1
|
Milan M, Bernardini I, Bertolini C, Dalla Rovere G, Manuzzi A, Pastres R, Peruzza L, Smits M, Fabrello J, Breggion C, Sambo A, Boffo L, Gallocchio L, Carrer C, Sorrentino F, Bettiol C, Lodi GC, Semenzin E, Varagnolo M, Matozzo V, Bargelloni L, Patarnello T. Multidisciplinary long-term survey of Manila clam grown in farming sites subjected to different environmental conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160796. [PMID: 36528093 DOI: 10.1016/j.scitotenv.2022.160796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In recent years recurrent bivalve mass mortalities considerably increased around the world, causing the collapse of natural and farmed populations. Venice Lagoon has historically represented one of the major production areas of the Manila clam Ruditapes philippinarum in Europe. However, in the last 20 years a 75 % decrease in the annual production has been experienced. While climate change and anthropogenic interventions may have played a key role in natural and farmed stocks reductions, no studies investigated at multiple levels the environmental stressors affecting farmed Manila clam to date. In this work we carried out a long-term monitoring campaign on Manila clam reared in four farming sites located at different distances from the southern Venice Lagoon inlet, integrating (meta)genomic approaches (i.e. RNA-seq; microbiota characterization), biometric measurements and chemical-physical parameters. Our study allowed to characterize the molecular mechanisms adopted by this species to cope with the different environmental conditions characterizing farming sites and to propose hypotheses to explain mortality events observed in recent years. Among the most important findings, the disruption of clam's immune response, the spread of Vibrio spp., and the up-regulation of molecular pathways involved in xenobiotic metabolism suggested major environmental stressors affecting clams farmed in sites placed close to Chioggia's inlet, where highest mortality was also observed. Overall, our study provides knowledge-based tools for managing Manila clam farming on-growing areas. In addition, the collected data is a snapshot of the time immediately before the commissioning of MoSE, a system of mobile barriers aimed at protecting Venice from high tides, and will represent a baseline for future studies on the effects of MoSE on clams farming and more in general on the ecology of the Venice Lagoon.
Collapse
Affiliation(s)
- Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy.
| | - Ilaria Bernardini
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Camilla Bertolini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Giulia Dalla Rovere
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Alice Manuzzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Roberto Pastres
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Luca Peruzza
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Morgan Smits
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Jacopo Fabrello
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Cristina Breggion
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Andrea Sambo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | | | - Loretta Gallocchio
- Thetis s.p.a., c /o Provveditorato Interregionale OO.PP. - Ufficio Tecnico Antinquinamento Laboratorio CSMO, Via Asconio Pediano, 9, 35127 Padova, PD, Italy
| | - Claudio Carrer
- Thetis s.p.a., c /o Provveditorato Interregionale OO.PP. - Ufficio Tecnico Antinquinamento Laboratorio CSMO, Via Asconio Pediano, 9, 35127 Padova, PD, Italy
| | - Francesco Sorrentino
- Provveditorato Interregionale OO.PP. - Ufficio Tecnico Antinquinamento, San Polo 19, 30124 Venezia, Italy)
| | - Cinzia Bettiol
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Giulia Carolina Lodi
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Elena Semenzin
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via torino 155, 30170 Venezia, Italy
| | - Maurizio Varagnolo
- Societa' Agricola Kappa S. S. di Varagnolo Maurizio E. C., Chioggia, VE, Italy
| | - Valerio Matozzo
- Department of Biology, University of Padova, Via Bassi 58/B, 35131 Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell'Università 16, Agripolis, 35020 Legnaro, PD, Italy
| |
Collapse
|
2
|
Using a clustering algorithm to identify patterns of valve-gaping behaviour in mussels reared under different environmental conditions. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Bertolini C, Rubinetti S, Umgiesser G, Witbaard R, Bouma TJ, Rubino A, Pastres R. How to cope in heterogeneous coastal environments: Spatio-temporally endogenous circadian rhythm of valve gaping by mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:145085. [PMID: 33736335 DOI: 10.1016/j.scitotenv.2021.145085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Transitional coastal zones are subject to high degrees of temporal fluctuation in environmental conditions, with these patterns varying in space. Gaining an in depth understanding of how sessile organisms cope with and respond to such environmental changes at multiple scales is needed to i) advance fundamental knowledge, ii) predict how organisms may react to stressors and iii) support the management of halieutic resources in transitional coastal areas. We addressed this question using mussels (Mytilus galloprovincialis) as model system. Valve-gaping sensor were deployed at multiple sites within the southern Venice Lagoon over a period of 6 months, to investigate the existence of periodicity in valve-gaping and its relationship with environmental variables, such as temperature and chlorophyll-a. Gaping behaviour was found to have periodic rhythms, of ~12 h and ~ 24 h, which were most pronounced in the inner part of lagoon part and were strongest during summer months. In autumn, the dual periodicity became weaker and mostly the 12 h remained. Gaping was closely linked with tide, but the relationship in terms of phasing varied upon location. Surprisingly, no clear direct relationships were found with chlorophyll-a, but food delivery may be mediated by tide itself. The results highlight the heterogeneity of behaviour and the endogenic nature of circadian rhythms in space and time. These findings have important implications for management of transitional areas where tidal alteration may have impacts on key behaviours, and emphasize the importance of characterizing their rhythms before using these as stress indicator. Moreover, the described tidal relationships should be included in growth models of bivalves in these systems.
