1
|
Nobinraja M, Aravind NA, Ravikanth G. Opening the floodgates for invasion-modelling the distribution dynamics of invasive alien fishes in India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1411. [PMID: 37922020 DOI: 10.1007/s10661-023-12012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2023]
Abstract
Invasive alien species have become the second major threat to biodiversity affecting all three major ecosystems (terrestrial, marine, and freshwater). Increasing drivers such as habitat destruction, expanding horticulture and aquaculture industries, and global pet and food trade have created pathways for exotic species to be introduced leading to severe impacts on recipient ecosystems. Although relatively less studied than terrestrial ecosystems, freshwater ecosystems are highly susceptible to biological invasions. In India, there has been a noticeable increase in the introduction of alien fish species in freshwater environments. In the current study, we aimed to understand how climate change can affect the dynamics of the biological invasion of invasive alien fishes in India. We also evaluated the river-linking project's impact on the homogenization of biota in Indian freshwater bodies. We used species occurrence records with selected environmental variables to assess vulnerable locations for current and future biological invasion using species distribution models. Our study has identified and mapped the vulnerable regions to invasion in India. Our research indicates that the interlinking of rivers connects susceptible regions housing endangered fish species with invasive hotspots. Invasive alien fishes from the source basin may invade vulnerable basins and compete with the native species. Based on the results, we discuss some of the key areas for the management of these invasive alien species in the freshwater ecosystems.
Collapse
Affiliation(s)
- M Nobinraja
- SM Sehgal Foundation Centre for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur, Bengaluru, 560064, India.
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| | - N A Aravind
- SM Sehgal Foundation Centre for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur, Bengaluru, 560064, India
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - G Ravikanth
- SM Sehgal Foundation Centre for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur, Bengaluru, 560064, India.
| |
Collapse
|
2
|
Zhao G, Tian S, Wang Y, Liang R, Li K. Quantitative assessment methodology framework of the impact of global climate change on the aquatic habitat of warm-water fish species in rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162686. [PMID: 36889409 DOI: 10.1016/j.scitotenv.2023.162686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Global climate change (GCC), with global warming as the main characteristic, has become a global issue widely concerned by people. GCC impacts the hydrological regime at the watershed scale and affects the hydrodynamic force and the habitat conditions of freshwater ecosystems at the river scale. The impact of GCC on water resources and the water cycle is a research hotspot. However, there are few studies on water environment ecology related to hydrology and the influence of changes in discharge and water temperature on warm-water fish habitats. This study proposes a quantitative assessment methodology framework for predicting and analyzing the impact of GCC on the warm-water fish habitat. This system integrates GCC, downscaling, hydrological, hydrodynamic, water temperature and habitat models and was applied to the middle and lower reaches of the Hanjiang River (MLHR), where there are four major Chinese carps resource reduction problems. The results showed that the calibration and validation of the statistical downscaling model (SDSM) and the hydrological, hydrodynamic, and water temperature models were carried out using the observed meteorological factors, discharge, water level, flow velocity and water temperature data. The change rule of the simulated value was in good agreement with the observed value, and the models and methods used in the quantitative assessment methodology framework were applicable and accurate. The rise of water temperature caused by GCC will ease the problem of low-temperature water in the MLHR, and the weighted usable area (WUA) for spawning of the four major Chinese carps will appear in advance. Meanwhile, the increase in future annual discharge will play a positive role in WUA. In general, the rise in confluence discharge and water temperature caused by GCC will increase WUA, which is beneficial to the spawning ground of four major Chinese carps.
Collapse
Affiliation(s)
- Gaolei Zhao
- Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou 450003, China
| | - Shimin Tian
- Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou 450003, China
| | - Yuanming Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Ruifeng Liang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| | - Kefeng Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Reconstructed River Water Temperature Dataset for Western Canada 1980–2018. DATA 2023. [DOI: 10.3390/data8030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Continuous water temperature data are important for understanding historical variability and trends of river thermal regime, as well as impacts of warming climate on aquatic ecosystem health. We describe a reconstructed daily water temperature dataset that supplements sparse historical observations for 55 river stations across western Canada. We employed the air2stream model for reconstructing water temperature dataset over the period 1980–2018, with air temperature and discharge data used as model inputs. The model was calibrated and validated by comparing with observed water temperature records, and the results indicate a reasonable statistical performance. We also present historical trends over the ice-free summer months from June to September using the reconstructed dataset, which indicate- significantly increasing water temperature trends for most stations. Besides trend analysis, the dataset could be used for various applications, such as calculation of heat fluxes, calibration/validation of process-based water temperature models, establishment of baseline condition for future climate projections, and assessment of impacts on ecosystems health and water quality.
