1
|
Wanjari RN, Shah TH, Telvekar P, Bhat FA, Abubakr A, Bhat BA, Darve SI, Ramteke KK, Mathialagan D, Magloo AH, Singh BS. Assessing ecosystem health: A preliminary investigation of the gosikhurd dam ecosystem structure and functioning, an appraisal based on ecological modelling, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:815. [PMID: 39145842 DOI: 10.1007/s10661-024-12958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
This study aims to comprehensively understand the Gosikhurd Dam ecosystem (GDE) ecosystem by employing the Ecopath with Ecosim software (version 6.6.5) to construct a trophic mass balancing model. This model consisted of 16 functional groups of organisms, and their interactions and trophic levels were explored. The study focuses on various performance indicators to assess the ecosystem's maturity and complexity. To achieve these objectives, monthly fish samples were collected from June 2022 to May 2023. Performance indicators such as the connectance index (CI), system omnivory index (SOI), Finn's cycling index (FCI), mean path length (FML), ascendency, overhead, and Shannon diversity index were calculated to assess ecosystem maturity and complexity. The Finn's cycling index (FCI) and the mean path length (FML) were calculated as 1.81 and 2.20, respectively, indicating the ecosystem's responsiveness to environmental changes and overall system health and stability. Ascendency and overhead values were also analysed, with ascendency being relatively higher (41.58%), reflecting a system that utilises less than half of its total capacity. The overhead value (58.42%) indicated that the ecosystem is relatively stable and capable of adapting to external perturbations. Furthermore, the Shannon diversity index was 1.67, illustrating less diversity and validating the ecosystem's immaturity. The study identifies critical species and their roles in shaping the ecosystem dynamics, highlighting the importance of zooplankton, zoobenthos, and tilapia as keystone species. These indices propound that GDE is in its developmental stage and lacks complexity compared to mature ecosystems. The findings provide valuable insights into the current state of the ecosystem and can guide future management and conservation efforts.
Collapse
Affiliation(s)
- Rinkesh Nemichand Wanjari
- Division of Fisheries Resource Management (FRM), Faculty of Fisheries (FoFY), SKUAST-K, Rangil, Ganderbal, 190006, J&K, India.
| | - Tasaduq Hussain Shah
- Division of Fisheries Resource Management (FRM), Faculty of Fisheries (FoFY), SKUAST-K, Rangil, Ganderbal, 190006, J&K, India
| | - Prashant Telvekar
- Fisheries Extension, Economics and Statistics, College of Fishery Science, Nagpur, 440006, Maharashtra, India
| | - Farooz Ahmad Bhat
- Division of Fisheries Resource Management (FRM), Faculty of Fisheries (FoFY), SKUAST-K, Rangil, Ganderbal, 190006, J&K, India
| | - Adnan Abubakr
- Division of Aquatic Environment Management, Faculty of Fisheries (FoFY), SKUAST-K, Rangil, Ganderbal, 190006, J&K, India
| | - Bilal Ahmad Bhat
- Division of Extension and Social Sciences, Faculty of Fisheries (FoFY), SKUAST-K, Rangil, Ganderbal, 190006, J&K, India
| | - Sabina Iqbal Darve
- Division of Fisheries Resource Management (FRM), Faculty of Fisheries (FoFY), SKUAST-K, Rangil, Ganderbal, 190006, J&K, India
| | - Karankumar Kishorkumar Ramteke
- Fisheries Resource Harvest and Post-Harvest Management (FRHPHM) Division, Central Institute of Fisheries Education (CIFE), Versova, Mumbai, 400061, Maharashtra, India
| | - Dhanalakshmi Mathialagan
- Fisheries Resource Harvest and Post-Harvest Management (FRHPHM) Division, Central Institute of Fisheries Education (CIFE), Versova, Mumbai, 400061, Maharashtra, India
| | - Aadil Hussain Magloo
- Division of Fisheries Resource Management (FRM), Faculty of Fisheries (FoFY), SKUAST-K, Rangil, Ganderbal, 190006, J&K, India
| | - Bidyasagar Sanjenbam Singh
- Fisheries Resource Harvest and Post-Harvest Management (FRHPHM) Division, Central Institute of Fisheries Education (CIFE), Versova, Mumbai, 400061, Maharashtra, India
| |
Collapse
|
2
|
Makwinja R, Inagaki Y, Tesfamichael SG, Curtis CJ. Novel methods for monitoring low chlorophyll-a concentrations in the large, oligotrophic Lake Malawi/Nyasa/Niassa. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121462. [PMID: 38878578 DOI: 10.1016/j.jenvman.2024.121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/26/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
