1
|
He Y, Yu T, Li H, Sun Q, Chen M, Lin Y, Dai J, Wang W, Li Q, Ju S. Polystyrene nanoplastic exposure actives ferroptosis by oxidative stress-induced lipid peroxidation in porcine oocytes during maturation. J Anim Sci Biotechnol 2024; 15:117. [PMID: 39223579 PMCID: PMC11370062 DOI: 10.1186/s40104-024-01077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Polystyrene nanoplastics (PS-NPs) are becoming increasingly prevalent in the environment with great advancements in plastic products, and their potential health hazard to animals has received much attention. Several studies have reported the toxicity of PS-NPs to various tissues and cells; however, there is a paucity of information about whether PS-NPs exposure can have toxic effects on mammalian oocytes, especially livestock. Herein, porcine oocytes were used as the model to investigate the potential effects of PS-NPs on mammalian oocytes. RESULTS The findings showed that different concentrations of PS-NPs (0, 25, 50 and 100 μg/mL) entering into porcine oocytes could induce mitochondrial stress, including a significant decrease in mitochondrial membrane potential (MMP), and the destruction of the balance of mitochondrial dynamic and micromorphology. Furthermore, there was a marked increase in reactive oxygen species (ROS), which led to oocyte lipid peroxidation (LPO). PS-NPs exposure induced abnormal intracellular iron overload, and subsequently increased the expression of transferrin receptor (TfRC), solute carrier family 7 member 11 (SLC7a11), and acyl-CoA synthetase long-chain family member 4 (ACSL4), which resulted in ferroptosis in oocytes. PS-NPs also induced oocyte maturation failure, cytoskeletal dysfunction and DNA damage. Cotreatment with 5 μmol/L ferrostatin-1 (Fer-1, an inhibitor of ferroptosis) alleviated the cellular toxicity associated with PS-NPs exposure during porcine oocyte maturation. CONCLUSIONS In conclusion, PS-NPs caused ferroptosis in porcine oocytes by increasing oxidative stress and altering lipid metabolism, leading to the failure of oocyte maturation.
Collapse
Affiliation(s)
- Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianhang Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Heran Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Qinfeng Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Miaoyu Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiyi Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianjun Dai
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Weihan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiao Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Liu S, Chen Q, Ding H, Song Y, Pan Q, Deng H, Zeng EY. Differences of microplastics and nanoplastics in urban waters: Environmental behaviors, hazards, and removal. WATER RESEARCH 2024; 260:121895. [PMID: 38875856 DOI: 10.1016/j.watres.2024.121895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are ubiquitous in the aquatic environment and have caused widespread concerns globally due to their potential hazards to humans. Especially, NPs have smaller sizes and higher penetrability, and therefore can penetrate the human barrier more easily and may pose potentially higher risks than MPs. Currently, most reviews have overlooked the differences between MPs and NPs and conflated them in the discussions. This review compared the differences in physicochemical properties and environmental behaviors of MPs and NPs. Commonly used techniques for removing MPs and NPs currently employed by wastewater treatment plants and drinking water treatment plants were summarized, and their weaknesses were analyzed. We further comprehensively reviewed the latest technological advances (e.g., emerging coagulants, new filters, novel membrane materials, photocatalysis, Fenton, ozone, and persulfate oxidation) for the separation and degradation of MPs and NPs. Microplastics are more easily removed than NPs through separation processes, while NPs are more easily degraded than MPs through advanced oxidation processes. The operational parameters, efficiency, and potential governing mechanisms of various technologies as well as their advantages and disadvantages were also analyzed in detail. Appropriate technology should be selected based on environmental conditions and plastic size and type. Finally, current challenges and prospects in the detection, toxicity assessment, and removal of MPs and NPs were proposed. This review intends to clarify the differences between MPs and NPs and provide guidance for removing MPs and NPs from urban water systems.
