1
|
Masuda T, Mareš J, Shiozaki T, Inomura K, Fujiwara A, Prášil O. Crocosphaera watsonii - A widespread nitrogen-fixing unicellular marine cyanobacterium. JOURNAL OF PHYCOLOGY 2024; 60:604-620. [PMID: 38551849 DOI: 10.1111/jpy.13450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/14/2023] [Accepted: 02/08/2024] [Indexed: 06/12/2024]
Abstract
Crocosphaera watsonii is a unicellular N2-fixing (diazotrophic) cyanobacterium observed in tropical and subtropical oligotrophic oceans. As a diazotroph, it can be a source of bioavailable nitrogen (N) to the microbial community in N-limited environments, and this may fuel primary production in the regions where it occurs. Crocosphaera watsonii has been the subject of intense study, both in culture and in field populations. Here, we summarize the current understanding of the phylogenetic and physiological diversity of C. watsonii, its distribution, and its ecological niche. Analysis of the relationships among the individual Crocosphaera species and related free-living and symbiotic lineages of diazotrophs based on the nifH gene have shown that the C. watsonii group holds a basal position and that its sequence is more similar to Rippkaea and Zehria than to other Crocosphaera species. This finding warrants further scrutiny to determine if the placement is related to a horizontal gene transfer event. Here, the nifH UCYN-B gene copy number from a recent synthesis effort was used as a proxy for relative C. watsonii abundance to examine patterns of C. watsonii distribution as a function of environmental factors, like iron and phosphorus concentration, and complimented with a synthesis of C. watsonii physiology. Furthermore, we have summarized the current knowledge of C. watsonii with regards to N2 fixation, photosynthesis, and quantitative modeling of physiology. Because N availability can limit primary production, C. watsonii is widely recognized for its importance to carbon and N cycling in ocean ecosystems, and we conclude this review by highlighting important topics for further research on this important species.
Collapse
Affiliation(s)
- Takako Masuda
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic
- Japan Fisheries Research and Education Agency, Shiogama, Miyagi, Japan
| | - Jan Mareš
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic
- Institute of Hydrobiology, Biology Centre, The Czech Academy of Sciences, České Budejovice, Czech Republic
| | - Takuhei Shiozaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Amane Fujiwara
- Research Institute for Global Change, JAMSTEC, Yokosuka, Japan
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic
| |
Collapse
|
2
|
Inomura K, Masuda T, Eichner M, Rabouille S, Zavřel T, Červený J, Vancová M, Bernát G, Armin G, Claquin P, Kotabová E, Stephan S, Suggett DJ, Deutsch C, Prášil O. Quantifying Cyanothece growth under DIC limitation. Comput Struct Biotechnol J 2021; 19:6456-6464. [PMID: 34938417 PMCID: PMC8665340 DOI: 10.1016/j.csbj.2021.11.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022] Open
Abstract
The photoautotrophic, unicellular N2-fixer, Cyanothece, is a model organism that has been widely used to study photosynthesis regulation, the structure of photosystems, and the temporal segregation of carbon (C) and nitrogen (N) fixation in light and dark phases of the diel cycle. Here, we present a simple quantitative model and experimental data that together, suggest external dissolved inorganic carbon (DIC) concentration as a major limiting factor for Cyanothece growth, due to its high C-storage requirement. Using experimental data from a parallel laboratory study as a basis, we show that after the onset of the light period, DIC was rapidly consumed by photosynthesis, leading to a sharp drop in the rate of photosynthesis and C accumulation. In N2-fixing cultures, high rates of photosynthesis in the morning enabled rapid conversion of DIC to intracellular C storage, hastening DIC consumption to levels that limited further uptake. The N2-fixing condition allows only a small fraction of fixed C for cellular growth since a large fraction was reserved in storage to fuel night-time N2 fixation. Our model provides a framework for resolving DIC limitation in aquatic ecosystem simulations, where DIC as a growth-limiting factor has rarely been considered, and importantly emphasizes the effect of intracellular C allocation on growth rate that varies depending on the growth environment.
Collapse
Affiliation(s)
- Keisuke Inomura
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Takako Masuda
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic
| | - Meri Eichner
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic
| | - Sophie Rabouille
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, F-66650 Banyuls-sur-mer, France
| | - Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Červený
- Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Marie Vancová
- Laboratory of Electron Microscopy, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Gábor Bernát
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic.,Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Tihany, Hungary
| | - Gabrielle Armin
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Pascal Claquin
- Laboratoire de Biologie des ORganismes et Ecosystèmes Aquatiques (BOREA), UMR 8067, Muséum National d'Histoire Naturelle, CNRS, IRD Sorbonne Université, Université de Caen Normandie, Normandie Université, Esplanade de la Paix, F-14032 Caen, France
| | - Eva Kotabová
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic
| | - Susanne Stephan
- Department Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - David J Suggett
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW 2007, Australia
| | - Curtis Deutsch
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czech Republic
| |
Collapse
|
3
|
Rabouille S, Campbell DA, Masuda T, Zavřel T, Bernát G, Polerecky L, Halsey K, Eichner M, Kotabová E, Stephan S, Lukeš M, Claquin P, Bonomi-Barufi J, Lombardi AT, Červený J, Suggett DJ, Giordano M, Kromkamp JC, Prášil O. Electron & Biomass Dynamics of Cyanothece Under Interacting Nitrogen & Carbon Limitations. Front Microbiol 2021; 12:617802. [PMID: 33897635 PMCID: PMC8063122 DOI: 10.3389/fmicb.2021.617802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/01/2021] [Indexed: 11/25/2022] Open
Abstract
Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3–-supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down.
