1
|
Liu H, Fu M, Ren Z, Liu Z, Cao X, Chen J, Pang Y, Liu J. Cadmium exposure induces inflammation, oxidative stress and DNA damage in HUVEC and promotes THP-1 adhesion: A possible mechanism on the formation of atherosclerotic plaque. Toxicology 2025; 511:154046. [PMID: 39778856 DOI: 10.1016/j.tox.2025.154046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Observational studies have shown that cadmium exposure increases the risk of cardiovascular disease, but the underlying mechanism is still unclear. Atherosclerotic plaque can cause vascular obstruction, which is important for the death from cardiovascular disease. Cell damage and monocyte adhesion are two early events in atherosclerotic plaque formation that can be induced by cadmium exposure, but the mechanism remains to be determined. This study was carried out to investigate the toxicity of cadmium in HUVECs and the effect of cadmium on the adhesion of THP-1 cells, and further explored the possible mechanisms. Rhodamine staining, DCFH-DA staining, Hoechst33258 staining, morphological observation and western blot were used to detect mitochondrial membrane potential, ROS, apoptosis, cell adhesion, signaling pathways and cell adhesion factors respectively. The results indicated that cadmium exposure increased the level of ROS, activated MAPK signaling pathway and resulted in cellular oxidative stress in HUVECs. Exposure to cadmium made nuclear shrinkage, activated DNA damage response pathways and mitochondria-mediated intrinsic apoptosis pathway in HUVECs. Cadmium exposure activated the NLRP3 inflammasome and NF-κB signaling pathway, led to the upregulation of inflammatory cytokines in HUVECs. In addition, cadmium exposure also upregulated the adhesion factors including ICAM-1, VCAM-1 and E-Selectin via NF-κB signaling pathway and resulted in the adhesion of THP-1 cells. The present study elucidated that cadmium could damage the HUVECs and promote the adhesion of THP-1 cells, which clarified the toxicity of cadmium in HUVECs and revealed the possible mechanism for the occurrence of cardiovascular disease induced by cadmium.
Collapse
Affiliation(s)
- Haotian Liu
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Mingyang Fu
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Ziqi Ren
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Zhaoshuo Liu
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Xiangyu Cao
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Jiahe Chen
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Yulin Pang
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Jianli Liu
- School of Life Science, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
2
|
Zhao S, Chen X, Chang B, Tian B. HMGA1 influence on iron-induced cell death in Tfh cells of SLE patients. Cell Biol Toxicol 2024; 41:6. [PMID: 39707065 PMCID: PMC11662042 DOI: 10.1007/s10565-024-09955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024]
Abstract
The autoimmune disorder known as Systemic Lupus Erythematosus (SLE) exhibits intricate features with abnormal immune responses leading to tissue injury. The generation of antibodies and the disruption of immune regulation heavily depend on the pivotal function of T follicular helper (Tfh) cells. Iron dysregulation is significant in autoimmune diseases, impacting immune cell function and disease progression. Our study investigates the role of the HMGA1/EZH2/STAT3/GPX4 axis in modulating Tfh cells and iron homeostasis in SLE. Abnormal Tfh cell populations in SLE patients demonstrate reduced susceptibility to iron-induced cell death, with HMGA1 identified as a key player in Tfh cell proliferation and sensitivity to iron-induced death. Experimental interventions reveal the inhibitory role of the HMGA1 axis in Tfh cells' susceptibility to iron-induced death, suggesting therapeutic avenues for SLE and related autoimmune disorders. Our study underscores the importance of iron homeostasis in autoimmune conditions, providing novel insights and treatment strategies for further research in this field.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Xiaotong Chen
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Bohan Chang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Bailing Tian
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
3
|
Wang Y, Ye Y, Ji J, Wang JS, Tang L, Zhang L, Li Y, Sun J, Sheng L, Sun X. Effect of cadmium and fumonisin B 1 co-exposure on mitochondrial dysfunction and ferroptosis pathway in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2024; 483:136504. [PMID: 39612872 DOI: 10.1016/j.jhazmat.2024.136504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024]
Abstract
Fumonisin B1 (FB1) is a typical mycotoxin that widely contaminates food crops and their products and is known to be neurotoxic. In diverse dietary patterns, organisms are at risk of co-exposure to FB1 and the heavy metal cadmium (Cd), but how Cd affects the toxic damaging effects of FB1 is unknown. Therefore, this study explored the potential mechanism of co-exposure of Cd and FB1 using a Caenorhabditis elegans (C. elegans) model. Our findings indicate that co-exposure with FB1 (200 μg/mL) and Cd (25, 100, and 200 μg/mL) for 24 h significantly aggravated oxidative stress damage and mitochondrial dysfunction in dose-dependent. This included abnormal expression of mitochondrial membrane proteins and disruptions in the division and fusion processes of mitochondria. Moreover, the co-exposure to Cd and FB1 induced ferroptosis, characterized by abnormally high levels of unstable ferrous iron and alterations in the expression levels of ferroptosis-related genes such as aat-9, acs-17, gpx-1, ftn-1, and frh-1. Collectively, these results underscore the aggravating effect of combined exposure to FB1 and Cd on mitochondrial dysfunction and ferroptosis pathways in C. elegans. This study offers a novel perspective for exploring the mixture toxicity between FB1 and Cd.