Collapse
Affiliation(s)
- Shuan Liu
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Haojie Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 123456, China
| | - Yunqian Song
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Qixin Pan
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Huiping Deng
- Shanghai Institute of Pollution Control and Ecological Security, Key Laboratory of Yangtze River Water Environment Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Eddy Y Zeng
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Ghosal S, Bag S, Rao SR, Bhowmik S. Exposure to polyethylene microplastics exacerbate inflammatory bowel disease tightly associated with intestinal gut microflora. RSC Adv 2024; 14:25130-25148. [PMID: 39139248 PMCID: PMC11320195 DOI: 10.1039/d4ra04544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Polyethylene microplastics (PE MPs) have sparked widespread concern about their possible health implications because of their abundance, pervasiveness in the environment and in our daily life. Multiple investigations have shown that a high dosage of PE MPs may adversely impact gastrointestinal health. In tandem with the rising prevalence of Inflammatory bowel disease (IBD) in recent decades, global plastic manufacturing has risen to more than 300 million tons per year, resulting in a build-up of plastic by-products such as PE MPs in our surroundings. We have explored current advancements in the effect PE MPs on IBD in this review. Furthermore, we compared and summarized the detrimental roles of PE MPs in gut microbiota of different organisms viz., earthworms, super worm's larvae, yellow mealworms, brine shrimp, spring tails, tilapia, gilt-head bream, crucian carp, zebrafish, juvenile yellow perch, European sea bass, c57BL/6 mice and human. According to this review, PE MPs played a significant role in decreasing the diversity of gut microbiota of above-mentioned species which leads to the development of IBD and causes severe intestinal inflammation. Finally, we pinpoint significant scientific gaps, such as the movement of such hazardous PE MPs and the accompanying microbial ecosystems and propose prospective research directions.
Collapse
Affiliation(s)
- Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
| | - Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta 92, A. P. C. Road Kolkata - 700009 India
| | - S R Rao
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
| | - Sudipta Bhowmik
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University) Pondy-Cuddalore Main Road, Pillaiyarkuppam Pondicherry - 607402 India
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta 92, A. P. C. Road Kolkata - 700009 India
| |
Collapse
|
4
|
Wang M, Dai B, Liu Q, Wang X, Xiao Y, Zhang G, Jiang H, Zhang X, Zhang L. Polystyrene nanoplastics exposure causes erectile dysfunction in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116551. [PMID: 38875818 DOI: 10.1016/j.ecoenv.2024.116551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Polystyrene nanoplastics (PS-NPs), emerging and increasingly pervasive environmental contaminants, have the potential to cause persistent harm to organisms. Although previous reports have documented local accumulation and adverse effects in a variety of major organs after PS-NPs exposure, the impact of PS-NPs exposure on erectile function remains unexplored. Herein, we established a rat model of oral exposure to 100 nm PS-NPs for 28 days. To determine the best dose range of PS-NPs, we designed both low-dose and high-dose PS-NPs groups, which correspond to the minimum and maximum human intake doses, respectively. The findings indicated that PS-NPs could accumulate within the corpus cavernosum and high dose but not low dose of PS-NPs triggered erectile dysfunction. Moreover, the toxicological effects of PS-NPs on erectile function include fibrosis in the corpus cavernous, endothelial dysfunction, reduction in testosterone levels, elevated oxidative stress and apoptosis. Overall, this study revealed that PS-NPs exposure can cause erectile dysfunction via multiple ways, which provided new insights into the toxicity of PS-NPs.
Collapse
Affiliation(s)
- Ming Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Urology, Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Bangshun Dai
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Urology, Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Qiushi Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Urology, Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Xiaobin Wang
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen 518052, China
| | - Yunzheng Xiao
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen 518052, China
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China.
| | - Hui Jiang
- Department of Urology, Peking University First Hospital Institute of Urology, Peking University Andrology Center, Beijing 100034, China.
| | - Xiansheng Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Urology, Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China.
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Urology, Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China; Center for Scientific Research of the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
5
|
Fontes BLM, de Souza E Souza LC, da Silva de Oliveira APS, da Fonseca RN, Neto MPC, Pinheiro CR. The possible impacts of nano and microplastics on human health: lessons from experimental models across multiple organs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024:1-35. [PMID: 38517360 DOI: 10.1080/10937404.2024.2330962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The widespread production and use of plastics have resulted in accumulation of plastic debris in the environment, gradually breaking down into smaller particles over time. Nano-plastics (NPs) and microplastics (MPs), defined as particles smaller than 100 nanometers and 5 millimeters, respectively, raise concerns due to their ability to enter the human body through various pathways including ingestion, inhalation, and skin contact. Various investigators demonstrated that these particles may produce physical and chemical damage to human cells, tissues, and organs, disrupting cellular processes, triggering inflammation and oxidative stress, and impacting hormone and neurotransmitter balance. In addition, micro- and nano-plastics (MNPLs) may carry toxic chemicals and pathogens, exacerbating adverse effects on human health. The magnitude and nature of these effects are not yet fully understood, requiring further research for a comprehensive risk assessment. Nevertheless, evidence available suggests that accumulation of these particles in the environment and potential human uptake are causes for concern. Urgent measures to reduce plastic pollution and limit human exposure to MNPLs are necessary to safeguard human health and the environment. In this review, current knowledge regarding the influence of MNPLs on human health is summarized, including toxicity mechanisms, exposure pathways, and health outcomes across multiple organs. The critical need for additional research is also emphasized to comprehensively assess potential risks posed by degradation of MNPLs on human health and inform strategies for addressing this emerging environmental health challenge. Finally, new research directions are proposed including evaluation of gene regulation associated with MNPLs exposure.
