1
|
Roy R, Kempter L, Philippe A, Bollinger E, Grünling L, Sivagnanam M, Meyer F, Feckler A, Seitz F, Schulz R, Bundschuh M. Aging of nanosized titanium dioxide modulates the effects of dietary copper exposure on Daphnia magna - an assessment over two generations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116031. [PMID: 38309236 DOI: 10.1016/j.ecoenv.2024.116031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Nanosized titanium dioxide (nTiO2) is widely used in products, warranting its discharge from various sources into surface water bodies. However, nTiO2 co-occurs in surface waters with other contaminants, such as metals. Studies with nTiO2 and metals have indicated that the presence of natural organic matter (NOM) can mitigate their toxicity to aquatic organisms. In addition, "aging" of nTiO2 can affect toxicity. However, it is a research challenge, particularly when addressing sublethal responses from dietary exposure over multiple generations. We, therefore exposed the alga Desmodesmus subspicatus to nTiO2 (at concentrations of 0.0, 0.6 and 3.0 mg nTiO2/L) in nutrient medium aged for 0 or 3 days with copper (Cu) at concentrations of 0 and 116 µg Cu/L and with NOM at concentrations equivalent to 0 and 8 mg total organic carbon (TOC) per litre. Subsequently, the exposed alga was fed to Daphnia magna for 23 days over two generations and survival, reproduction and body length were assessed as endpoints of toxicity. In parallel, Cu accumulation and depuration from D. magna were measured. The results indicate that the reproduction of D. magna was the most sensitive parameter in this study, being reduced by 30% (at both parental (F0) and filial (F1) generations) and 50% (at F0 but not F1) due to the dietary Cu exposure in combination with nTiO2 for 0 and 3 days aging, respectively. There was no relationship between the effects observed on reproduction and Cu body burden in D. magna. Moreover, D. magna from the F1 generation showed an adaptive response to Cu in the treatment with 3.0 mg nTiO2/L aged for 3 days, potentially due to epigenetic inheritance. Unexpectedly, the presence of NOM hardly changed the observed effects, pointing towards the function of algal exopolymeric substances or intracellular organic matter, rendering the NOM irrelevant. Ultimately, the results indicate that the transferability of the impacts observed during the F0 to the responses in the F1 generation is challenging due to opposite effect directions. Additional mechanistic studies are needed to unravel this inconsistency in the responses between generations and to support the development of reliable effect models.
Collapse
Affiliation(s)
- Rajdeep Roy
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany.
| | - Lucas Kempter
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Allan Philippe
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Eric Bollinger
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Lea Grünling
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | | | - Frederik Meyer
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Alexander Feckler
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Frank Seitz
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
2
|
Xue X, Wang L, Xing H, Zhao Y, Li X, Wang G, Wang Z. Characteristics of phytoplankton-zooplankton communities and the roles in the transmission of antibiotic resistance genes under the pressure of river contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146452. [PMID: 33770605 DOI: 10.1016/j.scitotenv.2021.146452] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Insight into the distribution of antibiotic resistance genes (ARGs) in phytoplankton-zooplankton communities (PZCs) is essential for the management and control of antibiotic resistance in aquatic ecosystems. This study characterized the profiles of PZCs and their carried ARGs in a typical urban river and ranked the factors (water physicochemical parameters, PZCs, bacterial abundance, and mobile genetic elements) influencing the dynamic of ARG profiles by the partial least squares path modeling. Results showed Cyanobacteria, Bacillariophyta and Chlorophyta were dominant phyla of phytoplankton, and Rotifera was with the highest abundance in zooplankton. River contamination markedly altered the structure of PZCs, increasing the abundance of phytoplankton and zooplankton, decreasing the diversity of phytoplankton while elevating in zooplankton. PZCs harbored large amounts of ARGs with average relative abundance of 2.35 × 10-2/copies nearly an order magnitude higher than the living water and most ARGs exhibited significant accumulation in PZCs with the aggravated environmental pollution. The partial least squares path modeling predicted the water parameters as the most important factor mainly playing indirect effects on ARGs via PZCs and bacterial communities, followed by mobile genetic elements as the most essential direct factor for ARGs profiles. Besides, PZCs were also important drivers for the carried ARGs via direct effects on the ARGs' composition and indirect effects on host bacterial communities of ARGs and their mobile genetic elements. The present study fills the gaps in knowledge about the distribution of ARGs in PZCs and provided a new perspective to decipher the key roles of PZCs in the maintenance and dissemination of ARGs in urban river ecosystems.