Collapse
|
4
|
Guo W, He N, Ban X, Wang H. Multi-scale variability of hydrothermal regime based on wavelet analysis - The middle reaches of the Yangtze River, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156598. [PMID: 35690198 DOI: 10.1016/j.scitotenv.2022.156598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/12/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Water temperature is a major driver of riverine ecosystems and has an extremely significant impact on them. Understanding the multi-scale water temperature dynamics in a river basin is critical to analyze the water temperature status of rivers. In this study, the intra-annual and inter-annual time series of water temperature (WT) at Yichang station in the middle reaches of the Yangtze River over the past 62 years was analyzed using complex Morlet wavelet functions to reveal the complex structure of water temperature variation at multiple time scales. The ecological impact of water temperature changes on the reproduction of the "Four Major Chinese Carp" under the influence of the Three Gorges Dam (TGD). The results showed that the water temperature at Yichang Station has a multi-level time scale structure, with an increasing trend at the inter-annual scale from 1956 to 2017, but different variations at the seasonal scale, and the water temperature cycles at both the inter-annual and seasonal scales have time scale variations of about 8-14 years and 4-7 years, with obvious characteristics of WT variation stages. The inter-annual and summer scales will have low WT in 2017-2022 and high WT in 2023-2027, while the other seasonal scales will have high WT in the next few years, either in the short or medium term. The correlation between air temperature and WT is the most significant among the three drivers of air temperature, flow and rainfall, and the correlation between WT and the air temperature is the most significant in winter scale under the influence of the Three Gorges Dam construction. Since the completion of TGD in 2003, the summer drainage temperature has decreased and the breeding period of the "Four Major Chinese Carp" has been shortened by 30-40 days compared to that before the construction of TGD. The results of this study can be used as a basis for further exploration of the formation mechanism of river water temperature and provide a scientific basis for river ecological protection.
Collapse
Affiliation(s)
- Wenxian Guo
- North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
| | - Ning He
- North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
| | - Xuan Ban
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, CAS, Wuhan 430077, China.
| | - Hongxiang Wang
- North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
| |
Collapse
|
5
|
Jahn M, Seebacher F. Variations in cost of transport and their ecological consequences: a review. J Exp Biol 2022; 225:276242. [PMID: 35942859 DOI: 10.1242/jeb.243646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Movement is essential in the ecology of most animals, and it typically consumes a large proportion of individual energy budgets. Environmental conditions modulate the energetic cost of movement (cost of transport, COT), and there are pronounced differences in COT between individuals within species and across species. Differences in morphology affect COT, but the physiological mechanisms underlying variation in COT remain unresolved. Candidates include mitochondrial efficiency and the efficiency of muscle contraction-relaxation dynamics. Animals can offset increased COT behaviourally by adjusting movement rate and habitat selection. Here, we review the theory underlying COT and the impact of environmental changes on COT. Increasing temperatures, in particular, increase COT and its variability between individuals. Thermal acclimation and exercise can affect COT, but this is not consistent across taxa. Anthropogenic pollutants can increase COT, although few chemical pollutants have been investigated. Ecologically, COT may modify the allocation of energy to different fitness-related functions, and thereby influence fitness of individuals, and the dynamics of animal groups and communities. Future research should consider the effects of multiple stressors on COT, including a broader range of pollutants, the underlying mechanisms of COT and experimental quantifications of potential COT-induced allocation trade-offs.