Collapse
Affiliation(s)
- Bernardo Lannes Monteiro Fontes
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lorena Cristina de Souza E Souza
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Santos da Silva de Oliveira
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Campus Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Duque de Caxias, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marinaldo Pacifico Cavalcanti Neto
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia Rodrigues Pinheiro
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Phothong N, Aht-Ong D, Napathorn SC. Fabrication, characterization and release behavior of α-tocopherol acetate-loaded pH-responsive polyhydroxybutyrate/cellulose acetate phthalate microbeads. Int J Biol Macromol 2024; 260:129535. [PMID: 38244747 DOI: 10.1016/j.ijbiomac.2024.129535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/23/2023] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Microbeads are used in personal care and cosmetic products (PCCPs) but are produced from nondegradable materials. Biodegradable polyhydroxybutyrate (PHB) has been recognized as a promising alternative material for use in PCCPs; however, utilizing PHB to encapsulate PCCPs is challenging because PCCPs need to be protected from the environment but their release needs to be permitted under specific physiological conditions. The aim of this work was to develop and evaluate pH-responsive cellulose acetate phthalate (CAP) to formulate lipophilic α-tocopherol acetate (α-TA)-loaded pH-responsive PHB/CAP microbeads. The influences of the PHB/CAP ratio and initial α-TA loading on the microbead size, surface morphology, encapsulation efficiency (%EE), loading capacity (%LC), and α-TA release profile were studied. The microbeads exhibited a spherical shape with a size of 328.7 ± 2.9 μm. The EE and LC were 86.7 ± 2.6 % and 13.5 ± 0.4 %, respectively. The release profile exhibited pH-responsive characteristics. These α-TA-loaded pH-responsive microbeads were stable with >50 % of the α-TA remaining after 90 days at 4, 25 and 45 °C in the dark. The results from the cytotoxicity assay with PSVK1 cells demonstrated that the microbeads were nontoxic. Hence, our developed formulation has the potential to be used to encapsulate oil-based drugs to formulate lipophilic substance-loaded pH-responsive microbeads.
Collapse
Affiliation(s)
- Natthaphat Phothong
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Duangdao Aht-Ong
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand; National Center for Petroleum, Petrochemicals and Advance Materials, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Suchada Chanprateep Napathorn
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand; Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand; International Center for Biotechnology, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
7
|
Zhu Y, Che R, Zong X, Wang J, Li J, Zhang C, Wang F. A comprehensive review on the source, ingestion route, attachment and toxicity of microplastics/nanoplastics in human systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120039. [PMID: 38218169 DOI: 10.1016/j.jenvman.2024.120039] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/15/2024]
Abstract
Microplastics (MPs)/nanoplastics (NPs) are widely found in the natural environment, including soil, water and the atmosphere, which are essential for human survival. In the recent years, there has been a growing concern about the potential impact of MPs/NPs on human health. Due to the increasing interest in this research and the limited number of studies related to the health effects of MPs/NPs on humans, it is necessary to conduct a systematic assessment and review of their potentially toxic effects on human organs and tissues. Humans can be exposed to microplastics through ingestion, inhalation and dermal contact, however, ingestion and inhalation are considered as the primary routes. The ingested MPs/NPs mainly consist of plastic particles with a particle size ranging from 0.1 to 1 μm, that distribute across various tissues and organs within the body, which in turn have a certain impact on the nine major systems of the human body, especially the digestive system and respiratory system, which are closely related to the intake pathway of MPs/NPs. The harmful effects caused by MPs/NPs primarily occur through potential toxic mechanisms such as induction of oxidative stress, generation of inflammatory responses, alteration of lipid metabolism or energy metabolism or expression of related functional factors. This review can help people to systematically understand the hazards of MPs/NPs and related toxicity mechanisms from the level of nine biological systems. It allows MPs/NPs pollution to be emphasized, and it is also hoped that research on their toxic effects will be strengthened in the future.