Collapse
Affiliation(s)
- Sophie Rabouille
- Sorbonne Université, CNRS, LOV, Villefranche-sur-Mer, France.,Sorbonne Université, CNRS, LOMIC, Banyuls-sur-Mer, France
| | - Douglas A Campbell
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia.,Mount Allison University, Sackville, NB, Canada
| | - Takako Masuda
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Tomáš Zavřel
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czechia
| | - Gábor Bernát
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia.,Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg Kuno u. 3. 8237 Tihany, Hungary
| | - Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Kimberly Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Meri Eichner
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia.,Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Eva Kotabová
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Susanne Stephan
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Zur alten Fischerhütte 2, Stechlin, Germany.,Department of Ecology, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, Berlin, Germany
| | - Martin Lukeš
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| | - Pascal Claquin
- UMR BOREA (CNRS 8067), MNHN, IRD (207), Université de Caen Basse-Normandie, Caen, France
| | - José Bonomi-Barufi
- Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Jan Červený
- Department of Adaptive Biotechnologies, Global Change Research Institute CAS, Brno, Czechia
| | - David J Suggett
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Mario Giordano
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia.,Dipartimento di Scienze della Vita e dell'Ambiente, UniversitaÌ Politecnica delle Marche, Ancona, Italy
| | - Jacco C Kromkamp
- NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Utrecht, Netherlands
| | - Ondřej Prášil
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
| |
Collapse
|
4
|
Inomura K, Deutsch C, Masuda T, Prášil O, Follows MJ. Quantitative models of nitrogen-fixing organisms. Comput Struct Biotechnol J 2020; 18:3905-3924. [PMID: 33335688 PMCID: PMC7733014 DOI: 10.1016/j.csbj.2020.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 10/26/2022] Open
Abstract
Nitrogen-fixing organisms are of importance to the environment, providing bioavailable nitrogen to the biosphere. Quantitative models have been used to complement the laboratory experiments and in situ measurements, where such evaluations are difficult or costly. Here, we review the current state of the quantitative modeling of nitrogen-fixing organisms and ways to enhance the bridge between theoretical and empirical studies.
Collapse
Affiliation(s)
- Keisuke Inomura
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Curtis Deutsch
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Takako Masuda
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, Třeboň, Czech Republic
| | - Ondřej Prášil
- Institute of Microbiology, The Czech Academy of Sciences, Opatovický mlýn, Třeboň, Czech Republic
| | - Michael J. Follows
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
5
|
Quantifying Oxygen Management and Temperature and Light Dependencies of Nitrogen Fixation by Crocosphaera watsonii. mSphere 2019; 4:4/6/e00531-19. [PMID: 31826967 PMCID: PMC6908418 DOI: 10.1128/msphere.00531-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crocosphaera is a major dinitrogen (N2)-fixing microorganism, providing bioavailable nitrogen (N) to marine ecosystems. The N2-fixing enzyme nitrogenase is deactivated by oxygen (O2), which is abundant in marine environments. Using a cellular scale model of Crocosphaera sp. and laboratory data, we quantify the role of three O2 management strategies by Crocosphaera sp.: size adjustment, reduced O2 diffusivity, and respiratory protection. Our model predicts that Crocosphaera cells increase their size under high O2 Using transmission electron microscopy, we show that starch granules and thylakoid membranes are located near the cytoplasmic membranes, forming a barrier for O2 The model indicates a critical role for respiration in protecting the rate of N2 fixation. Moreover, the rise in respiration rates and the decline in ambient O2 with temperature strengthen this mechanism in warmer water, providing a physiological rationale for the observed niche of Crocosphaera at temperatures exceeding 20°C. Our new measurements of the sensitivity to light intensity show that the rate of N2 fixation reaches saturation at a lower light intensity (∼100 μmol m-2 s-1) than photosynthesis and that both are similarly inhibited by light intensities of >500 μmol m-2 s-1 This suggests an explanation for the maximum population of Crocosphaera occurring slightly below the ocean surface.IMPORTANCE Crocosphaera is one of the major N2-fixing microorganisms in the open ocean. On a global scale, the process of N2 fixation is important in balancing the N budget, but the factors governing the rate of N2 fixation remain poorly resolved. Here, we combine a mechanistic model and both previous and present laboratory studies of Crocosphaera to quantify how chemical factors such as C, N, Fe, and O2 and physical factors such as temperature and light affect N2 fixation. Our study shows that Crocosphaera combines multiple mechanisms to reduce intracellular O2 to protect the O2-sensitive N2-fixing enzyme. Our model, however, indicates that these protections are insufficient at low temperature due to reduced respiration and the rate of N2 fixation becomes severely limited. This provides a physiological explanation for why the geographic distribution of Crocosphaera is confined to the warm low-latitude ocean.
Collapse
|