1
|
White PL. Developments in Fungal Serology. CURRENT FUNGAL INFECTION REPORTS 2023; 17:1-12. [PMID: 37360856 PMCID: PMC10099008 DOI: 10.1007/s12281-023-00462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 06/28/2023]
Abstract
Purpose of Review The true incidence of fungal disease is hampered by conventionally poor diagnostic tests, limited access to advanced diagnostics, and limited surveillance. The availability of serological testing has been available for over two decades and generally underpins the modern diagnosis of the most common forms of fungal disease. This review will focus on technical developments of serological tests for the diagnosis of fungal disease, describing advances in clinical performance when available. Recent Findings Despite their longevity, technical, clinical, and performance limitations remain, and tests specific for fungal pathogens outside the main pathogens are lacking. The availability of LFA and automated systems, capable of running multiple different tests, represents significant developments, but clinical performance data is variable and limited. Summary Fungal serology has significantly advanced the diagnosis of the main fungal infections, with LFA availability increasing accessibility to testing. Combination testing has the potential to overcome performance limitations.
Collapse
Affiliation(s)
- P. Lewis White
- Public Health Wales Mycology Reference Laboratory and Cardiff University Centre for Trials Research/Division of Infection and Immunity, UHW, Heath Park, Cardiff, CF14 4XW UK
| |
Collapse
|
2
|
Aerts R, Mercier T, Houben E, Schauwvlieghe A, Lagrou K, Maertens J. Performance of the JF5-Based Galactomannoprotein EIA Compared to the Lateral Flow Device and the Galactomannan EIA in Serum and Bronchoalveolar Lavage Fluid. J Clin Microbiol 2022; 60:e0094822. [PMID: 36214562 PMCID: PMC9667759 DOI: 10.1128/jcm.00948-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/09/2022] [Indexed: 11/20/2022] Open
Abstract
Early diagnosis of invasive aspergillosis is an important factor to improve survival but remains challenging. The detection of Aspergillus antigens is included in the consensus case definitions of the European Organization for Research and Treatment of Cancer and the National Institute of Allergy and Infectious Diseases Mycoses Study Group as a criterion of "probable" invasive aspergillosis. JF5, a mouse IgG3 monoclonal antibody detecting an Aspergillus mannoprotein, has already been implemented as a lateral flow device (LFD). Now, also a JF5-based enzyme-linked immunosorbent assay (EIA) is commercialized (Aspergillus specific galactomannoprotein [GP] EIA, Euroimmun Medizinische Labordiagnostika AG). In this study, we analyzed the diagnostic performance of GP in 63 bronchoalveolar lavage fluid (BALf) samples and 224 serum samples and compared it to performance of the galactomannan (GM) (Platelia Aspergillus enzyme immunoassay (EIA) (Bio-Rad, Marnes-la-Coquette, France)) and the JF5-based LFD (AspLFD; OLM Diagnostics, Newcastle Upon Tyne, United Kingdom). The diagnostic performance of GP and GM correlated well with both having high specificity. With an optimized cutoff threshold for positivity of 0.4-deviating from the 0.5 threshold recommended by the manufacturer-sensitivity of GP in serum is not significantly different than that of GM. However, in BALf sensitivity of GP is significantly less than for GM.
Collapse
Affiliation(s)
- Robina Aerts
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Toine Mercier
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Els Houben
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | | | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Johan Maertens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Egger M, Penziner S, Dichtl K, Gornicec M, Kriegl L, Krause R, Khong E, Mehta S, Vargas M, Gianella S, Porrachia M, Jenks JD, Venkataraman I, Hoenigl M. Performance of the Euroimmun Aspergillus Antigen ELISA for the Diagnosis of Invasive Pulmonary Aspergillosis in Bronchoalveolar Lavage Fluid. J Clin Microbiol 2022; 60:e0021522. [PMID: 35350844 PMCID: PMC9020356 DOI: 10.1128/jcm.00215-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Invasive pulmonary aspergillosis (IPA) is a life-threatening disease that affects mainly immunocompromised hosts. Galactomannan testing from serum and bronchoalveolar lavage fluid (BALF) represents a cornerstone in diagnosing the disease. Here, we evaluated the diagnostic performance of the novel Aspergillus-specific galactomannoprotein (GP) enzyme-linked immunosorbent assay (ELISA; Euroimmun Medizinische Labordiagnostika) compared with the established Platelia Aspergillus GM ELISA (GM; Bio-Rad Laboratories) for the detection of Aspergillus antigen in BALF. Using the GP ELISA, we retrospectively tested 115 BALF samples from 115 patients with clinical suspicion of IPA and GM analysis ordered in clinical routine. Spearman's correlation statistics and receiver operating characteristics (ROC) curve analysis were performed. Optimal cutoff values were determined using Youden's index. Of 115 patients, 1 patient fulfilled criteria for proven IPA, 42 for probable IPA, 15 for putative IPA, 10 for possible IPA, and 47 did not meet criteria for IPA. Sensitivities and specificities for differentiating proven/probable/putative versus no IPA (possible excluded) were 74% and 96% for BALF GP and 90% and 96% for BALF GM at the manufacturer-recommended cutoffs. Using the calculated optimal cutoff value of 12 pg/mL, sensitivity and specificity of the BALF GP were 90% and 96%, respectively. ROC curve analysis showed an area under the curve (AUC) of 0.959 (95% confidence interval [CI] of 0.923 to 0.995) for the GP ELISA and an AUC of 0.960 (95% CI of 0.921 to 0.999) for the GM ELISA for differentiating proven/probable/putative IPA versus no IPA. Spearman's correlation analysis showed a strong correlation between the ELISAs (rho = 0.809, P < 0.0001). The GP ELISA demonstrated strong correlation and test performance similar to that of the GM ELISA and could serve as an alternative test for BALF from patients at risk for IPA.
Collapse
Affiliation(s)
- Matthias Egger
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Samuel Penziner
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, California, USA
| | - Karl Dichtl
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Max Gornicec
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Lisa Kriegl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Ethan Khong
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, California, USA
| | - Sanjay Mehta
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, California, USA
| | - Milenka Vargas
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, California, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, California, USA
| | - Magali Porrachia
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, California, USA
| | - Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, North Carolina, USA
| | | | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Division of Infectious Diseases and Global Public Health, University of California San Diego, San Diego, California, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, San Diego, California, USA
| |
Collapse
|