1
|
Mattheiss JP, Breyta R, Kurath G, LaDeau SL, Páez DJ, Ferguson PFB. Coproduction and modeling spatial contact networks prevent bias about infectious hematopoietic necrosis virus transmission for Snake River Basin salmonids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117415. [PMID: 36780814 DOI: 10.1016/j.jenvman.2023.117415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Much remains unknown about variation in pathogen transmission across the geographic range of a free-ranging fish or animal species and about the influence of movement (associated with husbandry practices or animal behavior) on pathogen transmission. Salmonid hatcheries are an ideal system in which to study these processes. Salmonid hatcheries are managed for endangered species recovery, supplementation of threatened or at-risk fish stocks, support of fisheries, and ecosystem stability. Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus of significant concern to salmon aquaculture. Landscape IHNV transmission dynamics previously had been estimated only for salmonid hatcheries in the Lower Columbia River Basin (LCRB). The objectives of this study were to estimate IHNV transmission dynamics in a unique geographic region, the Snake River Basin (SRB), and to quantitatively estimate the effect of model coproduction on inference because previous assessments of coproduction have been qualitative. In contrast to the LCRB, the SRB has hatchery complexes consisting of a main hatchery and ≥1 satellite facility. Knowledge about hatchery complexes was held by a subset of project researchers but would not have been available to project modelers without coproduction. Project modelers generated and tested multiple versions of Bayesian susceptible-exposedinfected models to realistically represent the SRB and estimate the effect of coproduction. Models estimated the frequency of transmission routes, route-specific infection probabilities, and infection probabilities for combinations of salmonid hosts and IHNV lineages. Model results indicated that in the SRB, avoiding exposure to IHNV-positive adult salmonids is the most important action to prevent juvenile infections. Migrating adult salmonids exposed juvenile cohort-sites most frequently, and the infection probability was greatest following exposure to migrating adults. Without coproduction, the frequency of exposure by migrating adults would have been overestimated by 70 cohort-sites, and the infection probability following exposure to migrating adults would have been underestimated by∼0.09. The coproduced model had less uncertainty in the infection probability if no transmission route could be identified (Bayesian credible interval (BCI) width = 0.12) compared to the model without coproduction (BCI width = 0.34). Evidence for virus lineage MD specialization on steelhead and rainbow trout (both Oncorhynchus mykiss) was apparent without model coproduction. In the SRB, we found a greater probability of virus lineage UC infection in Chinook salmon (Oncorhynchus tshawytscha) compared to in O. mykiss, whereas in the LCRB, UC more clearly exhibited a generalist approach. Coproduction influenced estimates that depended on transmission routes, which operated differently at main hatcheries and satellite sites within hatchery complexes. Hatchery complexes are found outside of the SRB and are not specific to salmonid hatcheries alone. There is great potential for coproduction and modeling spatial contact networks to advance understanding about infectious disease transmission in complex production systems and surrounding free-ranging animal populations.
Collapse
Affiliation(s)
- Jeffrey P Mattheiss
- 1325 Science and Engineering Complex, 300 Hackberry Lane, Tuscaloosa, AL 35487 University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Rachel Breyta
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA.
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA.
| | - Shannon L LaDeau
- Cary Institute of Ecosystem Studies, 2801 Sharon Turnpike, Millbrook, NY, 12545, USA.
| | - David J Páez
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, 98115, USA.