Collapse
Affiliation(s)
- Xue Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoran Xing
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangju Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Guillaumot C, Saucède T, Morley SA, Augustine S, Danis B, Kooijman S. Can DEB models infer metabolic differences between intertidal and subtidal morphotypes of the Antarctic limpet Nacella concinna (Strebel, 1908)? Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Pan Y, Dong J, Wan L, Sun S, MacIsaac HJ, Drouillard KG, Chang X. Norfloxacin pollution alters species composition and stability of plankton communities. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121625. [PMID: 31753672 DOI: 10.1016/j.jhazmat.2019.121625] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/18/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Despite recent advances in assessing lethal effects of antibiotics on freshwater organisms, little is known about their potential consequences on community composition and function, which are essential for assessing the ecological risk of these pollutants. Here, we investigated the impact of norfloxacin (NOR) on the short-term (≤ 6 days) dynamics of co-cultured Scenedesmusquadricauda-Chlorella vulgaris and Scenedesmusobliquus-C. vulgaris, and the long-term (≤ 70 days) dynamics of co-cultured S.obliquus-C. vulgaris in experiments with or without grazer Daphnia magna at sublethal antibiotic concentrations (0, 0.5, 2 and 8 mg L-1). NOR increased the relative abundance of Scenedesmus species in the absence of grazers but exerted opposite effects when Daphnia was present in both short- and long-term experiments due to reduced colony size. Meanwhile, increasing NOR concentrations led to quickly increased total algal density in the initial stage, followed by a sharp decline in the long-term experiment in the absence of grazers; when Daphnia was present, population fluctuations were even larger for both prey and predator species (e.g., grazer extinction at the highest concentration). Thus, NOR affected the outcome of species interactions and decreased temporal stability of plankton ecosystems, suggesting that antibiotics have more extensive impacts than presently recognized.
Collapse
Affiliation(s)
- Ying Pan
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, Yunnan, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, Yunnan, China; Department of Ecology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jinyan Dong
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, Yunnan, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, Yunnan, China
| | - Lingling Wan
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, Yunnan, China; Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, 650091, Yunnan, China
| | - Shucun Sun
- Department of Ecology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hugh J MacIsaac
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9 B 3P4, Canada
| | - Ken G Drouillard
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9 B 3P4, Canada
| | - Xuexiu Chang
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, Yunnan, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9 B 3P4, Canada.
| |
Collapse
|
5
|
|
6
|
Føre M, Alver M, Alfredsen JA, Marafioti G, Senneset G, Birkevold J, Willumsen FV, Lange G, Espmark Å, Terjesen BF. Modelling growth performance and feeding behaviour of Atlantic salmon ( Salmo salar L.) in commercial-size aquaculture net pens: Model details and validation through full-scale experiments. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2016; 464:268-278. [PMID: 28148974 PMCID: PMC5268353 DOI: 10.1016/j.aquaculture.2016.06.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED We have developed a mathematical model which estimates the growth performance of Atlantic salmon in aquaculture production units. The model consists of sub-models estimating the behaviour and energetics of the fish, the distribution of feed pellets, and the abiotic conditions in the water column. A field experiment where three full-scale cages stocked with 120,000 salmon each (initial mean weight 72.1 ± SD 2.8 g) were monitored over six months was used to validate the model. The model was set up to simulate fish growth for all the three cages using the feeding regimes and observed environmental data as input, and simulation results were compared with the experimental data. Experimental fish achieved end weights of 878, 849 and 739 g in the three cages respectively. However, the fish contracted Pancreas Disease (PD) midway through the experiment, a factor which is expected to impair growth and increase mortality rate. The model was found able to predict growth rates for the initial period when the fish appeared to be healthy. Since the effects of PD on fish performance are not modelled, growth rates were overestimated during the most severe disease period. This work illustrates how models can be powerful tools for predicting the performance of salmon in commercial production, and also imply their potential for predicting differences between commercial scale and smaller experimental scales. Furthermore, such models could be tools for early detection of disease outbreaks, as seen in the deviations between model and observations caused by the PD outbreak. A model could potentially also give indications on how the growth performance of the fish will suffer during such outbreaks. STATEMENT OF RELEVANCE We believe that our manuscript is relevant for the aquaculture industry as it examines the growth performance of salmon in a fish farm in detail at a scale, both in terms of number of fish and in terms of duration, that is higher than usual for such studies. In addition, the fish contracted a disease (PD) midway through the experiment, thus resulting in a detailed dataset containing information on how PD affects salmon growth, which can serve as a foundation to understanding disease effects better. Furthermore, the manuscript describes an integrated mathematical model that is able to predict fish behaviour, growth and energetics of salmon in response to commercial production conditions, including a dynamic model of the distribution of feed pellets in the production volume. To our knowledge, there exist no models aspiring to estimate such a broad spectre of the dynamics in commercial aquaculture production cages. We believe this model could serve as a future tool to predict the dynamics in commercial aquaculture net pens, and that it could represent a building block that can be utilised in a future development of knowledge-driven decision-support tools for the salmon industry.
