1
|
Wang P, Lin Z, Lin S, Dai Y, Zheng B, Zhang Y, Hu J. Molecular cloning of the hepcidin gene from crescent sweetlips (Plectorhinchus cinctus) and characterization of its encoded antimicrobial peptide. Mol Immunol 2023; 164:124-133. [PMID: 38000115 DOI: 10.1016/j.molimm.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/21/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Hepcidin has been identified as an important antimicrobial peptide exerting important innate immunomodulatory activities in many fish species. In the present study, reverse transcription PCR coupled with the rapid amplification of cDNA ends was used to obtain the full-length cDNA of the crescent sweetlips hepcidin gene, which is 829 bp in length and includes an 273 bp ORF encoding a peptide with 90 amino acid residues. Sequence alignment showed a typical RXKR motif and eight conserved cysteine residues in the deduced amino acid sequences. Four disulfide bonds were predicted to form between these eight cysteines, which may stabilize the hairpin structure in hepcidin molecule. Furthermore, phylogenetic analysis showed that the deduced amino acid sequences of crescent sweetlips hepcidin had high sequence homology to hepcidins from fish species of Eupercaria. In addition, the crescent sweetlips hepcidin peptide demonstrated a strong antimicrobial activity in vitro against several types of pathogenic bacteria in fish. In conclusion, the obtained results suggested that crescent sweetlips hepcidin possessed the typical structure similar to other fish hepcidins and had strong antibacterial activity, which showed great potential in the prevention of fish diseases in aquaculture.
Collapse
Affiliation(s)
- Peixin Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongjing Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yujie Dai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian, 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jiamiao Hu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Cardiovascular Sciences and Diabetes Research Centre, University of Leicester, Leicester LE1 7RH, United Kingdom.
| |
Collapse
|
2
|
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem Rev 2021; 121:2648-2712. [PMID: 33524257 DOI: 10.1021/acs.chemrev.0c00921] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Chemistry Department, Adamson University, 900 San Marcelino Street, Ermita, Manila 1000, Philippines
| | - Seung I Yu
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - M Daben J Libardo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Institute of Material Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
3
|
Phan-Aram P, Mahasri G, Kayansamruaj P, Amparyup P, Srisapoome P. Immune Regulation, but Not Antibacterial Activity, Is a Crucial Function of Hepcidins in Resistance against Pathogenic Bacteria in Nile Tilapia ( Oreochromis niloticus Linn.). Biomolecules 2020; 10:biom10081132. [PMID: 32751990 PMCID: PMC7464455 DOI: 10.3390/biom10081132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, the functions of a recombinant propeptide (rProOn-Hep1) and the synthetic FITC-labelled mature peptides sMatOn-Hep1 and sMatOn-Hep2 were analyzed. Moreover, sMatOn-Hep1 and sMatOn-Hep2 were mildly detected in the lymphocytes of peripheral blood mononuclear cells (PBMCs) and strongly detected in head kidney macrophages. The in vitro binding and antibacterial activities of these peptides were slightly effective against several pathogenic bacteria. Immune regulation by sMatOn-Hep1 was also analyzed, and only sMatOn-Hep1 significantly enhanced the phagocytic index in vitro (p < 0.05). Interestingly, intraperitoneal injection of sMatOn-Hep1 (10 or 100 µg) significantly elevated the phagocytic activity, phagocytic index, and lysozyme activity and clearly decreased the iron ion levels in the livers of the treated fish (p < 0.05). Additionally, sMatOn-Hep1 enhanced the expression levels of CC and CXC chemokines, transferrin and both On-Hep genes in the liver, spleen and head kidney, for 1–96 h after injection, but did not properly protect the experimental fish from S. agalactiae infection after 7 days of treatment. However, the injection of S. agalactiae and On-Heps indicated that 100 μg of sMatOn-Hep1 was very effective, while 100 μg of rProOn-Hep1 and sMatOn-Hep2 demonstrated moderate protection. Therefore, On-Hep is a crucial iron-regulating molecule and a key immune regulator of disease resistance in Nile tilapia.
Collapse
Affiliation(s)
- Pagaporn Phan-Aram
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (P.P.-A.); (P.K.)
| | - Gunanti Mahasri
- Department of Fish Health Management and Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C Mulyorejo, Surabaya 60115, Indonesia;
| | - Pattanapon Kayansamruaj
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (P.P.-A.); (P.K.)
| | - Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand;
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd, Ladyao, Chatuchak, Bangkok 10900, Thailand; (P.P.-A.); (P.K.)