Collapse
Affiliation(s)
- Miki Jahn
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Evaluation of Gangetic dolphin habitat suitability under hydroclimatic changes using a coupled hydrological-hydrodynamic approach. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
National-Scale Assessment of Climate Change Impacts on Two Native Freshwater Fish Using a Habitat Suitability Model. WATER 2022. [DOI: 10.3390/w14111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change, which has the potential to alter water flow and temperature in aquatic environments, can influence the freshwater fish habitat. This study used an ecological habitat suitability model (EHSM), which integrates hydraulic (water depth and velocity) and physiologic (water temperature) suitability, to investigate the impact of climate change on two native freshwater fish species (Zacco platypus and Nipponocypris koreanus) in South Korea. The model predicted that in 2080 (2076–2085), the decrease in average ecological habitat suitability (EHS) will be higher for N. koreanus (19.2%) than for Z. platypus (9.87%) under the representative concentration pathway (RCP) 8.5 scenario. Under the same condition, EHS for Z. platypus and N. koreanus at 36.5% and 44.4% of 115 sites, respectively, were expected to degrade significantly (p < 0.05). However, the habitat degradation for Z. platypus and N. koreanus was much lower (7.8% and 10.4%, respectively) under the RCP 4.5 scenario, suggesting a preventive measure for carbon dioxide emission. Partial correlation analysis indicated that the number of hot days (i.e., days on which the temperature exceeds the heat stress threshold) is the variable most significantly (p < 0.05) related to EHS changes for both species. This study suggests that the EHSM incorporating the effect of water temperature on the growth and heat stress of fish can be a promising model for the assessment of climate change impacts on habitat suitability for freshwater fish.
Collapse
|
8
|
Zheng Y, Zhang Y, Xie Z, Shin PKS, Xu J, Fan H, Zhuang P, Hu M, Wang Y. Seasonal Changes of Growth, Immune Parameters and Liver Function in Wild Chinese Sturgeons Under Indoor Conditions: Implication for Artificial Rearing. Front Physiol 2022; 13:894729. [PMID: 35514333 PMCID: PMC9062076 DOI: 10.3389/fphys.2022.894729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/01/2022] [Indexed: 01/08/2023] Open
Abstract
Seasonality has a significant effect on the physiology of fish, especially the effect of water temperature changes. In the present study, the growth, innate immune parameters and liver function indices of two rescued wild adult Chinese sturgeons under captive conditions were monitored for 1 year. The results showed that the total annual weight loss rate of the male was −4.58% and the total weight gain rate of the female was 24.12%, in which the weight of both individuals registered highly significant differences in summer, fall and winter (p < 0.01). The male Chinese sturgeon also exhibited negative specific growth rates (−0.1 to −0.8%) during spring to fall, whereas positive specific growth rates, ranging from 0.03 to 0.11%, were recorded in the female. Seasonality also affected the innate immune parameters of the two Chinese sturgeons, in which leukocytes had been increasing since spring and C-reactive protein (CRP) content was significantly higher (p < 0.05) in summer than fall in both individuals. The CRP level of the male Chinese sturgeon showed a significant increase from fall to winter (p < 0.05), suggesting that it may have contracted infection or inflammation during this study period. With the analysis of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), transaminase (AST:ALT) ratio, alkaline phosphatase, albumin to globulin ratio and triglycerides, it was found that the liver function of the captive Chinese sturgeons was adversely affected along seasonal changes, with the highest degree of liver impairment in winter. In combining observations from growth performance and changes in innate immune and liver function parameters, the present findings deduced that the male Chinese sturgeon under study was more susceptible to seasonal changes than the female. For better indoor culture of adult Chinese sturgeons, monitoring of hematological parameters to detect early signs of inflammation and liver function abnormality should be conducted with routine veterinary care during prolonged captivity.