Collapse
Affiliation(s)
- C Bertolini
- DAIS, Ca' Foscari University of Venice, 30173 Venezia, Italy.
| | - S Rubinetti
- DAIS, Ca' Foscari University of Venice, 30173 Venezia, Italy
| | | | - R Witbaard
- EDS, Netherlands Institute for Sea Research, 4401, NT, Yerseke, the Netherlands
| | - T J Bouma
- EDS, Netherlands Institute for Sea Research, 4401, NT, Yerseke, the Netherlands
| | - A Rubino
- DAIS, Ca' Foscari University of Venice, 30173 Venezia, Italy
| | - R Pastres
- DAIS, Ca' Foscari University of Venice, 30173 Venezia, Italy
| |
Collapse
|
4
|
Multiple Evidence for Climate Patterns Influencing Ecosystem Productivity across Spatial Gradients in the Venice Lagoon. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9040363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Effects of climatic changes in transitional ecosystems are often not linear, with some areas likely experiencing faster or more intense responses, which something important to consider in the perspective of climate forecasting. In this study of the Venice lagoon, time series of the past decade were used, and primary productivity was estimated from hourly oxygen data using a published model. Temporal and spatial patterns of water temperature, salinity and productivity time series were identified by applying clustering analysis. Phytoplankton and nutrient data from long-term surveys were correlated to primary productivity model outputs. pmax, the maximum oxygen production rate in a given day, was found to positively correlate with plankton variables measured in surveys. Clustering analysis showed the occurrence of summer heatwaves in 2008, 2013, 2015 and 2018 and three warm prolonged summers (2012, 2017, 2019) coincided with lower summer pmax values. Spatial effects in terms of temperature were found with segregation between confined and open areas, although the patterns varied from year to year. Production and respiration differences showed that the lagoon, despite seasonality, was overall heterotrophic, with internal water bodies having greater values of heterotrophy. Warm, dry years with high salinity had lower degrees of summer autotrophy.
Collapse
|
5
|
Pringault O, Bouvy M, Carre C, Fouilland E, Meddeb M, Mejri K, Leboulanger C, Sakka Hlaili A. Impacts of chemical contamination on bacterio-phytoplankton coupling. CHEMOSPHERE 2020; 257:127165. [PMID: 32480088 DOI: 10.1016/j.chemosphere.2020.127165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Phytoplankton and bacterioplankton are the key components of the organic matter cycle in aquatic ecosystems, and their interactions can impact the transfer of carbon and ecosystem functioning. The aim of this work was to assess the consequences of chemical contamination on the coupling between phytoplankton and bacterioplankton in two contrasting marine coastal ecosystems: lagoon waters and offshore waters. Bacterial carbon demand was sustained by primary carbon production in the offshore situation, suggesting a tight coupling between both compartments. In contrast, in lagoon waters, due to a higher nutrient and organic matter availability, bacteria could rely on allochthonous carbon sources to sustain their carbon requirements, decreasing so the coupling between both compartments. Exposure to chemical contaminants, pesticides and metal trace elements, resulted in a significant inhibition of the metabolic activities (primary production and bacterial carbon demand) involved in the carbon cycle, especially in offshore waters during spring and fall, inducing a significant decrease of the coupling between primary producers and heterotrophs. This coupling loss was even more evident upon sediment resuspension for both ecosystems due to the important release of nutrients and organic matter. Resulting enrichment alleviated the toxic effects of contaminants as indicated by the stimulation of phytoplankton biomass and carbon production, and modified the composition of the phytoplankton community, impacting so the interactions between phytoplankton and bacterioplankton.
