1
|
Yang L, Wu X, Wu G, Wu Y, Li H, Shao B. Association analysis of antibiotic and disinfectant resistome in human and foodborne E. coli in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173888. [PMID: 38866143 DOI: 10.1016/j.scitotenv.2024.173888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
The widespread use of chemical disinfectants and antibiotics poses a major threat to food safety and human health. However, the mechanisms of co-transmission of antimicrobial resistance genes (ARGs) and biocides and metal resistance genes (BMRGs) of foodborne pathogens in the food chain is still unclear. This study isolated 343 E. coli strains from animal-derived foods in Beijing and incorporated online data of human-derived E. coli strains from NCBI. Our results demonstrated a relatively uniform distribution of strains from various regions in Beijing, indicating a lack of region-specific clustering. Additionally, predominant sequence types varied between food- and human-derived strains, suggesting a preference for different hosts and environments. Phenotypic association analysis showed that the chlorine disinfectants peroxides had a significant positive correlation with tetracyclines. Many more ARGs and BMRGs were enriched in human-associated E. coli compared with those in chicken- and pork-origin. The quaternary ammonium compounds (QACs) resistance gene qacEΔ1 had a strong correlation with aminoglycoside resistance gene aadA5, folate pathway antagonist resistance gene dfrA17, sul1 and macrolide resistance gene mph(A). The correlation results indicated a significant association between the copper resistance gene cluster pco and the silver resistance gene cluster sil. Coexistence of many resistance genes was observed within the qacEΔ1 gene structure, with qacEΔ1-sul1 being the most common combination. Our findings demonstrated that the epidemiological spread of resistance is affected by a combination of heavy metals, disinfectants and antibiotic use, suggesting that the prevention and control strategies of antimicrobial resistance need to be multifaceted and comprehensive.
Collapse
Affiliation(s)
- Lu Yang
- Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Xuan Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China
| | - Guoquan Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yige Wu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Bing Shao
- Shanghai Anti-doping Laboratory, Shanghai University of Sport, Shanghai 200438, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Zeng Q, Wu X, Song M, Jiang L, Zeng Q, Qiu R, Luo C. Opposite Effects of Planting on Antibiotic Resistomes in Rhizosphere Soil with Different Sulfamethoxazole Levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19957-19965. [PMID: 39213533 DOI: 10.1021/acs.jafc.4c04258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Achieving consensus about the rhizosphere effect on soil antibiotic resistomes is challenging due to the variability in antibiotic concentrations, sources, and the elusory underlying mechanisms. Here, we characterized the antibiotic resistomes in both the rhizosphere and bulk soils of soybean plants grown in environments with varying levels of antibiotic contamination, using sulfamethoxazole (SMX) as a model compound. We also investigated the factors influencing resistome profiles. Soybean cultivation altered the structure of antibiotic-resistant genes (ARGs) and increased their absolute abundance. However, the rhizosphere effect on the relative abundance of ARGs was dependent on SMX concentrations. At low SMX levels, the rhizosphere effect was characterized by the inhibition of antibiotic-resistant bacteria (ARBs) and the promotion of sensitive bacteria. In contrast, at high SMX levels, the rhizosphere promoted the growth of ARBs and facilitated horizontal gene transfer of ARGs. This novel mechanism provides new insights into accurately assessing the rhizosphere effect on soil antibiotic resistomes.
Collapse
Affiliation(s)
- Qing Zeng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xueqing Wu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mengke Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qiaoyun Zeng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Rongliang Qiu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
3
|
Zeng JY, Li W, Su JQ, Wang YZ, Li Y, Yao H. Manure application amplified the co-selection of quaternary ammonium disinfectant and antibiotic on soil antibiotic resistome. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133792. [PMID: 38368685 DOI: 10.1016/j.jhazmat.2024.133792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Disinfectants and antibiotics are widely used for the prevention and control of bacterial infectious diseases. Frequent disinfection is thought to exacerbate antibiotic resistance. However, little is known about how disinfectants and antibiotics co-induce changes in the soil antibiotic resistance genes (ARGs). This study determined the ARG profiles and bacterial community dynamics between unamended soil and manure-amended soil exposed to benzalkonium chloride (C12) (BC, 10 mg kg-1) disinfectant and sulfamethazine (SMZ, 1 mg kg-1), using high-throughput quantitative PCR and 16 S rRNA gene sequencing. Manure application enriched the soil in terms of ARGs abundance and diversity, which synergistically amplified the co-selection effect of BC and SMZ on soil antibiotic resistome. Compared with the control treatment, BC and SMZ exposure had a smaller impact on the bacterial infectious diseases and antimicrobial resistance-related functions in manure-amended soil, in which bacterial communities with greater tolerance to antimicrobial substances were constructed. Manure application increased the proportion of rank I ARGs and potential human pathogenic bacteria, while BC and SMZ exposure increased the drug-resistant pathogens transmission risk. This study validated that BC and SMZ aggravated the antimicrobial resistance under manure application, providing a reference for managing the spread risk of antimicrobial resistance in agricultural activities.
