1
|
Ferreira L, Pos E, Nogueira DR, Ferreira FP, Sousa R, Abreu MA. Antibiotics with antibiofilm activity - rifampicin and beyond. Front Microbiol 2024; 15:1435720. [PMID: 39268543 PMCID: PMC11391936 DOI: 10.3389/fmicb.2024.1435720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
The management of prosthetic joint infections is a complex and multilayered process that is additionally complicated by the formation of bacterial biofilm. Foreign material provides the ideal grounds for the development of an intricate matrix that hinders treatment and creates a difficult environment for antibiotics to act. Surgical intervention is often warranted but requires appropriate adjunctive therapy. Despite available guidelines, several aspects of antibiotic therapy with antibiofilm activity lack clear definition. Given the escalating challenges posed by antimicrobial resistance, extended treatment durations, and tolerance issues, it is essential to ensure that antimicrobials with antibiofilm activity are both potent and diverse. Evidence of biofilm-active drugs is highlighted, and alternatives to classical regimens are further discussed.
Collapse
Affiliation(s)
- Luís Ferreira
- Department of Infectious Diseases, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
| | - Ema Pos
- Department of Infectious Diseases, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
| | | | - Filipa Pinto Ferreira
- Department of Infectious Diseases, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
| | - Ricardo Sousa
- Department of Orthopaedic Surgery, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
- Grupo de Infeção Osteoarticular do Porto, Porto, Portugal
| | - Miguel Araújo Abreu
- Department of Infectious Diseases, Centro Hospitalar e Universitário de Santo António, Porto, Portugal
- Grupo de Infeção Osteoarticular do Porto, Porto, Portugal
| |
Collapse
|
2
|
Andrianopoulou A, Sokolowski K, Wenzler E, Bulman ZP, Gemeinhart RA. Assessment of antibiotic release and antibacterial efficacy from pendant glutathione hydrogels using ex vivo porcine skin. J Control Release 2024; 365:936-949. [PMID: 38070603 PMCID: PMC10843833 DOI: 10.1016/j.jconrel.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/22/2023] [Accepted: 12/03/2023] [Indexed: 12/22/2023]
Abstract
Acute bacterial skin and skin structure infections (ABSSSIs) confer a substantial burden on the healthcare system. Local antibiotic delivery systems can provide controlled drug release directly to the site of infection to maximize efficacy and minimize systemic toxicity. The purpose of this study was to examine the antibacterial activity of antibiotic-loaded glutathione-conjugated poly(ethylene glycol) hydrogels (GSH-PEG) against ABSSSIs utilizing an ex vivo porcine dermal explant model. Vancomycin- or meropenem-loaded GSH-PEG hydrogels at 3 different dose levels were loaded over 1 h. Drug release was monitored in vitro under submerged conditions, by the Franz cell diffusion method, and ex vivo utilizing a porcine dermis model. Antibacterial activity was assessed ex vivo on porcine dermis explants inoculated with Staphylococcus aureus or Pseudomonas aeruginosa isolates treated with vancomycin- or meropenem-loaded GSH-PEG hydrogels, respectively. Histological assessment of the explants was conducted to evaluate tissue integrity and viability in the context of the experimental conditions. A dose-dependent release was observed from vancomycin and meropenem hydrogels, with in vitro Franz cell diffusion data closely representing ex vivo vancomycin release, but not high dose meropenem release. High dose vancomycin-loaded hydrogels resulted in a >3 log10 clearance against all S. aureus isolates at 48 h. High dose meropenem-loaded hydrogels achieved 6.5, 4, and 2 log10 reductions in CFU/ml against susceptible, intermediate, and resistant P. aeruginosa isolates, respectively. Our findings demonstrate the potential application of GSH-PEG hydrogels for flexible, local antibiotic delivery against bacterial skin infections.