Collapse
Affiliation(s)
- Martin Føre
- NTNU Department of Engineering Cybernetics, NO-7491 Trondheim, Norway
- SINTEF Fisheries and Aquaculture, NO-7465 Trondheim, Norway
| | - Morten Alver
- NTNU Department of Engineering Cybernetics, NO-7491 Trondheim, Norway
- SINTEF Fisheries and Aquaculture, NO-7465 Trondheim, Norway
| | - Jo Arve Alfredsen
- NTNU Department of Engineering Cybernetics, NO-7491 Trondheim, Norway
| | | | | | - Jens Birkevold
- SINTEF Fisheries and Aquaculture, NO-7465 Trondheim, Norway
| | | | - Guttorm Lange
- SINTEF Fisheries and Aquaculture, NO-7465 Trondheim, Norway
| | | | | |
Collapse
|
7
|
Perhar G, Kelly NE, Ni FJ, Simpson MJ, Simpson AJ, Arhonditsis GB. Using Daphnia physiology to drive food web dynamics: A theoretical revisit of Lotka-Volterra models. ECOL INFORM 2016. [DOI: 10.1016/j.ecoinf.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Koussoroplis AM, Wacker A. Covariance modulates the effect of joint temperature and food variance on ectotherm life-history traits. Ecol Lett 2015; 19:143-152. [DOI: 10.1111/ele.12546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/20/2015] [Accepted: 10/15/2015] [Indexed: 11/27/2022]
Affiliation(s)
| | - Alexander Wacker
- Institute for Biochemistry and Biology; Potsdam University; Potsdam Germany
| |
Collapse
|
9
|
Ananthasubramaniam B, McCauley E, Gust KA, Kennedy AJ, Muller EB, Perkins EJ, Nisbet RM. Relating suborganismal processes to ecotoxicological and population level endpoints using a bioenergetic model. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:1691-1710. [PMID: 26552275 DOI: 10.1890/14-0498.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ecological effects of environmental stressors are commonly evaluated using organismal or suborganismal data, such as standardized toxicity tests that characterize responses of individuals (e.g., mortality and reproduction) and a rapidly growing body of "omics" data. A key challenge for environmental risk assessment is relating such information to population dynamics. One approach uses dynamic energy budget (DEB) models that relate growth and reproduction of individuals to underlying flows of energy and elemental matter. We hypothesize that suborganismal information identifies DEB parameters that are most likely impacted by a particular stressor and that the DEB model can then project suborganismal effects on life history and population endpoints. We formulate and parameterize a model of growth and reproduction for the water flea Daphnia magna. Our model resembles previous generic bioenergetic models, but has explicit representation of discrete molts, an important feature of Daphnia life history. We test its ability to predict six endpoints commonly used in chronic toxicity studies in specified food environments. With just one adjustable parameter, the model successfully predicts growth and reproduction of individuals from a wide array of experiments performed in multiple laboratories using different clones of D. magna raised on different food sources. Fecundity is the most sensitive endpoint, and there is broad correlation between the sensitivities of fecundity and long-run growth rate, as is desirable for the default metric used in chronic toxicity tests. Under some assumptions, we can combine our DEB model with the Euler-Lotka equation to estimate longrun population growth rates at different food levels. A review of Daphnia gene-expression experiments on the effects of contaminant exposure reveals several connections to model parameters, in particular a general trend of increased transcript expression of genes involved in energy assimilation and utilization at concentrations affecting growth and reproduction. The sensitivity of fecundity to many model parameters was consistent with frequent generalized observations of decreased expression of genes involved in reproductive physiology, but interpretation of these observations requires further mechanistic modeling. We thus propose an approach based on generic DEB models incorporating few essential species-specific features for rapid extrapolation of ecotoxicogenomic assays for Daphnia-based population risk assessment.
Collapse
|
10
|
Kim HY, Yu S, Jeong TY, Kim SD. Relationship between trans-generational effects of tetracycline on Daphnia magna at the physiological and whole organism level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 191:111-118. [PMID: 24832921 DOI: 10.1016/j.envpol.2014.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
The effects of pharmaceuticals have been underestimated during single generation exposure. Therefore, in this study, we investigated toxic responses at the physiological and whole organism level in tetracycline-exposed Daphnia magna over four consecutive generational lifecycles. The results showed that tetracycline affected energy-related physiological functions in concentration- and generation-dependent manners, and especially maintenance costs increased. Consequently, multigenerational exposure to tetracycline induced changes in energy balance, resulting in the change of higher levels of biological responses. In contrast, D. magna acclimated to tetracycline exposure over multiple generations, as evidenced by the increased LC50 values. Transgenerational adaptation was related to the neonatal sensitivity and energy reserves of the organism. The results also emphasized the idea that the number of generation is an important factor for toxicity. The present study confirmed that toxic stress induces metabolic changes in an organism, thereby leading to increased energy consumption that results in adverse effects on reproduction.
