1
|
Zhang J, Ding N, Qi Y, Jiang N, Xing W, Li T, Ma Z, Cao Y, Zhang Y, Li J. Immune Response and Transcriptome Analysis of the Head Kidney to Different Concentrations of Aeromonas veronii in Common Carp ( Cyprinus carpio). Int J Mol Sci 2024; 25:12070. [PMID: 39596143 PMCID: PMC11593800 DOI: 10.3390/ijms252212070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The common carp (Cyprinus carpio), a major economic freshwater fish, is suffering from a variety of bacterial infectious diseases because of its high-density, factory and intensive farming patterns. Aeromonas veronii is the causative agent of high mortality in common carp, causing severe economic losses in aquaculture. However, the regulatory mechanisms involved in the response of common carp to this bacterial infection remain poorly understood. In this study, we compared mortality, blood serum LZM (Lysozyme) and IgM (Immunoglobulin M) levels and transcriptome patterns of head kidney tissues after infection with different concentrations of Aeromonas veronii. We observed that mortality increased progressively with an increasing pathogen concentration. The concentrations of blood serum LZM and IgM significantly increased after infection. A total of 13 and 925 differentially expressed genes (DEGs) were identified after infection with low (T4) and high (T9) concentrations of bacterial suspension, respectively. KEGG and GO analyses of the DEGs highlighted multiple immune-related signaling pathways. Weighted gene co-expression network analysis (WGCNA) revealed that 136 and 83 hub genes were related to blood serum LZM and IgM, respectively. Finally, the gene expression in the head kidney was validated via RT-qPCR to be consistent with the transcriptome. These results provide insights into the mechanisms of the immune response to infection with different concentrations of Aeromonas veronii and offer useful information for further studies on immune defense mechanisms in common carp.
Collapse
Affiliation(s)
- Jin Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (J.Z.); (N.D.); (Y.C.)
| | - Ning Ding
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (J.Z.); (N.D.); (Y.C.)
- Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingjie Qi
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China;
| | - Na Jiang
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, China; (N.J.); (W.X.); (T.L.); (Z.M.)
| | - Wei Xing
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, China; (N.J.); (W.X.); (T.L.); (Z.M.)
| | - Tieliang Li
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, China; (N.J.); (W.X.); (T.L.); (Z.M.)
| | - Zhihong Ma
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, China; (N.J.); (W.X.); (T.L.); (Z.M.)
| | - Yiming Cao
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (J.Z.); (N.D.); (Y.C.)
| | - Yan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (J.Z.); (N.D.); (Y.C.)
| | - Jiongtang Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs and Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing 100141, China; (J.Z.); (N.D.); (Y.C.)
| |
Collapse
|
2
|
Zeng YH, Li W, Xu H, Gong XX, Zhang YM, Long H, Xie ZY. Dual RNA-Seq Unveils Candidate Key Virulence Genes of Vibrio harveyi at the Early Stage of Infection in Hybrid Grouper (♀ Epinephelus polyphekadion × ♂ E. fuscoguttatus). Microorganisms 2024; 12:2113. [PMID: 39597503 PMCID: PMC11596792 DOI: 10.3390/microorganisms12112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Vibrio harveyi is a major bacterial pathogen that causes disease in aquaculture animals worldwide. Although V. harveyi consistently harbors a range of traditional virulence genes, it remains unclear which specific genes are crucial for virulence at different infection stages. Dual RNA-seq is a cutting-edge RNA sequencing technology that is ideal for investigating the gene expression patterns of pathogens within the host, which is highly effective in identifying key virulence genes. In previous artificial infection experiments, we have identified the liver of hybrid grouper (♀ Epinephelus polyphekadion × ♂ E. fuscoguttatus) as the main target organ for pathogenic V. harveyi GDH11385 during the initial infection phase. To further explore the key virulence factors of V. harveyi at the early stage of infection, the liver of the hybrid grouper infected with strain GDH11385 was analyzed here by dual RNA-seq. The transcriptome data were compared with that of in vitro cultured bacteria. The results showed that 326 and 1140 DEGs (differentially expressed genes) were significantly up- and down-regulated, respectively, at 4 h post-infection (hpi). Further pathway enrichment analyses revealed that these up-regulated DEGs in vivo were mainly enriched in siderophore biosynthesis and transport, type VI secretion system (T6SS), flagellar assembly, glycolysis/gluconeogenesis, and ribosome. Notably, all genes involved in the metabolism and utilization of vibrioferrin (a carboxylate class of siderophore produced by Vibrio), and most of the genes within one of three T6SSs, were significantly up-regulated in vivo. This indicates that siderophore-dependent iron competition and T6SS-mediated delivery of virulence factors are vital for the successful colonization of V. harveyi at the early stage of infection. This study provides more precise clues to reveal the virulence mechanism of V. harveyi during the initial phase of infection.