The use of remote sensing for monitoring chlorophyll-a (chla) and modelling eutrophication has advanced over the last decades. Although the application of the technology has proven successful in ocean ecosystems, there is a need to monitor chla concentrations in large, nutrient-poor inland water bodies. The main objective of this study was to explore the utility of publicly available remotely sensed Sentinel-2 (S2) imagery to quantify chla concentrations in the nutrient-deficient Lake Malawi/Niassa/Nyasa (LMNN). A secondary objective was to compare the S2 derived chla with the Global Change Observation Mission-Climate (GCOM-C) chla product that provides uninterrupted data throughout the year. In situ chla data (n = 76) from upper, middle and lower sections of LMNN served as a reference to produce remote sensing-based quantification. The line-height approach method built on color index, was applied for chla concentrations below 0.25 mg/m3. Moderate Resolution Imaging Spectroradiometer 3-band Ocean Color (MODIS-OC3) - was adopted when chla concentration exceeded 0.35 mg/m3. The MODIS-OC3 algorithm had generic model coefficients that were calibrated for each in situ sample by using GCOM-C Level 3 chla product. A weighted sum of the two algorithms was applied for chla concentrations that fell between 0.25 and 0.35 mg/m3. The above methods were then applied to the S2 data to estimate chla at each pixel. S2 showed a promising accuracy in distinguishing chla levels (MSE = 0.18) although the chla range in the lake was relatively narrow, particularly using the locally calibrated coefficients of the OC3 algorithm. Chla distribution maps produced from the S2 data revealed limited spatial variation across the LMNN with higher concentrations identified in the coastal areas. S2-derived chla and GCOM-C chla comparison showed fairly good similarity between the two datasets (MSE = 0.205). Accepting this similarity, monthly chla dynamics of the lake was profiled using the temporally reliable GCOM-C data that showed oligotrophic conditions (1.7 mg/m3 to 3.2 mg/m3) in most parts of the lake throughout the year. The study's findings advance the potential for both remote sensing approaches to provide vital information at the required spatial and temporal resolution for evidence-based policymaking and proactive environmental management in an otherwise very data deficient region.
Collapse
Affiliation(s)
- Rodgers Makwinja
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, PO Box 524, Auckland Park, 2600, South Africa.
| | - Yoshihiko Inagaki
- Department of Civil and Environmental Engineering, Waseda University, Shinjuku, Tokyo, 169-8555, Japan
| | - Solomon G Tesfamichael
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, PO Box 524, Auckland Park, 2600, South Africa
| | - Christopher J Curtis
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, PO Box 524, Auckland Park, 2600, South Africa
| |
Collapse
|
3
|
Guerra A, Azevedo A, Amorim F, Soares J, Neuparth T, Santos MM, Martins I, Colaço A. Using a food web model to predict the effects of Hazardous and Noxious Substances (HNS) accidental spills on deep-sea hydrothermal vents from the Mid-Atlantic Ridge (MAR) region. MARINE POLLUTION BULLETIN 2024; 199:115974. [PMID: 38176164 DOI: 10.1016/j.marpolbul.2023.115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Deep-sea hydrothermal vents host unique ecosystems but face risks of incidents with Hazardous and Noxious Substances (HNS) along busy shipping lanes such as the transatlantic route. We developed an Ecopath with Ecosim (EwE) model of the Menez Gwen (MG) vent field (MG-EwE) (Mid-Atlantic Ridge) to simulate ecosystem effects of potential accidental spills of four different HNS, using a semi-Lagrangian Dispersion Model (sLDM) coupled with the Regional Ocean Modelling System (ROMS) calibrated for the study area. Food web modelling revealed a simplified trophic structure with low energy efficiency. The MG ecosystem was vulnerable to disruptions caused by all tested HNS, yet it revealed some long-term resilience. Understanding these impacts is vital for enhancing Spill Prevention, Control, and Countermeasure plans (SPCC) in remote marine areas and developing tools to assess stressors effects on these invaluable habitats.