Collapse
Affiliation(s)
| | - Karol Sokolowski
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Eric Wenzler
- Department of Pharmacy Practice, University of Illinois Chicago, Chicago, IL, USA
| | - Zackery P Bulman
- Department of Pharmacy Practice, University of Illinois Chicago, Chicago, IL, USA
| | - Richard A Gemeinhart
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA; Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA; Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL, USA; Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Landersdorfer CB, Lee WL, Nation RL, Kong DCM, Buising K, Peel TN, Choong PFM. Penetration of Vancomycin into Noninfected Bone in Patients Undergoing Total Joint Arthroplasty Evaluated by a Minimal Physiologically Based Population Pharmacokinetic Modeling Approach. Mol Pharm 2023; 20:1509-1518. [PMID: 36512679 DOI: 10.1021/acs.molpharmaceut.2c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arthroplasty is a healthcare priority and represents high volume, high cost surgery. Periprosthetic joint infection (PJI) results in significant mortality, thus it is vital that the risk for PJI is minimized. Vancomycin is recommended for surgical prophylaxis in total joint arthroplasty (TJA) by current clinical practice guidelines endorsed by the Infectious Diseases Society of America. This study aimed to develop a new assay to determine vancomycin concentrations in serum and bone, and a minimal physiologically based population PK (mPBPK) model to evaluate vancomycin bone penetration in noninfected patients. Eleven patients undergoing TJA received 0.5-2.0 g intravenous vancomycin over 12-150 min before surgery. Excised bone specimens and four blood samples were collected per patient. Bone samples were pulverized under liquid nitrogen using a cryogenic mill. Vancomycin concentrations in serum and bone were analyzed by liquid chromatography-tandem mass spectrometry and subjected to mPBPK modeling. Vancomycin serum and bone concentrations ranged from 9.30 to 86.6 mg/L, and 1.94-37.0 mg/L, respectively. Average bone to serum concentration ratio was 0.41 (0.16-1.0) based on the collected samples. The population mean total body clearance was 2.12L/h/kg0.75. Inclusion of total body weight as a covariate substantially decreased interindividual variability in clearance. The bone/blood partition coefficient (Kpbone) was estimated at 0.635, reflecting the average bone/blood concentration ratio at steady-state. The model predicted median ratio of vancomycin area under the curve (AUC) for bone/AUC for serum was 44%. Observed vancomycin concentrations in bone were overall consistent with perfusion-limited distribution from blood to bone. An mPBPK model overall well described vancomycin concentrations in serum and bone.
Collapse
Affiliation(s)
- Cornelia B Landersdorfer
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Wee Leng Lee
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Roger L Nation
- Drug Delivery, Disposition, and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - David C M Kong
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Kirsty Buising
- Department of Medicine, University of Melbourne, Melbourne, Victoria3010, Australia.,Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Victoria3050, Australia
| | - Trisha N Peel
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria3004, Australia.,Department of Surgery, St Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, Victoria3065, Australia
| | - Peter F M Choong
- Department of Surgery, St Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, Victoria3065, Australia.,Department of Orthopaedics, St Vincent's Hospital, Melbourne, Victoria3065, Australia
| |
Collapse
|
4
|
Viaggi B, Cangialosi A, Langer M, Olivieri C, Gori A, Corona A, Finazzi S, Di Paolo A. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review-Part II. Antibiotics (Basel) 2022; 11:antibiotics11091193. [PMID: 36139972 PMCID: PMC9495066 DOI: 10.3390/antibiotics11091193] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
In patients that are admitted to intensive care units (ICUs), the clinical outcome of severe infections depends on several factors, as well as the early administration of chemotherapies and comorbidities. Antimicrobials may be used in off-label regimens to maximize the probability of therapeutic concentrations within infected tissues and to prevent the selection of resistant clones. Interestingly, the literature clearly shows that the rate of tissue penetration is variable among antibacterial drugs, and the correlation between plasma and tissue concentrations may be inconstant. The present review harvests data about tissue penetration of antibacterial drugs in ICU patients, limiting the search to those drugs that mainly act as protein synthesis inhibitors and disrupting DNA structure and function. As expected, fluoroquinolones, macrolides, linezolid, and tigecycline have an excellent diffusion into epithelial lining fluid. That high penetration is fundamental for the therapy of ventilator and healthcare-associated pneumonia. Some drugs also display a high penetration rate within cerebrospinal fluid, while other agents diffuse into the skin and soft tissues. Further studies are needed to improve our knowledge about drug tissue penetration, especially in the presence of factors that may affect drug pharmacokinetics.