Collapse
Affiliation(s)
- Yan-Hua Zeng
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Wen Li
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - He Xu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Xiao-Xiao Gong
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Yu-Mei Zhang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Hao Long
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Zhen-Yu Xie
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Yang Y, Xu S, He H, Zhu X, Liu Y, Ai X, Chen Y. Mechanism of sturgeon intestinal inflammation induced by Yersinia ruckeri and the effect of florfenicol intervention. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116138. [PMID: 38394759 DOI: 10.1016/j.ecoenv.2024.116138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The mechanism by which Y. ruckeri infection induces enteritis in Chinese sturgeon remains unclear, and the efficacy of drug prevention and control measures is not only poor but also plagued with numerous issues. We conducted transcriptomic and 16 S rRNA sequencing analyses to examine the differences in the intestinal tract of hybrid sturgeon before and after Y. ruckeri infection and florfenicol intervention. Our findings revealed that Y. ruckeri induced the expression of multiple inflammatory factors, including il1β, il6, and various chemokines, as well as casp3, casp8, and multiple tumor necrosis factor family members, resulting in pathological injury to the body. Additionally, at the phylum level, the relative abundance of Firmicutes and Bacteroidota increased, while the abundance of Plesiomonas and Cetobacterium decreased at the genus level, altering the composition of the intestinal flora. Following florfenicol intervention, the expression of multiple apoptosis and inflammation-related genes was down-regulated, promoting tissue repair. However, the flora became further dysregulated, increasing the risk of infection. In conclusion, our analysis of the transcriptome and intestinal microbial composition demonstrated that Y. ruckeri induces intestinal pathological damage by triggering apoptosis and altering the composition of the intestinal microbiota. Florfenicol intervention can repair pathological damage, but it also exacerbates flora imbalance, leading to a higher risk of infection. These findings help elucidate the molecular mechanism of Y. ruckeri-induced enteritis in sturgeon and evaluate the therapeutic effect of drugs on intestinal inflammation in sturgeon.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; Key Laboratory of Sturgeon Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hangzhou Qiandao Lake Sturgeon Technology Co., Ltd., Hangzhou 311799, China
| | - Shijian Xu
- Key Laboratory of Sturgeon Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hangzhou Qiandao Lake Sturgeon Technology Co., Ltd., Hangzhou 311799, China.
| | - Hao He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
4
|
Wang Q, Li X, Yao X, Ding J, Zhang J, Hu Z, Wang J, Zhu L, Wang J. Effects of butyl benzyl phthalate on zebrafish (Danio rerio) brain and the underlying molecular mechanisms revealed by transcriptome analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167659. [PMID: 37806571 DOI: 10.1016/j.scitotenv.2023.167659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Butyl benzyl phthalate (BBP), a widely used class of plasticizers, has caused considerable concerns due to its widespread detection in various environmental media. However, the potential impact of BBP on the brain and its underlying molecular mechanisms remain poorly understood. In this study, adult zebrafish (Danio rerio) were exposed to 0, 5, 50, and 500 μg/L BBP for 28 days. Elevated levels of both reactive oxygen species and 8-hydroxydeoxyguanosine were observed, indicating the occurrence of oxidative stress and DNA damage. Furthermore, exposure to BBP resulted in neurotoxicity, apoptosis, and histopathological damage within the zebrafish brain. Transcriptome analysis further revealed that Gene Ontology terms associated with muscle contraction were specifically expressed in the brain after BBP exposure. In addition, BBP altered the transcriptome profile of the brain, with 293 genes induced and 511 genes repressed. Kyoto Encyclopedia of Genes and Genomes analysis highlighted the adverse effects of BBP on the complement and coagulation cascades and two cardiomyopathy-related pathways. Taken together, our results revealed that BBP resulted in brain oxidative stress, histological damage, and transcriptome alterations. These findings have the potential to offer novel insights into the adverse outcome pathways of key events in the brain.