Collapse
Affiliation(s)
- Olivier Pringault
- Aix Marseille Univ, Universite de Toulon, CNRS, IRD, MIO UM 110, 13288, Marseille, France; MARBEC Univ Montpellier, IRD, Ifremer, Montpellier, France; Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Tunisia.
| | - Marc Bouvy
- MARBEC Univ Montpellier, IRD, Ifremer, Montpellier, France
| | - Claire Carre
- MARBEC Univ Montpellier, IRD, Ifremer, Montpellier, France
| | - Eric Fouilland
- MARBEC Univ Montpellier, IRD, Ifremer, Montpellier, France
| | - Marouan Meddeb
- Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Tunisia
| | - Kaouther Mejri
- Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Tunisia
| | | | - Asma Sakka Hlaili
- Faculté des Sciences de Bizerte, Université de Carthage, 7021, Zarzouna, Tunisia; Laboratory of Environmental Sciences, Biology and Physiology of Aquatic Organisms LR18ES41, University El Manar of Tunis, Faculty of Sciences of Tunis, Tunis, Tunisia
| |
Collapse
|
6
|
Dick JJ, Soulsby C, Birkel C, Malcolm I, Tetzlaff D. Continuous Dissolved Oxygen Measurements and Modelling Metabolism in Peatland Streams. PLoS One 2016; 11:e0161363. [PMID: 27556278 PMCID: PMC4996464 DOI: 10.1371/journal.pone.0161363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/04/2016] [Indexed: 11/18/2022] Open
Abstract
Stream water dissolved oxygen was monitored in a 3.2km2 moorland headwater catchment in the Scottish Highlands. The stream consists of three 1st order headwaters and a 2nd order main stem. The stream network is fringed by peat soils with no riparian trees, though dwarf shrubs provide shading in the lower catchment. Dissolved oxygen (DO) is regulated by the balance between atmospheric re-aeration and the metabolic processes of photosynthesis and respiration. DO was continuously measured for >1 year and the data used to calibrate a mass balance model, to estimate primary production, respiration and re-aeration for a 1st order site and in the 2nd order main stem. Results showed that the stream was always heterotrophic at both sites. Sites were most heterotrophic in the summer reflecting higher levels of stream metabolism. The 1st order stream appeared more heterotrophic which was consistent with the evident greater biomass of macrophytes in the 2nd order stream, with resulting higher primary productivity. Comparison between respiration, primary production, re-aeration and potential physical controls revealed only weak relationships. However, the most basic model parameters (e.g. the parameter linking light and photosynthesis) controlling ecosystem processes resulted in significant differences between the sites which seem related to the stream channel geometry.
Collapse
Affiliation(s)
- Jonathan J. Dick
- Northern Rivers Institute, School of Geosciences, University of Aberdeen, Aberdeen, AB24 3UF, United Kingdom
| | - Chris Soulsby
- Northern Rivers Institute, School of Geosciences, University of Aberdeen, Aberdeen, AB24 3UF, United Kingdom
| | - Christian Birkel
- Northern Rivers Institute, School of Geosciences, University of Aberdeen, Aberdeen, AB24 3UF, United Kingdom
- University of Costa Rica, Department of Geography, 2060 San José, Costa Rica
| | - Iain Malcolm
- Marine Science Scotland, Freshwater Laboratory, Pitlochry, Scotland, United Kingdom
| | - Doerthe Tetzlaff
- Northern Rivers Institute, School of Geosciences, University of Aberdeen, Aberdeen, AB24 3UF, United Kingdom
| |
Collapse
|
7
|
McNair JN, Gereaux LC, Weinke AD, Sesselmann MR, Kendall ST, Biddanda BA. New methods for estimating components of lake metabolism based on free-water dissolved-oxygen dynamics. Ecol Modell 2013. [DOI: 10.1016/j.ecolmodel.2013.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
|
9
|
Pugnetti A, Del Negro P, Giani M, Acri F, Aubry FB, Bianchi F, Berto D, Valeri A. Phytoplankton-bacterioplankton interactions and carbon fluxes through microbial communities in a microtidal lagoon. FEMS Microbiol Ecol 2010; 72:153-64. [DOI: 10.1111/j.1574-6941.2010.00839.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Carpenter SR, Brock WA, Cole JJ, Pace ML. Leading indicators of phytoplankton transitions caused by resource competition. THEOR ECOL-NETH 2009. [DOI: 10.1007/s12080-009-0038-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Jørgensen SE, Fath BD, Grant WE, Legovic T, Nielsen SN. New initiative for thematic issues: An invitation. Ecol Modell 2008. [DOI: 10.1016/j.ecolmodel.2008.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|