Collapse
Affiliation(s)
- Bruno Viaggi
- Department of Anesthesiology, Neuro-Intensive Care Unit, Careggi University Hospital, 50139 Florence, Italy
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Alice Cangialosi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Martin Langer
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Carlo Olivieri
- Anesthesia and Intensive Care, Sant’Andrea Hospital, ASL VC, 13100 Vercelli, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alberto Corona
- ICU and Accident & Emergency Department, ASST Valcamonica, 25043 Breno, Italy
| | - Stefano Finazzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24020 Ranica, Italy
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
5
|
Finazzi S, Luci G, Olivieri C, Langer M, Mandelli G, Corona A, Viaggi B, Di Paolo A. Tissue Penetration of Antimicrobials in Intensive Care Unit Patients: A Systematic Review—Part I. Antibiotics (Basel) 2022; 11:antibiotics11091164. [PMID: 36139944 PMCID: PMC9495190 DOI: 10.3390/antibiotics11091164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
The challenging severity of some infections, especially in critically ill patients, makes the diffusion of antimicrobial drugs within tissues one of the cornerstones of chemotherapy. The knowledge of how antibacterial agents penetrate tissues may come from different sources: preclinical studies in animal models, phase I–III clinical trials and post-registration studies. However, the particular physiopathology of critically ill patients may significantly alter drug pharmacokinetics. Indeed, changes in interstitial volumes (the third space) and/or in glomerular filtration ratio may influence the achievement of bactericidal concentrations in peripheral compartments, while inflammation can alter the systemic distribution of some drugs. On the contrary, other antibacterial agents may reach high and effective concentrations thanks to the increased tissue accumulation of macrophages and neutrophils. Therefore, the present review explores the tissue distribution of beta-lactams and other antimicrobials acting on the cell wall and cytoplasmic membrane of bacteria in critically ill patients. A systematic search of articles was performed according to PRISMA guidelines, and tissue/plasma penetration ratios were collected. Results showed a highly variable passage of drugs within tissues, while large interindividual variability may represent a hurdle which must be overcome to achieve therapeutic concentrations in some compartments. To solve that issue, off-label dosing regimens could represent an effective solution in particular conditions.
Collapse
Affiliation(s)
- Stefano Finazzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24020 Ranica, Italy
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giacomo Luci
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Carlo Olivieri
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Anesthesia and Intensive Care, Sant’Andrea Hospital, ASL VC, 13100 Vercelli, Italy
| | - Martin Langer
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Giulia Mandelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24020 Ranica, Italy
| | - Alberto Corona
- ICU and Accident & Emergency Department, ASST Valcamonica, 25043 Breno, Italy
| | - Bruno Viaggi
- Associazione GiViTI, c/o Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Department of Anesthesiology, Neuro-Intensive Care Unit, Florence Careggi University Hospital, 50139 Florence, Italy
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| |
Collapse
|
6
|
Urbina T, Razazi K, Ourghanlian C, Woerther PL, Chosidow O, Lepeule R, de Prost N. Antibiotics in Necrotizing Soft Tissue Infections. Antibiotics (Basel) 2021; 10:antibiotics10091104. [PMID: 34572686 PMCID: PMC8466904 DOI: 10.3390/antibiotics10091104] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
Necrotizing soft tissue infections (NSTIs) are rare life-threatening bacterial infections characterized by an extensive necrosis of skin and subcutaneous tissues. Initial urgent management of NSTIs relies on broad-spectrum antibiotic therapy, rapid surgical debridement of all infected tissues and, when present, treatment of associated organ failures in the intensive care unit. Antibiotic therapy for NSTI patients faces several challenges and should (1) carry broad-spectrum activity against gram-positive and gram-negative pathogens because of frequent polymicrobial infections, considering extended coverage for multidrug resistance in selected cases. In practice, a broad-spectrum beta-lactam antibiotic (e.g., piperacillin-tazobactam) is the mainstay of empirical therapy; (2) decrease toxin production, typically using a clindamycin combination, mainly in proven or suspected group A streptococcus infections; and (3) achieve the best possible tissue diffusion with regards to impaired regional perfusion, tissue necrosis, and pharmacokinetic and pharmacodynamic alterations. The best duration of antibiotic treatment has not been well established and is generally comprised between 7 and 15 days. This article reviews the currently available knowledge regarding antibiotic use in NSTIs.