Collapse
Affiliation(s)
- Yueping Zheng
- International Research Center for Marine Biosciences & College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Aquatic Wildlife Research Center, Shanghai, China
| | - Yong Zhang
- International Research Center for Marine Biosciences & College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zhe Xie
- International Research Center for Marine Biosciences & College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Paul K S Shin
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jianan Xu
- Shanghai Aquatic Wildlife Research Center, Shanghai, China
| | - Houyong Fan
- Shanghai Aquatic Wildlife Research Center, Shanghai, China
| | - Ping Zhuang
- Key Laboratory of East China Sea & Oceanic Fishery Resources Exploitation and Utilization, Scientific Observing and Experimental Station of Fisheries Resources and Environment of East China Sea and Yangtze Estuary, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Menghong Hu
- International Research Center for Marine Biosciences & College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Youji Wang
- International Research Center for Marine Biosciences & College of Fisheries and Life Science at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
9
|
A Detailed Analysis of the Effect of Different Environmental Factors on Fish Phototactic Behavior: Directional Fish Guiding and Expelling Technique. Animals (Basel) 2022; 12:ani12030240. [PMID: 35158564 PMCID: PMC8833435 DOI: 10.3390/ani12030240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Environmental pollution and hydropower development have affected fish survival and caused the extinction of some fish populations and species. To understand the effects of various environmental factors on the behavioral profiles of fish, we established a novel experimental method to measure the sensitivity and phototactic behavior of Schizothorax waltoni to four light colors and two flow velocities at two temperatures under low light intensity. The results showed that S. waltoni preferred the four light colors in the order green, blue, red, and yellow. Schizothorax waltoni showed positive phototaxis in green and blue light but negative phototaxis in red and yellow light. The increased flow velocity intensified the positive and negative phototaxis of fish under different light environments, while an increase in the water temperature aroused the escape behavior. Thus, red or yellow light greater than the phototaxis threshold can be used to move fish away from dangerous areas such as high-turbulent flows or polluted waters, while green or blue light can guide them to safe environments such as fish passage entrance or ideal habitats. Finally, this study provides scientific evidence and application value for restoring fish habitats, fish passages, and fisheries. Abstract Optimization of light-based fish passage facilities has attracted extensive attention, but studies under the influence of various environmental factors are scarce. We established a novel experimental method to measure the phototactic behavior of Schizothorax waltoni. The results showed that S. waltoni preferred the four light colors in the order green, blue, red, and yellow. The increased flow velocity intensified the positive and negative phototaxis of fish under different light environments, while an increase in the water temperature aroused the escape behavior. The escape behavior of fish in red and yellow light and the phototaxis behavior in green and blue light intensified as the light intensity exceeded the phototaxis threshold and continued to increase. Thus, red or yellow light greater than the phototaxis threshold can be used to move fish away from high-turbulent flows or polluted waters, while green or blue light can be used to guide them to fish passage entrance or ideal habitats. This study provides scientific evidence and application value for restoring fish habitats, fish passages, and fisheries.
Collapse
|
10
|
Xia R, Zou L, Zhang Y, Zhang Y, Chen Y, Liu C, Yang Z, Ma S. Algal bloom prediction influenced by the Water Transfer Project in the Middle-lower Hanjiang River. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Meixler MS. A species-specific fish passage model based on hydraulic conditions and water temperature. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Carey CC, Farrell KJ, Hounshell AG, O'Connell K. Macrosystems EDDIE teaching modules significantly increase ecology students' proficiency and confidence working with ecosystem models and use of systems thinking. Ecol Evol 2020; 10:12515-12527. [PMID: 33250990 PMCID: PMC7679539 DOI: 10.1002/ece3.6757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/27/2020] [Accepted: 08/18/2020] [Indexed: 11/30/2022] Open
Abstract
Simulation models are increasingly used by ecologists to study complex, ecosystem-scale phenomena, but integrating ecosystem simulation modeling into ecology undergraduate and graduate curricula remains rare. Engaging ecology students with ecosystem simulation models may enable students to conduct hypothesis-driven scientific inquiry while also promoting their use of systems thinking, but it remains unknown how using hands-on modeling activities in the classroom affects student learning. Here, we developed short (3-hr) teaching modules as part of the Macrosystems EDDIE (Environmental Data-Driven Inquiry & Exploration) program that engage students with hands-on ecosystem modeling in the R statistical environment. We embedded the modules into in-person ecology courses at 17 colleges and universities and assessed student perceptions of their proficiency and confidence before and after working with models. Across all 277 undergraduate and graduate students who participated in our study, completing one Macrosystems EDDIE teaching module significantly increased students' self-reported proficiency, confidence, and likely future use of simulation models, as well as their perceived knowledge of ecosystem simulation models. Further, students were significantly more likely to describe that an important benefit of ecosystem models was their "ease of use" after completing a module. Interestingly, students were significantly more likely to provide evidence of systems thinking in their assessment responses about the benefits of ecosystem models after completing a module, suggesting that these hands-on ecosystem modeling activities may increase students' awareness of how individual components interact to affect system-level dynamics. Overall, Macrosystems EDDIE modules help students gain confidence in their ability to use ecosystem models and provide a useful method for ecology educators to introduce undergraduate and graduate students to ecosystem simulation modeling using in-person, hybrid, or virtual modes of instruction.
Collapse
Affiliation(s)
| | - Kaitlin J. Farrell
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
| | | | | |
Collapse
|