| | - Paige F B Ferguson
- 1325 Science and Engineering Complex, 300 Hackberry Lane, Tuscaloosa, AL 35487 University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
2
|
Genetics Reveal Long-Distance Virus Transmission Links in Pacific Salmon. Animals (Basel) 2022; 12:ani12162120. [PMID: 36009710 PMCID: PMC9405316 DOI: 10.3390/ani12162120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary The transmission of viruses between host populations is essential for viruses to persist on the landscape. Therefore, the identification of specific transmission links can provide insights into how a virus moves from source to recipient (sink) populations, allowing for the development of strategies to interrupt transmission routes and control viral disease. For the fish pathogen infectious hematopoietic necrosis virus (IHNV), this study identifies three transmission links associated with the emergence of IHNV in coastal Washington steelhead trout populations between 2007 and 2011. The links were identified by the genetic typing of virus isolates obtained from coastal fish and potential source fish from the Columbia River Basin. Three exact genotype matches were found, indicating at least three introductions of virus from Columbia fish to coastal fish during years of the emergence event. Likely sources were juvenile fish in the Columbia region experiencing disease, and the first detected recipient populations in all cases were adult fish returning to coastal hatcheries. Variation in timing and distance for these three transmission links will provide Pacific Northwest fish health managers with a better understanding of IHNV transmission routes from Columbia region fish to coastal steelhead trout. Abstract In the coastal region of Washington State, a major pathogen emergence event occurred between 2007 and 2011 in which steelhead trout (Oncorhynchus mykiss) experienced a high incidence of infection and disease outbreaks due to the rhabdovirus infectious hematopoietic necrosis virus (IHNV). Genetic typing showed that the introduced viruses were in the steelhead-specific MD subgroup of IHNV and indicated the most likely source was a virus from the nearby Columbia River Basin. In the current study, full-length viral glycoprotein (G) gene sequences were determined for 55 IHNV isolates from both coastal and Columbia fish populations to identify specific source populations and infer mechanisms of transmission to coastal steelhead. We identified three transmission links based on exact fullG genotype matches between Columbia and coastal fish. In all cases, the likely source population was infected juvenile fish, and sink populations were adult fish returning to coastal rivers to spawn. The time intervals between detection in source and sink populations varied from 6 months to nearly 4 years, suggesting different transmission pathways. Surprisingly, distances between source and sink populations varied between 140 and 1000 km. These results confirm repeated introductions of virus from Columbia River Basin fish as the cause of emergence of MD virus on the Washington coast from 2007 to 2011.
Collapse
|
3
|
Mugimba KK, Byarugaba DK, Mutoloki S, Evensen Ø, Munang’andu HM. Challenges and Solutions to Viral Diseases of Finfish in Marine Aquaculture. Pathogens 2021; 10:pathogens10060673. [PMID: 34070735 PMCID: PMC8227678 DOI: 10.3390/pathogens10060673] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Aquaculture is the fastest food-producing sector in the world, accounting for one-third of global food production. As is the case with all intensive farming systems, increase in infectious diseases has adversely impacted the growth of marine fish farming worldwide. Viral diseases cause high economic losses in marine aquaculture. We provide an overview of the major challenges limiting the control and prevention of viral diseases in marine fish farming, as well as highlight potential solutions. The major challenges include increase in the number of emerging viral diseases, wild reservoirs, migratory species, anthropogenic activities, limitations in diagnostic tools and expertise, transportation of virus contaminated ballast water, and international trade. The proposed solutions to these problems include developing biosecurity policies at global and national levels, implementation of biosecurity measures, vaccine development, use of antiviral drugs and probiotics to combat viral infections, selective breeding of disease-resistant fish, use of improved diagnostic tools, disease surveillance, as well as promoting the use of good husbandry and management practices. A multifaceted approach combining several control strategies would provide more effective long-lasting solutions to reduction in viral infections in marine aquaculture than using a single disease control approach like vaccination alone.
Collapse
Affiliation(s)
- Kizito K. Mugimba
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
- Correspondence: (K.K.M.); (H.M.M.); Tel.: +256-772-56-7940 (K.K.M.); +47-98-86-86-83 (H.M.M.)
| | - Denis K. Byarugaba
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Stephen Mutoloki
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; (S.M.); (Ø.E.)