Collapse
Affiliation(s)
- Tomas Urbina
- Médecine Intensive Réanimation, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris (AP-HP), 75571 Paris, France;
- Sorbonne Université, Université Pierre-et-Marie Curie, 75001 Paris, France
| | - Keyvan Razazi
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor-Albert Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP), 94010 Créteil, France;
- Groupe de Recherche Clinique CARMAS, Faculté de Médecine, Université Paris Est Créteil, 94010 Créteil, France
| | - Clément Ourghanlian
- Service de Pharmacie, Hôpitaux Universitaires Henri Mondor-Albert Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP), 94010 Créteil, France;
- Unité Transversale de Traitement des Infections, Département de Prévention, Diagnostic et Traitement des Infections, Hôpitaux Universitaires Henri Mondor-Albert Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP), 94010 Créteil, France;
| | - Paul-Louis Woerther
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpitaux Universitaires Henri Mondor-Albert Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP), 94010 Créteil, France;
- Research Group Dynamic, Faculté de Santé de Créteil, Université Paris-Est Créteil Val de Marne (UPEC), 94010 Créteil, France;
| | - Olivier Chosidow
- Research Group Dynamic, Faculté de Santé de Créteil, Université Paris-Est Créteil Val de Marne (UPEC), 94010 Créteil, France;
- Service de Dermatologie, Hôpitaux Universitaires Henri Mondor-Albert Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP), 94010 Créteil, France
| | - Raphaël Lepeule
- Unité Transversale de Traitement des Infections, Département de Prévention, Diagnostic et Traitement des Infections, Hôpitaux Universitaires Henri Mondor-Albert Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP), 94010 Créteil, France;
| | - Nicolas de Prost
- Médecine Intensive Réanimation, Hôpitaux Universitaires Henri Mondor-Albert Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP), 94010 Créteil, France;
- Groupe de Recherche Clinique CARMAS, Faculté de Médecine, Université Paris Est Créteil, 94010 Créteil, France
- Correspondence: ; Tel.: +33-1-49-81-23-94
| |
Collapse
|
7
|
Thabit AK, Fatani DF, Bamakhrama MS, Barnawi OA, Basudan LO, Alhejaili SF. Antibiotic penetration into bone and joints: An updated review. Int J Infect Dis 2019; 81:128-136. [PMID: 30772469 DOI: 10.1016/j.ijid.2019.02.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 01/14/2023] Open
Abstract
Treatment of bone and joint infections can be challenging as antibiotics should penetrate through the rigid bone structure and into the synovial space. Several pharmacokinetic studies measured the extent of penetration of different antibiotics into bone and joint tissues. This review discusses the results of these studies and compares them with minimum inhibitory concentrations (MIC) of common pathogens implicated in bone and joint infections in order to determine which antibiotics may have a greater potential in the treatment of such infections. Clinical outcomes were also evaluated as data were available. More than 30 antibiotics were evaluated. Overall, most antibiotics, including amoxicillin, piperacillin/tazobactam, cloxacillin, cephalosporins, carbapenems, aztreonam, aminoglycosides, fluoroquinolones, doxycycline, vancomycin, linezolid, daptomycin, clindamycin, trimethoprim/sulfamethoxazole, fosfomycin, rifampin, dalbavancin, and oritavancin, showed good penetration into bone and joint tissues reaching concentrations exceeding the MIC90 and/or MIC breakpoints of common bone and joint infections pathogens. Few exceptions include penicillin and metronidazole which showed a lower than optimum penetration into bones, and the latter as well as flucloxacillin had poor profiles in terms of joint space penetration. Of note, studies on joint space penetration were fewer than studies on bone tissue penetration. Although clinical studies in osteomyelitis and septic arthritis are not available for all of the evaluated antibiotics, these pharmacokinetic results indicate that agents with good penetration profiles would have a potential utilization in such infections.
Collapse
Affiliation(s)
- Abrar K Thabit
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Dania F Fatani
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam S Bamakhrama
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ola A Barnawi
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lana O Basudan
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shahad F Alhejaili
- Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|