Collapse
Affiliation(s)
- Jie-Yi Zeng
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Wei Li
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| | - Yan-Zi Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China.
| |
Collapse
|
4
|
Ni B, Zhang TL, Cai TG, Xiang Q, Zhu D. Effects of heavy metal and disinfectant on antibiotic resistance genes and virulence factor genes in the plastisphere from diverse soil ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133335. [PMID: 38142651 DOI: 10.1016/j.jhazmat.2023.133335] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Antibiotic-resistance genes (ARGs) are world-wide contaminants posing potential health risks. Quaternary ammonium compounds (QACs) and heavy metals can apply selective pressure on antibiotic resistance. However, there is a lack of evidence regarding their coupled effect on changes in ARGs and virulence factor genes (VFGs) in various soil types and their plastispheres. Herein, we conducted a microcosm experiment to explore the abundances and profiles of ARGs and VFGs in soil plastispheres from three distinct types of soils amended with Cu and disinfectants. The plastispheres enriched the ARGs' abundance compared to soils and stimulated the coupling effect of combined pollutants on promoting the abundances of ARGs and VFGs. Horizontal gene transfer inevitably accelerates the propagation of ARGs and VFGs in plastispheres under pollutant stress. In plastispheres, combined exposure to disinfectants and Cu increased some potential pathogens' relative abundances. Moreover, the combined effect of disinfectants and Cu on ARGs and VFGs changed with soil type in plastispheres, emphasising the necessity to incorporate soil type considerations into health risk assessments for ARGs and VFGs. Overall, this study highlights the high health risks of ARGs under the selective pressure of combined pollutants in plastispheres and provides valuable insights for future risk assessments related to antibiotic resistance.
Collapse
Affiliation(s)
- Bang Ni
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Tian-Lun Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tian-Gui Cai
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People's Republic of China.
| |
Collapse
|
5
|
Zhang Y, Liang R, Chen Y, Wang Y, Li X, Wang S, Jin H, Liu L, Tang Z. HSF1 protects cells from cadmium toxicity by governing proteome integrity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115571. [PMID: 37837696 DOI: 10.1016/j.ecoenv.2023.115571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Cadmium toxicity has been associated with disruption of protein homeostasis by interfering with protein folding processes. Heat shock factor 1 (HSF1) coordinates the rapid and extensive cellular response to maintain proteomic balance facing the challenges from many environmental stressors. Thus, we suspect that HSF1 may shield cells from cadmium toxicity by conserving proteome integrity. RESULTS Here, we demonstrate that cadmium, a highly poisonous metal, induces aggregation of cytosolic proteins in human cells, which disrupts protein homeostasis and activates HSF1. Cadmium exposure increases HSF1's phosphorylation, nuclear translocation and DNA bindings. Aside from this, HSF1 goes through liquid-liquid phase separation to form small nuclear condensates upon cadmium exposure. A specific regulatory domain of HSF1 is critical for HSF1's phase separation capability. Most importantly, human cells with impaired HSF1 are sensitized to cadmium, however, cells with overexpressed HSF1 are protected from cadmium toxicity. Overexpression of HSF1 in human cells reduces protein aggregates, amyloid fibrils and DNA damages to antagonize cadmium toxicity. CONCLUSIONS HSF1 protects cells from cadmium toxicity by governing the integrity of both proteome and genome. Similar mechanisms may enable HSF1 to alleviate cellular toxicity caused by other heavy metals. HSF1's role in cadmium exposure may provide important insights into the toxic effects of heavy metals on human cells and body organs, allowing us to better manage heavy metal poisoning.
Collapse
Affiliation(s)
- Yuchun Zhang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Rong Liang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yingxiao Chen
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yaling Wang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xue Li
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shang Wang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Honglin Jin
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Lusha Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Zijian Tang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|