Collapse
Affiliation(s)
- Qian Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jia Ding
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Juan Zhang
- Shandong Institute for Product Quality Inspection, Jinan 250100, PR China
| | - Zhuran Hu
- Shandong Green and Blue Bio-technology Co. Ltd., Tai'an, PR China
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
5
|
Yang Y, Zhu X, Liu Y, Xu N, Kong W, Ai X, Zhang H. Effect of Agaricus bisporus Polysaccharides (ABPs) on anti-CCV immune response of channel catfish. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109051. [PMID: 37689228 DOI: 10.1016/j.fsi.2023.109051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Herein, the effects of Agaricus bisporus Polysaccharides (ABPs) on anti-channel catfish virus (CCV) infections to promote their application in channel catfish culture were explored. Transcriptome and metabolome analyses were conducted on the spleen of a CCV-infected channel catfish model fed with or without ABPs. CCV infections upregulated many immune and apoptosis-related genes, such as IL-6, IFN-α3, IFN-γ1, IL-26, Casp3, Casp8, and IL-10, and activated specific immunity mediated by B cells. However, after adding ABPs, the expression of inflammation-related genes decreased in CCV-infected channel catfish, and the inflammatory inhibitors NLRC3 were upregulated. Meanwhile, the expression of apoptosis-related genes was reduced, indicating that ABPs can more rapidly and strongly enhance the immunity of channel catfish to resist viral infection. Moreover, the metabonomic analysis showed that channel catfish had a high energy requirement during CCV infection, and ABPs could enhance the immune function of channel catfish. In conclusion, ABPs can enhance the antiviral ability of channel catfish by enhancing immune response and regulating inflammation. Thus, these findings provided new insights into the antiviral response effects of ABPs, which might support their application in aquaculture.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Weiguang Kong
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
6
|
Yang Y, Zhu X, Liu Y, Xu N, Ai X, Zhang H. Effects of diets rich in Agaricus bisporus polysaccharides on the growth, antioxidant, immunity, and resistance to Yersinia ruckeri in channel catfish. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108941. [PMID: 37463648 DOI: 10.1016/j.fsi.2023.108941] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
To promote the application of Agaricus bisporus polysaccharides (ABPs) in channel catfish (Ictalurus punctatus) culture, we evaluated the effects of ABPs on the growth, immunity, antioxidant, and antibacterial activity of channel catfish. When the amount of ABPs was 250 mg/kg, channel catfish's weight gain and specific growth rates increased significantly while the feed coefficient decreased. We also found that adding ABPs in the feed effectively increased the activities of ACP, MDA, T-SOD, AKP, T-AOC, GSH, and CAT enzymes and immune-related genes such as IL-1β, Hsp70, and IgM in the head kidney of channel catfish. Besides, long-term addition will not cause pathological damage to the head kidney. When the amount of ABPs was over 125 mg/kg, the protection rate of channel catfish was more than 60%. According to the intestinal transcriptome analysis, the addition of ABPs promoted the expression of intestinal immunity genes and growth metabolism-related genes and enriched multiple related KEEG pathways. When challenged by Yersinia ruckeri infection, the immune response of channel catfish fed with ABPs was intenser and quicker. Additionally, the 16S rRNA gene sequencing analysis showed that the composition of the intestinal microbial community of channel catfish treated with ABPs significantly changed, and the abundance of microorganisms beneficial to channel catfish growth, such as Firmicutes and Bacteroidota increased. In conclusion, feeding channel catfish with ABPs promoted growth, enhanced immunity and antioxidant, and improved resistance to bacterial infections. Our current results might promote the use of ABPs in channel catfish and even other aquacultured fish species.
Collapse
Affiliation(s)
- Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| | - Hongyu Zhang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|