Collapse
Affiliation(s)
- A Guerra
- IMAR Institute of Marine Research, University of the Azores, Rua Prof Frederico Machado, 9901-862 Horta, Portugal; CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal.
| | - A Azevedo
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - F Amorim
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - J Soares
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; AIR Centre, TERINOV-Parque de Ciência e Tecnologia da Ilha Terceira, Canada de Belém S/N, Terra Chã, 9700-702 Angra do Heroísmo, Portugal
| | - T Neuparth
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal
| | - M M Santos
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal; FCUP, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - I Martins
- CIMAR/CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal.
| | - A Colaço
- Institute of Marine Sciences, Okeanos, University of the Azores, Rua Prof Frederico Machado, 9901-862 Horta, Portugal
| |
Collapse
|
4
|
Smith M, Chagaris D, Paperno R, Markwith S. Tropical estuarine ecosystem change under the interacting influences of future climate and ecosystem restoration. GLOBAL CHANGE BIOLOGY 2023; 29:5850-5865. [PMID: 37452446 DOI: 10.1111/gcb.16868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
One of the largest restoration programs in the world, the Comprehensive Everglades Restoration Plan (CERP) aims to restore freshwater inputs to Everglades wetlands and the Florida Bay estuary. This study predicted how the Florida Bay ecosystem may respond to hydrological restoration from CERP within the context of contemporary projected impacts of sea-level rise (SLR) and increased future temperatures. A spatial-temporal dynamic model (Ecospace) was used to develop a spatiotemporal food web model incorporating environmental drivers of salinity, salinity variation, temperature, depth, distance to mangrove, and seagrass abundance and was used to predict responses of biomass, fisheries catch, and ecosystem resilience between current and future conditions. Changes in biomass between the current and future scenario suggest a suite of winners and losers, with many estuarine species increasing in both total biomass and spatial distribution. Notable biomass increases were predicted for important forage species, including bay anchovy (+32%), hardhead halfbeak (+19%), and pinfish (+31%), while decreases were predicted in mullet (-88%), clupeids (-55%), hardhead silverside (-15%), mojarras (-117%), and Portunid crabs (-16%). Increases in sportfish biomass included the angler-preferred spotted seatrout (+9%), red drum (+10%), and gray snapper (+8%), while decreases included sheepshead (-40%), Atlantic tarpon (-73%), and common snook (-507%). Ecosystem resilience and fisheries catch of angler-preferred species were predicted to improve in the future scenario in total, although a localized decline in resilience predicted for the Central Region may warrant further attention. Our results suggest the Florida Bay ecosystem is likely to achieve restoration benefits in spite of, and in some cases facilitated by, the projected future impacts from climate change due to the system's shallow depth and detrital dominance. The incorporation of climate impacts into long-term restoration planning using ecosystem modeling in similar systems facing unknown futures of SLR, warming seas, and shifting species distributions is recommended.
Collapse
Affiliation(s)
- Mason Smith
- Department of Geosciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - David Chagaris
- IFAS Nature Coast Biological Station, University of Florida, Gainesville, Florida, USA
| | - Richard Paperno
- Indian River Field Laboratory, Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Melbourne, Florida, USA
| | - Scott Markwith
- Department of Geosciences, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
5
|
Akoglu E. Ecological indicators reveal historical regime shifts in the Black Sea ecosystem. PeerJ 2023; 11:e15649. [PMID: 37456881 PMCID: PMC10348305 DOI: 10.7717/peerj.15649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Background The Black Sea is one of the most anthropogenically disturbed marine ecosystems in the world because of introduced species, fisheries overexploitation, nutrient enrichment via pollution through river discharge, and the impacts of climate change. It has undergone significant ecosystem transformations since the 1960s. The infamous anchovy and alien warty comb jelly Mnemiopsis leidyi shift that occurred in 1989 is the most well-known example of the drastic extent of anthropogenic disturbance in the Black Sea. Although a vast body of literature exists on the Black Sea ecosystem, a holistic look at the multidecadal changes in the Black Sea ecosystem using an ecosystem- and ecology-based approach is still lacking. Hence, this work is dedicated to filling this gap. Methods First, a dynamic food web model of the Black Sea extending from 1960 to 1999 was established and validated against time-series data. Next, an ecological network analysis was performed to calculate the time series of synthetic ecological indicators, and a regime shift analysis was performed on the time series of indicators. Results The model successfully replicated the regime shifts observed in the Black Sea. The results showed that the Black Sea ecosystem experienced four regime shifts and was reorganized due to effects instigated by overfishing in the 1960s, eutrophication and establishment of trophic dead-end organisms in the 1970s, and overfishing and intensifying interspecies trophic competition by the overpopulation of some r-selected organisms (i.e., jellyfish species) in the 1980s. Overall, these changes acted concomitantly to erode the structure and function of the ecosystem by manipulating the food web to reorganize itself through the introduction and selective removal of organisms and eutrophication. Basin-wide, cross-national management efforts, especially with regard to pollution and fisheries, could have prevented the undesirable changes observed in the Black Sea ecosystem and should be immediately employed for management practices in the basin to prevent such drastic ecosystem fluctuations in the future.