Collapse
Affiliation(s)
- Hyun Young Kim
- Advanced Radiation Technology Institute, Korean Atomic Energy Research Institute, Jeongeup, Jeonbuk 580-185, Republic of Korea; School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Seungho Yu
- Advanced Radiation Technology Institute, Korean Atomic Energy Research Institute, Jeongeup, Jeonbuk 580-185, Republic of Korea
| | - Tae-Yong Jeong
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Sang Don Kim
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea.
| |
Collapse
|
11
|
Agatz A, Brown CD. Evidence for links between feeding inhibition, population characteristics, and sensitivity to acute toxicity for Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9461-9. [PMID: 23837636 DOI: 10.1021/es401428h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A population experiment with Daphnia magna tested the hypothesis that short-term feeding inhibition provokes a shift in population structure that will vary with conspecific pressure (e.g., pressure occurring from individuals of the same species due to competition for food and space) and increases population sensitivity to a xenobiotic exposure due to size-dependent toxicity (e.g., decreasing sensitivity with increasing body length). Populations were exposed for one week to a feeding inhibitor (imidacloprid, 0.15 or 12.0 mg/L) followed by one week of recovery and one day of exposure to an acute toxin (carbaryl, 0.0098 mg/L). Identical exposure under low and high conspecific pressure was studied by delaying the start of exposure for half of the populations by two weeks; thus populations were in a different stage of population development when exposure occurred. Feeding inhibition of 97% (12.0 mg/L imidacloprid) caused a shift in population structure toward smaller individuals but also reduced population abundance by up to 56 ± 7% with a strong influence of conspecific pressure. Increased population sensitivity to carbaryl was observed after feeding inhibition of 97% as hypothesized. Carbaryl exposure for one day resulted in population decline of up to 23 ± 6% when populations were not previously exposed to imidacloprid. Identical carbaryl exposure provoked a four times stronger decline in population abundance when exposure occurred following feeding inhibition of 97%. In conflict with the hypothesis, this was at least in part due to changes in the reproductive strategy of daphnids following exposure to imidacloprid rather than driven by the shift in population structure. The differences in population sensitivity to additional stress (carbaryl) occurring one week after feeding inhibition caused by exposure to imidacloprid adds a further challenge to understanding potential impacts from multiple stressors as occurring in the field at the population level.
Collapse
Affiliation(s)
- Annika Agatz
- Environment Department, University of York, Heslington, York, YO10 5DD, United Kingdom.
| | | |
Collapse
|
12
|
Agatz A, Cole TA, Preuss TG, Zimmer E, Brown CD. Feeding inhibition explains effects of imidacloprid on the growth, maturation, reproduction, and survival of Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:2909-17. [PMID: 23425205 DOI: 10.1021/es304784t] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Effects of some xenobiotics on aquatic organisms might not be caused directly by the compound but rather arise from acclimation of the organism to stress invoked by feeding inhibition during exposure. Experiments were conducted to identify effects of imidacloprid on individual performance (feeding, growth, maturation, reproduction, and survival) of Daphnia magna under surplus and reduced food availability. Concentrations inhibiting feeding by 5, 50, and 95% after one day of exposure were 0.19, 1.83, and 8.70 mg/L, respectively. Exposure with imidacloprid at ≥ 3.7 mg/L reduced growth by up to 53 ± 11% within one week. Surplus food availability after inhibition allowed recovery from this growth inhibition, whereas limited food supply eliminated the potential for recovery in growth even for exposure at 0.15 mg/L. A shift in the distribution of individual energy reserves toward reproduction rather than growth resulted in increased reproduction after exposure to concentrations ≤ 0.4 mg/L. Exposure to imidacloprid at ≥ 4.0 mg/L overwhelmed this adaptive response and reduced reproduction by up to 57%. We used the individual based Daphnia magna population model IDamP as a virtual laboratory to demonstrate that only feeding was affected by imidacloprid, and that in turn this caused the other impacts on individual performance. Consideration of end points individually would have led to a different interpretation of the effects. Thus, we demonstrate how multiple lines of evidence linked by understanding the ecology of the organism are necessary to elucidate xenobiotic impacts along the effect cascade.
Collapse
Affiliation(s)
- Annika Agatz
- Environment Department, University of York, Heslington, York, YO10 5DD, United Kingdom.
| | | | | | | | | |
Collapse
|
13
|
Temperature-dependent consumer-resource dynamics: A coupled structured model for Gammarus pulex (L.) and leaf litter. Ecol Modell 2012. [DOI: 10.1016/j.ecolmodel.2012.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|