Collapse
Affiliation(s)
- Yating Wang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing 100176, PR China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing 100176, PR China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - Lanlan Zhang
- Center for Food Evaluation, State Administration for Market Regulation, Beijing 100070, PR China
| | - Yufeng Li
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Nanjing Institute of Product Quality Inspection, Nanjing 210019, PR China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing 100176, PR China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing 100176, PR China
| | - Xiualn Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Key Laboratory of Food Quality and Safety, State Administration for Market Regulation, Beijing 100176, PR China.
| |
Collapse
|
4
|
Zhang XD, Sun J, Zheng XM, Zhang J, Tan LL, Fan LL, Luo YX, Hu YF, Xu SD, Zhou H, Zhang YF, Li H, Yuan Z, Wei T, Zhu HL, Xu DX, Xiong YW, Wang H. Plin4 exacerbates cadmium-decreased testosterone level via inducing ferroptosis in testicular Leydig cells. Redox Biol 2024; 76:103312. [PMID: 39173539 PMCID: PMC11387904 DOI: 10.1016/j.redox.2024.103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Strong evidence indicates that environmental stressors are the risk factors for male testosterone deficiency (TD). However, the mechanisms of environmental stress-induced TD remain unclear. Based on our all-cause male reproductive cohort, we found that serum ferrous iron (Fe2⁺) levels were elevated in TD donors. Then, we explored the role and mechanism of ferroptosis in environmental stress-reduced testosterone levels through in vivo and in vitro models. Data demonstrated that ferroptosis and lipid droplet deposition were observed in environmental stress-exposed testicular Leydig cells. Pretreatment with ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor, markedly mitigated environmental stress-reduced testosterone levels. Through screening of core genes involved in lipid droplets formation, it was found that environmental stress significantly increased the levels of perilipins 4 (PLIN4) protein and mRNA in testicular Leydig cells. Further experiments showed that Plin4 siRNA reversed environmental stress-induced lipid droplet deposition and ferroptosis in Leydig cells. Additionally, environmental stress increased the levels of METTL3, METTL14, and total RNA m6A in testicular Leydig cells. Mechanistically, S-adenosylhomocysteine, an inhibitor of METTL3 and METTL14 heterodimer activity, restored the abnormal levels of Plin4, Fe2⁺ and testosterone in environmental stress-treated Leydig cells. Collectively, these results suggest that Plin4 exacerbates environmental stress-decreased testosterone level via inducing ferroptosis in testicular Leydig cells.
Collapse
Affiliation(s)
- Xu-Dong Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jian Sun
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Long-Long Fan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Ye-Xin Luo
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yi-Fan Hu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Shen-Dong Xu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Huan Zhou
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, and Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
5
|
Ali RA, Awadalla EA, Hamed AS, Mostafa DEF. Cardiotoxicity of Cadmium and Its Effects on Heart Efficiency During Early and Late Chick Embryogenesis. Cardiovasc Toxicol 2024; 24:982-1003. [PMID: 39048804 PMCID: PMC11335801 DOI: 10.1007/s12012-024-09894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Cadmium (Cd) is a dangerous heavy metal that is non-degradable in the environment. Many organs can accumulate Cd and adversely affect organ function and health. Cd is considered as a teratogenic and embryotoxic agent. This study aims to evaluate the teratogenicity of Cd at concentrations lesser than the permissible and its effects on the heart during chick embryogenesis. Fertilized eggs of the chick Gallus domesticus were divided into; control, saline injected and four experimental groups injected with single doses of 5, 25, 50 or 75 µM of CdCl2. Histological observations of the heart before hatching and the cardiomyocytes after hatching were recorded. Morphometric measurements of heart chambers were achieved at 3, 4 and 6 days of incubation. Electrocardiograph and respiratory rate were recorded at tenth day. Different cardiac problems had been brought on by Cd. In comparison to controls, the heart looked much larger, and in certain cases, growth retardation was seen. Degeneration in heart walls and malformations of dorsal aorta were noticed. Morphometrically, the width and wall thickness of heart chambers showed significant changes. Heart beats and respiratory rate significantly decreased compared to control. The cardiotoxic effect of Cd on heart compartments structure and function was dose dependent. One of Cd toxicity is its ability to induce cellular oxidative stress. The heart in particular is sensitive to oxidative stress. Cardiac oxidative stress might intensify heart failure and promote disease progression. Calcium is one of the components that is needed for normal heart work. Cd might interfere with calcium metabolism by removing it from the body.
Collapse
Affiliation(s)
- Reda A Ali
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Eatemad A Awadalla
- Zoology Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | - Amal S Hamed
- Zoology Department, Faculty of Science, Aswan University, Aswan, 81528, Egypt
| | | |
Collapse
|
6
|
Xu R, Han FX, Wang HR, Wang JJ, Cai ZL, Guo MY. Tea polyphenols alleviate TBBPA-induced inflammation, ferroptosis and apoptosis via TLR4/NF-κB pathway in carp gills. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109382. [PMID: 38242263 DOI: 10.1016/j.fsi.2024.109382] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The extensive application of Tetrabromobisphenol A (TBBPA) leads to the pollution of part of the water environment and brings great safety risks to aquatic animals. As a natural extract, tea polyphenols (TPs) have antioxidant and anti-inflammatory effects. Gills are one of the immune organs of fish and constitute the first line of defense of the immune system. However, it was unclear whether TPs could mitigate TBBPA-induced gills injury. Therefore, an animal model was established to investigate the effect of TPs on TBBPA-induced gills. The results indicated that TBBPA changed the coefficient and tissue morphology of carp gills. In addition, TBBPA induced oxidative stress and inflammation, leading to ferroptosis and apoptosis in carp gills. Dietary addition of TPs significantly improved the antioxidant capacity of carp, effectively inhibited the overexpression of TLR4/NF-κB and its mediated inflammatory response. Moreover, TPs restored iron metabolism, reduced the expression of pro-apoptotic factors thereby alleviating ferroptosis and apoptosis in carp gills. This study enriched the protective effect of TPs and provided a new way to improve the innate immunity of carp.
Collapse
Affiliation(s)
- Ran Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fu-Xin Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hong-Ru Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jing-Jing Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhao-Long Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meng-Yao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|