Collapse
|
6
|
Bhavan SG, Rakshit N, Lal DM, Ingole B, Rivonkar P, Naik G, Mayekar T, Bhanudasrao CE. Ecosystem modelling to understand the trophic dynamics and ecosystem health of a small tropical Indian estuary. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Gabagambi NP, Skorping A, Chacha M, Jonathan Kihedu K, Mennerat A. Life history shifts in an exploited African fish following invasion by a castrating parasite. Ecol Evol 2020; 10:13225-13235. [PMID: 33304532 PMCID: PMC7713912 DOI: 10.1002/ece3.6917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 01/19/2023] Open
Abstract
Evolutionary theory predicts that infection by a parasite that reduces future host survival or fecundity should select for increased investment in current reproduction. In this study, we use the cestode Ligula intestinalis and its intermediate fish host Engraulicypris sardella in Wissman Bay, Lake Nyasa (Tanzania), as a model system. Using data about infection of E. sardella fish hosts by L. intestinalis collected for a period of 10 years, we explored whether parasite infection affects the fecundity of the fish host E. sardella, and whether host reproductive investment has increased at the expense of somatic growth. We found that L. intestinalis had a strong negative effect on the fecundity of its intermediate fish host. For the noninfected fish, we observed an increase in relative gonadal weight at maturity over the study period, while size at maturity decreased. These findings suggest that the life history of E. sardella has been shifting toward earlier reproduction. Further studies are warranted to assess whether these changes reflect plastic or evolutionary responses. We also discuss the interaction between parasite and fishery-mediated selection as a possible explanation for the decline of E. sardella stock in the lake.
Collapse
Affiliation(s)
| | - Arne Skorping
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Mwita Chacha
- Department of Aquatic Sciences and Fisheries TechnologyCollege of Agricultural Sciences and Fisheries TechnologyUniversity of Dar es SalaamDar es SalaamTanzania
| | | | - Adele Mennerat
- Department of Biological SciencesUniversity of BergenBergenNorway
| |
Collapse
|
8
|
Nagelkerken I, Goldenberg SU, Ferreira CM, Ullah H, Connell SD. Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science 2020; 369:829-832. [PMID: 32792395 DOI: 10.1126/science.aax0621] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/31/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023]
Abstract
As human activities intensify, the structures of ecosystems and their food webs often reorganize. Through the study of mesocosms harboring a diverse benthic coastal community, we reveal that food web architecture can be inflexible under ocean warming and acidification and unable to compensate for the decline or proliferation of taxa. Key stabilizing processes, including functional redundancy, trophic compensation, and species substitution, were largely absent under future climate conditions. A trophic pyramid emerged in which biomass expanded at the base and top but contracted in the center. This structure may characterize a transitionary state before collapse into shortened, bottom-heavy food webs that characterize ecosystems subject to persistent abiotic stress. We show that where food web architecture lacks adjustability, the adaptive capacity of ecosystems to global change is weak and ecosystem degradation likely.
