1
|
Jia Y, Xiao E, Lan X, Lin W, Sun J, Xiao T. Microbial-mediated metal(loid) immobilization in mulch-covered tailings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116881. [PMID: 39151372 DOI: 10.1016/j.ecoenv.2024.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Mulch coverage of mining tailings can create anaerobic conditions and consequently establish an anoxic environment that promotes the metabolic processes of anaerobic microorganisms. This anoxic environment has the potential to decrease heavy metal mobility and bioavailability. While tailings exposed to sunlight have been extensively studied, research on the effects of microbial-mediated geochemical cycling of heavy metals in mulch-covered tailings is scarce. This study aimed to examine the effects of mulch coverage-induced alterations in the structures of tailing microbial communities on the biogeochemical processes associated with heavy metals. Mulch coverage significantly reduced the pH of the tailings and the tailings exhibited heavy metal bioavailability. Random forest analysis demonstrated that mulch coverage-induced changes in the As/Cd-contaminated fractions and nutrients (total organic carbon and total nitrogen) were the most crucial predictors of microbial diversity and ecological clusters in the tailings. Notably, different from direct metal(loid) immobilization, mulch coverage can facilitate heavy metal immobilization in tailings by promoting microbial-mediated Fe, S, and As reduction. Overall, this study demonstrated that mulch coverage of tailings contributed to a reduction in heavy metal mobilization, which can be attributed to shifts in microbial-mediated Fe, S, and As reduction processes.The study provides valuable insights into the potential of mulch coverage as a remediation strategy and underscores the importance of microbial-mediated processes in managing heavy metal pollution in tailing systems.
Collapse
Affiliation(s)
- Yanlong Jia
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China; School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550002, China
| | - Enzong Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaolong Lan
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China.
| | - Wenjie Lin
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China.
| | - Jialong Sun
- School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550002, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
2
|
Chen Z, Zhao Y, Liang N, Yao Y, Zhao Y, Liu T. Pollution, cumulative ecological risk and source apportionment of heavy metals in water bodies and river sediments near the Luanchuan molybdenum mining area in the Xiaoqinling Mountains, China. MARINE POLLUTION BULLETIN 2024; 205:116621. [PMID: 38964187 DOI: 10.1016/j.marpolbul.2024.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 07/06/2024]
Abstract
The water and sediment samples were collected from the Yu River and Taowanbei River during periods of summer and winter. The NCPI, EWQI, Igeoand PERI were used to evaluate the pollution degree and cumulative ecological risk of HMs in the water and sediments. The PMF model was used to analyze the sources of HMs in river sediments. The pollution degree of Cd, Hg and Zn in the water reached the severe pollution level, in the rank of Hg > Zn > Cd. Cd and Zn in sediments are heavily polluted, Cu is lightly polluted, Pb and As are within the warning range, and the pollution rank is Cd > Zn > Cu > Pb > As. The cumulative ecological risk of HMs in sediments reached extremely strong level, mainly Cd and Hg. The main sources of HMs in sediments are mining sources, mixed agricultural and transport sources, and natural sources, which contributed 42.1 %, 34.1 % and 23.8 %, respectively.
Collapse
Affiliation(s)
- Zhenyu Chen
- Northwest Geological Science and Technology Innovation Center, Xi'an Geological Survey Center, China Geological Survey, Xi'an 710054, China; Geological Research Centre for Orogenic Zones, China Geological Survey, Xi'an 710054, China
| | - Yuanyi Zhao
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
| | - Nan Liang
- Northwest Geological Science and Technology Innovation Center, Xi'an Geological Survey Center, China Geological Survey, Xi'an 710054, China; Geological Research Centre for Orogenic Zones, China Geological Survey, Xi'an 710054, China
| | - Yuan Yao
- Northwest Geological Science and Technology Innovation Center, Xi'an Geological Survey Center, China Geological Survey, Xi'an 710054, China; Geological Research Centre for Orogenic Zones, China Geological Survey, Xi'an 710054, China
| | - Yu Zhao
- Northwest Geological Science and Technology Innovation Center, Xi'an Geological Survey Center, China Geological Survey, Xi'an 710054, China; Geological Research Centre for Orogenic Zones, China Geological Survey, Xi'an 710054, China.
| | - Tuo Liu
- Northwest Geological Science and Technology Innovation Center, Xi'an Geological Survey Center, China Geological Survey, Xi'an 710054, China
| |
Collapse
|
3
|
Li W, Deng Y, Wang H, Hu Y, Cheng H. Potential risk, leaching behavior and mechanism of heavy metals from mine tailings under acid rain. CHEMOSPHERE 2024; 350:140995. [PMID: 38128738 DOI: 10.1016/j.chemosphere.2023.140995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
The leaching of heavy metals from abandoned mine tailings can pose a severe threat to surrounding areas, especially in the regions influenced by acid rain with high frequency. In this study, the potential risks of heavy metals in the tailings collected from a small-scale abandoned multi-metal mine was assessed, and their leaching behavior and mechanism were investigated by batch, semi-dynamic and in situ leaching experiments under simulated and natural rainfall conditions. The results suggested that Zn, Cu, Pb, and Cd in the tailings could cause high/very high risks. Both batch and semi-dynamic leaching tests consistently confirmed that the leaching of heavy metals (particularly Cd) could lead to serious pollution of the surrounding environment. The leaching rates of heavy metals were pH-dependent and related to their chemical speciations in the mine tailings. The leaching behavior of Cu and Cd was dominated by surface wash-off, Zn was controlled by diffusion initially and then surface wash-off, and the leaching mechanisms of Pb and As varied with the pH conditions. It was estimated that acid rain could greatly elevate the release fluxes of Zn (20.8%), Cu (36.7%), Pb (49.9%) and Cd (35.3%) in the study area. These findings could improve the understanding of the leaching behavior of heavy metals from mine tailings and assist in developing appropriate management strategies.
Collapse
Affiliation(s)
- Wei Li
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yu Deng
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Hao Wang
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|