Collapse
Affiliation(s)
- Yining Zhu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Ruijie Che
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Xinyan Zong
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Jinhan Wang
- School of Public Health, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China
| | - Chaofeng Zhang
- Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
8
|
Ratre P, Nazeer N, Soni N, Kaur P, Tiwari R, Mishra PK. Smart carbon-based sensors for the detection of non-coding RNAs associated with exposure to micro(nano)plastics: an artificial intelligence perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8429-8452. [PMID: 38182954 DOI: 10.1007/s11356-023-31779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Micro(nano)plastics (MNPs) are pervasive environmental pollutants that individuals eventually consume. Despite this, little is known about MNP's impact on public health. In this article, we assess the evidence for potentially harmful consequences of MNPs in the human body, concentrating on molecular toxicity and exposure routes. Since MNPs are present in various consumer products, foodstuffs, and the air we breathe, exposure can occur through ingestion, inhalation, and skin contact. MNPs exposure can cause mitochondrial oxidative stress, inflammatory lesions, and epigenetic modifications, releasing specific non-coding RNAs in circulation, which can be detected to diagnose non-communicable diseases. This article examines the most fascinating smart carbon-based nanobiosensors for detecting circulating non-coding RNAs (lncRNAs and microRNAs). Carbon-based smart nanomaterials offer many advantages over traditional methods, such as ease of use, sensitivity, specificity, and efficiency, for capturing non-coding RNAs. In particular, the synthetic methods, conjugation chemistries, doping, and in silico approach for the characterization of synthesized carbon nanodots and their adaptability to identify and measure non-coding RNAs associated with MNPs exposure is discussed. Furthermore, the article provides insights into the use of artificial intelligence tools for designing smart carbon nanomaterials.
Collapse
Affiliation(s)
- Pooja Ratre
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Nazim Nazeer
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Nikita Soni
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Prasan Kaur
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna Kumar Mishra
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
9
|
Saygin H, Baysal A, Zora ST, Tilkili B. A characterization and an exposure risk assessment of microplastics in settled house floor dust in Istanbul, Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121030-121049. [PMID: 37947931 DOI: 10.1007/s11356-023-30543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
The presence of microplastics in the indoor environment presents growing environmental and human health risks because of their physicochemical and toxic characteristics. Therefore, we aimed to isolate, identify, and characterize plastic debris in settled house floor dusts. This study is a rare study which assess the risks of plastic debris in settled house dust through multiple approaches including the estimated daily intake, pollution loading index, and polymer hazard index. The results indicated that polyethylene and polypropylene were the predominate polymer type of plastic debris in settled house dust with various shapes and colors. The risk assessment results also indicated the serious impact of microplastics in terms of extremely dangerous contamination as well as the fact that they present a polymer hazard. Results indicated that humans have a higher risk of exposure to microplastics via ingestion rather than inhalation. In addition, infants had a higher risk of potential intake compared to other age groups.
Collapse
Affiliation(s)
- Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Türkiye.
| | - Asli Baysal
- Faculty of Science and Letters, Chemistry Dept., Istanbul Technical University, Maslak, 34467, Istanbul, Türkiye
| | - Sevilay Tarakci Zora
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Türkiye
| | - Batuhan Tilkili
- Health Services Vocational School of Higher Education, Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Türkiye
| |
Collapse
|
10
|
Nangan S, Natesan T, Sukmas W, Okhawilai M, Justice Babu K, Tsuppayakorn-Aek P, Bovornratanaraks T, Wongsalam T, Vimal V, Uyama H, Al-Enizi AM, Kansal L, Sehgal SS. Waste plastics derived nickel-palladium alloy filled carbon nanotubes for hydrogen evolution reaction. CHEMOSPHERE 2023; 341:139982. [PMID: 37648169 DOI: 10.1016/j.chemosphere.2023.139982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Carbon nanotubes (CNTs) composed of bimetallic nickel-palladium (NiPd) nanoparticles encapsulated in graphitic carbon shells (NdPd@CNT) are prepared by the chemical vapour deposition method using waste polyethylene terephthalate (PET) plastic carbon sources and NiPd-decorated carbon sheets (NiPd@C) catalyst. The characterization results reveal that the face-centered cubic crystalline (fcc)-structured NiPd bimetallic alloy nanoparticles are encased by thin carbon nanotubes. The bimetallic synergism of NiPd nanoparticles actuates the outer CNT layers and accelerates the electrical conductivity, stimulating the electrochemical activity toward an effective hydrogen evolution reaction (HER). By virtue of the collective individualities of highly conductive aligned carbon walls and bimetallic active sites, the NiPd@CNT-equipped HER delivers a minimum overpotential of 87 mV and a Tafel slope value of 95 mV dec-1. The existing intact contact between NiPd and CNT facilitates continuous electron and ion transportation and firm stability toward long-term hydrogen production in HER. Notably, the NiPd@CNT reported here produces excellent electrochemical activity with minimal charge transference resistance, substantiating the efficacy of NiPd@CNT for futuristic green hydrogen production.