Collapse
Affiliation(s)
- Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, DX 650 418, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Silvan U Goldenberg
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, DX 650 418, The University of Adelaide, Adelaide, SA 5005, Australia.,GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, Kiel 24105, Germany
| | - Camilo M Ferreira
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, DX 650 418, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hadayet Ullah
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, DX 650 418, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sean D Connell
- Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, DX 650 418, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
9
|
Effects of Karenia brevis harmful algal blooms on fish community structure on the West Florida Shelf. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2018.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Wang S, Wang L, Chang HY, Li F, Tang JP, Zhou XA, Li X, Tian SM, Lin HJ, Yang Y. Longitudinal variation in energy flow networks along a large subtropical river, China. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Tesfaye G, Wolff M. Modeling trophic interactions and the impact of an introduced exotic carp species in the Rift Valley Lake Koka, Ethiopia. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Guo C, Chen Y, Li W, Xie S, Lek S, Li Z. Food web structure and ecosystem properties of the largest impounded lake along the eastern route of China's South-to-North Water Diversion Project. ECOL INFORM 2018. [DOI: 10.1016/j.ecoinf.2017.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Bumbeer J, da Rocha RM, Bornatowski H, Robert MDC, Ainsworth C. Predicting impacts of lionfish (Pterois volitans) invasion in a coastal ecosystem of southern Brazil. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1625-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Hahn C, Genner MJ, Turner GF, Joyce DA. The genomic basis of cichlid fish adaptation within the deepwater "twilight zone" of Lake Malawi. Evol Lett 2017; 1:184-198. [PMID: 30283648 PMCID: PMC6124600 DOI: 10.1002/evl3.20] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/01/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
Deepwater environments are characterized by low levels of available light at narrow spectra, great hydrostatic pressure, and low levels of dissolved oxygen—conditions predicted to exert highly specific selection pressures. In Lake Malawi over 800 cichlid species have evolved, and this adaptive radiation extends into the “twilight zone” below 50 m. We use population‐level RAD‐seq data to investigate whether four endemic deepwater species (Diplotaxodon spp.) have experienced divergent selection within this environment. We identify candidate genes including regulators of photoreceptor function, photopigments, lens morphology, and haemoglobin, many not previously implicated in cichlid adaptive radiations. Colocalization of functionally linked genes suggests coadapted “supergene” complexes. Comparisons of Diplotaxodon to the broader Lake Malawi radiation using genome resequencing data revealed functional substitutions and signatures of positive selection in candidate genes. Our data provide unique insights into genomic adaptation within deepwater habitats, and suggest genome‐level specialization for life at depth as an important process in cichlid radiation.
Collapse
Affiliation(s)
- Christoph Hahn
- Evolutionary and Environmental Genomics Group (@EvoHull), School of Environmental Sciences University of Hull Hull HU5 7RX United Kingdom.,Institute of Zoology University of Graz A-8010 Graz Austria
| | - Martin J Genner
- School of Biological Sciences University of Bristol Bristol Life Sciences Building, 24 Tyndall Avenue Bristol BS8 1TQ United Kingdom
| | - George F Turner
- School of Biological Sciences Bangor University Bangor Gwynedd LL57 2UW Wales United Kingdom
| | - Domino A Joyce
- Evolutionary and Environmental Genomics Group (@EvoHull), School of Environmental Sciences University of Hull Hull HU5 7RX United Kingdom
| |
Collapse
|
15
|
|
16
|
Exploring the structural and functional properties of the Lake Victoria food web, and the role of fisheries, using a mass balance model. Ecol Modell 2016. [DOI: 10.1016/j.ecolmodel.2016.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Banerjee A, Banerjee M, Mukherjee J, Rakshit N, Ray S. Trophic relationships and ecosystem functioning of Bakreswar Reservoir, India. ECOL INFORM 2016. [DOI: 10.1016/j.ecoinf.2016.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Heymans JJ, Coll M, Link JS, Mackinson S, Steenbeek J, Walters C, Christensen V. Best practice in Ecopath with Ecosim food-web models for ecosystem-based management. Ecol Modell 2016. [DOI: 10.1016/j.ecolmodel.2015.12.007] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Chea R, Guo C, Grenouillet G, Lek S. Toward an ecological understanding of a flood-pulse system lake in a tropical ecosystem: Food web structure and ecosystem health. Ecol Modell 2016. [DOI: 10.1016/j.ecolmodel.2015.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Modelling ecosystem structure and trophic interactions in a typical cyanobacterial bloom-dominated shallow Lake Dianchi, China. Ecol Modell 2014. [DOI: 10.1016/j.ecolmodel.2014.07.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