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway; (S.M.); (Ø.E.)
| | - Hetron M. Munang’andu
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 369, 0102 Oslo, Norway
- Correspondence: (K.K.M.); (H.M.M.); Tel.: +256-772-56-7940 (K.K.M.); +47-98-86-86-83 (H.M.M.)
| |
Collapse
|
4
|
Páez DJ, LaDeau SL, Breyta R, Kurath G, Naish KA, Ferguson PFB. Infectious hematopoietic necrosis virus specialization in a multihost salmonid system. Evol Appl 2020; 13:1841-1853. [PMID: 32908589 PMCID: PMC7463311 DOI: 10.1111/eva.12931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 01/08/2023] Open
Abstract
Many pathogens interact and evolve in communities where more than one host species is present, yet our understanding of host-pathogen specialization is mostly informed by laboratory studies with single species. Managing diseases in the wild, however, requires understanding how host-pathogen specialization affects hosts in diverse communities. Juvenile salmonid mortality in hatcheries caused by infectious hematopoietic necrosis virus (IHNV) has important implications for salmonid conservation programs. Here, we evaluate evidence for IHNV specialization on three salmonid hosts and assess how this influences intra- and interspecific transmission in hatchery-reared salmonids. We expect that while more generalist viral lineages should pose an equal risk of infection across host types, viral specialization will increase intraspecific transmission. We used Bayesian models and data from 24 hatcheries in the Columbia River Basin to reconstruct the exposure history of hatcheries with two IHNV lineages, MD and UC, allowing us to estimate the probability of juvenile infection with these lineages in three salmonid host types. Our results show that lineage MD is specialized on steelhead trout and perhaps rainbow trout (both Oncorhynchus mykiss), whereas lineage UC displayed a generalist phenotype across steelhead trout, rainbow trout, and Chinook salmon. Furthermore, our results suggest the presence of specialist-generalist trade-offs because, while lineage UC had moderate probabilities of infection across host types, lineage MD had a small probability of infection in its nonadapted host type, Chinook salmon. Thus, in addition to quantifying probabilities of infection of socially and economically important salmonid hosts with different IHNV lineages, our results provide insights into the trade-offs that viral lineages incur in multihost communities. Our results suggest that knowledge of the specialist/generalist strategies of circulating viral lineages could be useful in salmonid conservation programs to control disease.
Collapse
Affiliation(s)
- David J. Páez
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabama
| | | | - Rachel Breyta
- U.S. Geological Survey, Western Fisheries Research CenterSeattleWashington
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research CenterSeattleWashington
| | - Kerry A. Naish
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashington
| | | |
Collapse
|
5
|
Doumayrou J, Ryan MG, Wargo AR. Method for serial passage of infectious hematopoietic necrosis virus (IHNV) in rainbow trout. DISEASES OF AQUATIC ORGANISMS 2019; 134:223-236. [PMID: 31169128 DOI: 10.3354/dao03368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transmission is a fundamental component of pathogen fitness. A better understanding of pathogen transmission can greatly improve disease management. In particular, controlled studies of multiple rounds of natural transmission (i.e. serial passage) can provide powerful epidemiological and evolutionary inferences. However, such studies are possible in only a few systems because of the challenges in successfully initiating and maintaining transmission in the laboratory. Here we developed an efficient and reproducible cohabitation method for conducting controlled experiments investigating the effects of serial passage on infectious hematopoietic necrosis virus (IHNV) in rainbow trout. This method was used to investigate the transmission efficiency and kinetics of viral shedding of IHNV over 3 serial passages. Transmission efficiency decreased from 100 to 62.5% over the passage steps and was associated with a decrease in virus shedding into water. A shift in the peak of viral shedding was also observed, from Day 2 post immersion for passage 0 to at least 24 h later for all subsequent passages. Finally, the characterization of viruses after 1 round of transmission and propagation on cells showed no change in glycoprotein (G gene) sequences or viral virulence compared to the ancestral virus stock. The methods developed provide valuable tools for reproducible population-level studies of IHNV epidemiology and evolution.
Collapse
Affiliation(s)
- Juliette Doumayrou
- Virginia Institute of Marine Science, William & Mary, PO Box 1346, Gloucester Point, VA 23062, USA
| | | | | |
Collapse
|