Collapse
Affiliation(s)
- Senthilkumar Nangan
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thirumalaivasan Natesan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMTAS), Saveetha University, Chennai, 600077, Tamilnadu, India
| | - Wiwittawin Sukmas
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | | | - Prutthipong Tsuppayakorn-Aek
- Extreme Conditions Physics Research Laboratory and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thiti Bovornratanaraks
- Extreme Conditions Physics Research Laboratory and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tawan Wongsalam
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vrince Vimal
- Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun, 248002, India
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Lavish Kansal
- School Electronics and Electrical Engineering, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Satbir S Sehgal
- Division of Research Innovation, Uttaranchal University, Dehradun, India
| |
Collapse
|
11
|
Basini G, Grolli S, Bertini S, Bussolati S, Berni M, Berni P, Ramoni R, Scaltriti E, Quintavalla F, Grasselli F. Nanoplastics induced oxidative stress and VEGF production in aortic endothelial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104294. [PMID: 37838301 DOI: 10.1016/j.etap.2023.104294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Plastic is an important environmental issue and a more critical aspect concerns plastic fragments, mainly in term of nanoplastics (NPs). We demonstrated that NPs interfere with reproductive and adipose stromal cells. Since several research underlined an increased cardiovascular risk due to NPs, present study was undertaken to investigate their effect on aortic endothelial cells (AOC). We explored the specificity of their interaction with endothelial cells, quantifying their load in treated cells. Then, NPs effect was assessed on cell growth, generation of free radicals and antioxidant defence. Our data demonstrate that NPs colocalize with AOC. We found a significant (p < 0.01) increase both in metabolic activity and Vascular Endothelial Growth Factor (VEGF) production (p < 0.01). Redox status appeared to be disrupted (p < 0.05) by NPs. Taken together, the normal function of cultured AOC appeared negatively affected by AOC. Since NPs have been detected in blood, our present data appear of particular interest.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy.
| | - Stefano Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Simone Bertini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Simona Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Melissa Berni
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Strada dei Mercati 13a, 43126 Parma, Italy
| | - Priscilla Berni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Roberto Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Erika Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Strada dei Mercati 13a, 43126 Parma, Italy
| | - Fausto Quintavalla
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| | - Francesca Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, Via del Taglio 10, 43126 Parma, Italy
| |
Collapse
|
12
|
Xue W, Li J, Chen X, Liu H, Wen S, Shi X, Guo J, Gao Y, Xu J, Xu Y. Recent advances in sulfidized nanoscale zero-valent iron materials for environmental remediation and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101933-101962. [PMID: 37659023 DOI: 10.1007/s11356-023-29564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Over the past decade, sulfidized nanoscale zero-valent iron (S-nZVI) has been developed as a promising tool for the remediation of contaminated soil, sediment, and water. Although most studies have focused on applying S-nZVI for clean-up purposes, there is still a lack of systematic summary and discussion from its synthesis, application, to toxicity assessment. This review firstly summarized and compared the properties of S-nZVI synthesized from one-step and two-step synthesis methods, and the modification protocols for obtaining better stability and reactivity. In the context of environmental remediation, this review outlined an update on the latest development of S-nZVI for removal of heavy metals, organic pollutants, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) and also discussed the underlying removal mechanisms. Environmental factors affecting the remediation performance of S-nZVI (e.g., humic acid, coexisting ions, S/Fe molar ratio, pH, and oxygen condition) were highlighted. Besides, the application potential of S-nZVI in advanced oxidation processes (AOP), especially in activating persulfate, was also evaluated. The toxicity impacts of S-nZVI on the environmental microorganism were described. Finally, the future challenges and remaining restrains to be resolved for better applicability of S-nZVI are also proposed. This review could provide guidance for the environmental remediation with S-nZVI-based technology from theoretical basis and practical perspectives.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jun Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xinyu Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Jian Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|