How to determine the likely indirect food-web consequences of a newly introduced non-native species: A worked example. Ecol Modell 2014. [DOI: 10.1016/j.ecolmodel.2013.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Tanaka Y, Mano H. Functional traits of herbivores and food chain efficiency in a simple aquatic community model. Ecol Modell 2012. [DOI: 10.1016/j.ecolmodel.2012.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Madsen H, Bloch P, Makaula P, Phiri H, Furu P, Stauffer JR. Schistosomiasis in Lake Malaŵi villages. ECOHEALTH 2011; 8:163-176. [PMID: 21598059 DOI: 10.1007/s10393-011-0687-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 03/24/2011] [Accepted: 05/05/2011] [Indexed: 05/30/2023]
Abstract
Historically, open shorelines of Lake Malaŵi were free from schistosome, Schistosoma haematobium, transmission, but this changed in the mid-1980s, possibly as a result of over-fishing reducing density of molluscivore fishes. Very little information is available on schistosome infections among people in lake-shore communities and therefore we decided to summarise data collected from 1998 to 2007. Detailed knowledge of the transmission patterns is essential to design a holistic approach to schistosomiasis control involving the public health, fisheries and tourism sectors. On Nankumba Peninsula, in the southern part of the lake, inhabitants of villages located along the shores of Lake Malaŵi have higher prevalence of S. haematobium infection than those living in inland villages. Overall prevalence (all age classes combined) of urinary schistosomiasis in 1998/1999 ranged from 10.2% to 26.4% in inland villages and from 21.0% to 72.7% in lakeshore villages; for school children prevalence of infection ranged from 15.3% to 57.1% in inland schools and from 56.2% to 94.0% in lakeshore schools. Inhabitants on the islands, Chizumulu and Likoma, also have lower prevalence of infection than those living in lakeshore villages on Nankumba Peninsula. This increased prevalence in lakeshore villages is not necessarily linked to transmission taking place in the lake itself, but could also be due to the presence of more numerous typical inland transmission sites (e.g., streams, ponds) being close to the lake. Temporal data witness of intense transmission in some lakeshore villages with 30-40% of children cleared from infection becoming reinfected 12 months later (also lakeshore village). The level of S. mansoni infection is low in the lakeshore communities. Findings are discussed in relation to fishing in the lake.
Collapse
Affiliation(s)
- Henry Madsen
- DBL Centre for Health Research and Development, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871, Frederiksberg C, Denmark.
| | | | | | | | | | | |
Collapse
|
24
|
Madsen H, Stauffer JR. Density of Trematocranus placodon (Pisces: Cichlidae): a predictor of density of the schistosome intermediate host, Bulinus nyassanus (Gastropoda: Planorbidae), in Lake Malaŵi. ECOHEALTH 2011; 8:177-189. [PMID: 22231863 DOI: 10.1007/s10393-011-0737-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
From the mid-1980s, we recorded a significant increase in urinary schistosomiasis infection rate and transmission among inhabitants of lakeshore communities in the southern part of Lake Malaŵi, particularly on Nankumba peninsula in Mangochi District. We suggested that the increase was due to over-fishing, which reduced the density of snail-eating fishes, thereby allowing schistosome intermediate host snails to increase to higher densities. In this article, we collected data to test this hypothesis. The density of both Bulinus nyassanus, the intermediate host of Schistosoma haematobium, and Melanoides spp. was negatively related to density of Trematocranus placodon, the most common of the snail-eating fishes in the shallow water of Lake Malaŵi. Both these snails are consumed by T. placodon. Transmission of S. haematobium through B. nyassanus only occurs in the southern part of the lake and only at villages where high density of the intermediate host is found relatively close to the shore. Thus, we believe that implementation of an effective fish ban up to 100-m offshore along these specific shorelines in front of villages would allow populations of T. placodon to increase in density and this would lead to reduced density of B. nyassanus and possibly schistosome transmission. To reduce dependence on natural fish populations in the lake and still maintain a source of high quality food, culture of indigenous fishes may be a viable alternative.
Collapse
Affiliation(s)
- Henry Madsen
- DBL Centre for Health Research and Development, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 57, 1871, Frederiksberg C, Denmark.
| | | |
Collapse
|