+ and Cd2+ with the naked eye.
Collapse
Affiliation(s)
- Zhen Zhang
- Institute of Molecular Science and Application, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, China
| | - Yuan Zou
- Institute of Molecular Science and Application, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, China
| | - Jihua Liu
- Xi'an Modern Chemistry Research Institute, Xi'an, China
| |
Collapse
|
4
|
Enbanathan S, Iyer Sathiyanarayanan K. The catalyst free synthesis of dibenzo[a,j]acridine and its applications in bioimaging of BF 3 in HeLa cells. Methods 2024; 221:65-72. [PMID: 38040205 DOI: 10.1016/j.ymeth.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023] Open
Abstract
In this paper, we discuss how tetrahydrodibenzo[a,j]acridine (4-HA) loses its hydrogen, which makes dibenzo[a,j]acridine (ARM) and also how 4-HA can be synthesized effectively using 2-tetralone in high yield. Dehydrogenative condensation and dehydrogenation are the two processes that make up the overall reaction of this synthetic approach. In addition, the presence of BF3 caused a remarkable fluorescence shift in ARM. Test paper analysis was used for examining the practical usefulness of ARM, which can be seen under UV light, resulting in this unique phenomenon. The fluorescent bio imaging experiment demonstrates that the sensor ARM has the capability to detect BF3 in living HeLa cells.
Collapse
Affiliation(s)
- Saravanan Enbanathan
- Department of Chemistry, School of Advanced Sciences and Vellore Institute of Technology, Vellore 632 014, India
| | | |
Collapse
|
5
|
Enbanathan S, Munusamy S, Ponnan S, Jothi D, Manoj Kumar S, Sathiyanarayanan KI. AIE active luminous dye with a triphenylamine attached benzothiazole core as a portable polymer film for sensitively detecting CN- ions in food samples. Talanta 2023; 264:124726. [PMID: 37276676 DOI: 10.1016/j.talanta.2023.124726] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Aggregation-induced emission (AIE) active 3-(3-(benzo[d]thiazol-2-yl)-2-hydroxyphenyl)-2-(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)acrylonitrile (BTPA) has been designed and synthesized herein, with the goal of detecting CN- ions at a low-level in semi-aqueous medium. The deliberate addition of the electron-deficient alkene BTPA increased its sensitivity and selectivity to CN- ions, with a better detection limit of 6.4 nM, unveiling the next-generation approach to creating sophisticated CN- ions selective chemosensors. The ESI-MS and NMR spectra analyses provided strong support for the structures of the chemosensors, while the UV-Vis, photoluminescence, and 1H-NMR titration experiments provided support for the sensing efficiencies. Subsequently, PVDF/BTPA electrospun nanofibers have been effectively produced as functional films. These nanofiber films exhibit outstanding mechanical strength, photo/thermal stability, and optical responsiveness to CN- ions, making them a potential choice for on-field emerging contaminant detection.
Collapse
Affiliation(s)
- Saravanan Enbanathan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India
| | - Sathishkumar Munusamy
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, 60616, United States.
| | - Sathiyanathan Ponnan
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Dhanapal Jothi
- Department of Advanced Organic Materials Science and Engineering, Chungnam National University, South Korea
| | - Selin Manoj Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, India
| | | |
Collapse
|
6
|
Wang Z, Han D, Wang H, Zheng M, Xu Y, Zhang H. Organic Semiconducting Nanoparticles for Biosensor: A Review. BIOSENSORS 2023; 13:bios13040494. [PMID: 37185569 PMCID: PMC10136359 DOI: 10.3390/bios13040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Highly bio-compatible organic semiconductors are widely used as biosensors, but their long-term stability can be compromised due to photo-degradation and structural instability. To address this issue, scientists have developed organic semiconductor nanoparticles (OSNs) by incorporating organic semiconductors into a stable framework or self-assembled structure. OSNs have shown excellent performance and can be used as high-resolution biosensors in modern medical and biological research. They have been used for a wide range of applications, such as detecting small biological molecules, nucleic acids, and enzyme levels, as well as vascular imaging, tumor localization, and more. In particular, OSNs can simulate fine particulate matters (PM2.5, indicating particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) and can be used to study the biodistribution, clearance pathways, and health effects of such particles. However, there are still some problems that need to be solved, such as toxicity, metabolic mechanism, and fluorescence intensity. In this review, based on the structure and design strategies of OSNs, we introduce various types of OSNs-based biosensors with functional groups used as biosensors and discuss their applications in both in vitro and in vivo tracking. Finally, we also discuss the design strategies and potential future trends of OSNs-based biosensors. This review provides a theoretical scaffold for the design of high-performance OSNs-based biosensors and highlights important trends and future directions for their development and application.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53-Zhengzhou Road, Qingdao 266042, China
| | - Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hongzhen Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53-Zhengzhou Road, Qingdao 266042, China
| | - Meng Zheng
- R&D Center of Polymer Materials, Qingdao Haiwan Science and Technology Industry Research Institute Co., Ltd. (HWSTI), Qingdao Haiwan Chemistry Co., Ltd. (QHCC), Qingdao, 266061, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Haichang Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, 53-Zhengzhou Road, Qingdao 266042, China
| |
Collapse
|
7
|
Wang Z, Ma J, Li C, Zhang H. Conjugated Aggregation-Induced Fluorescent Materials for Biofluorescent Probes: A Review. BIOSENSORS 2023; 13:159. [PMID: 36831925 PMCID: PMC9953538 DOI: 10.3390/bios13020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The common fluorescent conjugated materials present weak or quenching luminescent phenomena in the solid or aggregate state (ACQ), which limits their applications in medicine and biology. In the last two decades, certain materials, named aggregation-induced emission (AIE) fluorescent materials, have exhibited strong luminescent properties in the aggregate state, which can overcome the ACQ phenomenon. Due to their intrinsic properties, the AIE materials have been successfully used in biolabeling, where they can not only detect the species of ions and their concentrations in organisms, but can also monitor the organisms' physiological activity. In addition, these kinds of materials often present non-biological toxicity. Thus, AIE materials have become some of the most popular biofluorescent probe materials and are attracting more and more attention. This field is still in its early infancy, and several open challenges urgently need to be addressed, such as the materials' biocompatibility, metabolism, and so on. Designing a high-performance AIE material for biofluorescent probes is still challenging. In this review, based on the molecular design concept, various AIE materials with functional groups in the biofluorescent probes are introduced, including tetrastyrene materials, distilbene anthracene materials, triphenylamine materials, and hexaphenylsilole materials. In addition, according to the molecular system design strategy, the donor-acceptor (D-A) system and hydrogen-bonding AIE materials used as biofluorescent probes are reviewed. Finally, the biofluorescent probe design concept and potential evolution trends are discussed. The final goal is to outline a theoretical scaffold for the design of high-performance AIE biofluorescent probes that can at the same time further the development of the applications of AIE-based biofluorescent probes.
Collapse
|