- Correspondence:
| |
Collapse
|
4
|
Shirdel I, Kalbassi MR, Hosseinkhani S, Paknejad H, Wink M. Cloning, characterization and tissue-specific expression of the antimicrobial peptide hepcidin from caspian trout (Salmo caspius) and the antibacterial activity of the synthetic peptide. FISH & SHELLFISH IMMUNOLOGY 2019; 90:288-296. [PMID: 31071462 DOI: 10.1016/j.fsi.2019.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/25/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Antimicrobial peptides have a wide range of antimicrobial activity and widely occur in different organisms including mollusks, crustaceans and vertebrates. Hepcidins are a group of cysteine-rich antimicrobial peptides that are active against a variety of pathogens including gram-positive and gram-negative bacteria, as well as viruses. In this study, the hepcidin gene of Caspian trout (CtHep) was identified and characterized. Our results showed that CtHep cDNA has a 267-bp Open Reading Frame (ORF), which is translated to 88 amino acids. The CtHep was classified in the HAMP1 class of hepcidins. Comparison of DNA and cDNA sequences showed that CtHep has 3 exons and 2 introns. The signal, prodomain and mature part of CtHep have 24, 39 and 25 amino acids, respectively. The mature peptide has a molecular weight of 2881.43 Da and a theoretical isoelectric point of 8.53. The expression of CtHep mRNA was detected in different tissues of healthy and infected fish. CtHep expression in the liver, head kidney, spleen and skin was significantly enhanced after bacterial challenge. Expression of CtHep in different embryonic development stages was also substantial. Antibacterial activity of synthetic CtHep peptides was investigated against a number of Gram-positive and Gram-negative bacteria. CtHep inhibited some pathogenic bacteria such as Streptococcus iniae and Aeromonas hydrophila. In the in vivo experiment, CtHep upregulated the cytokines IL-6 and TNF-α in both kidney and spleen tissues after 24 h of the peptide injection. In conclusion, our study showed that CtHep plays an important role in the immune system of Caspian trout and also in the embryonic stages. Moreover, CtHep peptide has a potential to be used as an antimicrobial therapeutic agent as well as an immunostimulant in aquaculture.
Collapse
Affiliation(s)
- Iman Shirdel
- Department of Fisheries, Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran.
| | - Mohammad Reza Kalbassi
- Department of Fisheries, Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hamed Paknejad
- Department of Fisheries, Division of Genetics and Physiology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
5
|
Chen J, Nie L, Chen J. Mudskipper (Boleophthalmus pectinirostris) Hepcidin-1 and Hepcidin-2 Present Different Gene Expression Profile and Antibacterial Activity and Possess Distinct Protective Effect against Edwardsiella tarda Infection. Probiotics Antimicrob Proteins 2019; 10:176-185. [PMID: 29151250 DOI: 10.1007/s12602-017-9352-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hepcidins are small cysteine-rich antimicrobial peptides that play an important role in fish immunity against pathogens. Most fish species have two or more hepcidin homologs that have distinct functions. This study investigated the immune functions of mudskipper (Boleophthalmus pectinirostris) hepcidin-1 (BpHep-1) and hepcidin-2 (BpHep-2) in vitro and in vivo. Upon infection with Edwardsiella tarda, the expression of BpHep-1 and BpHep-2 mRNA in immune tissues was significantly upregulated, but the expression profiles were different. Chemically synthesized BpHep-1 and BpHep-2 mature peptides exhibited selective antibacterial activity against various bacterial species, and BpHep-2 exhibited a stronger antibacterial activity and broader spectrum than BpHep-1. BpHep-1 and BpHep-2 both inhibited the growth of E. tarda in vitro, with the latter being more effective than the former. In addition, both peptides induced hydrolysis of purified bacterial genomic DNA (gDNA) or gDNA in live bacteria. In vivo, an intraperitoneal injection of 1.0 μg/g BpHep-2 significantly improved the survival rate of mudskippers against E. tarda infection compared with 0.1 μg/g BpHep-2 or 0.1 and 1.0 μg/g BpHep-1. Similarly, only BpHep-2 treatment effectively reduced the tissue bacterial load in E. tarda-infected mudskippers. Furthermore, treatment with 1.0 or 10.0 μg/ml BpHep-2 promoted the phagocytic and bactericidal activities of mudskipper monocytes/macrophages (MO/MФ). However, only the highest dose (10.0 μg/ml) of BpHep-1 enhanced phagocytosis, and BpHep-1 exerted no obvious effects on bactericidal activity. In conclusion, BpHep-2 is a stronger bactericide than BpHep-1 in mudskippers, and acts not only by directly killing bacteria but also through an immunomodulatory function on MO/MФ.
Collapse
Affiliation(s)
- Jie Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China
| | - Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
6
|
Liu ZM, Chen J, Lv YP, Hu ZH, Dai QM, Fan XL. Molecular characterization of a hepcidin homologue in starry flounder (Platichthys stellatus) and its synergistic interaction with antibiotics. FISH & SHELLFISH IMMUNOLOGY 2018; 83:45-51. [PMID: 30195905 DOI: 10.1016/j.fsi.2018.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Hepcidins are small cysteine-rich antimicrobial peptides that play an important role in host immunity against pathogenic organisms. Most fish hepcidins exert bactericidal activities against a wide range of pathogens. In this study, we identified a cDNA sequence encoding a hepcidin homologue (PsHepcidin) in the starry flounder Platichthys stellatus. The predicted amino acid sequence of PsHepcidin comprises a signal peptide and a prodomain, which are followed by the mature peptide. Sequence analysis revealed that PsHepcidin belongs to the fish HAMP2 cluster and that it is closely related to mudskipper hepcidin-2. Expression of PsHepcidin mRNA was detected in all examined immune-related tissues, with the highest transcript levels being found in the liver. In response to lipopolysaccharide treatment, PsHepcidin was significantly up-regulated in the liver, kidney, and spleen in a time-dependent manner. Chemically synthesized mature peptides of PsHepcidin were found to exhibit broad antimicrobial activity in vitro. We also investigated the combined effect of PsHepcidin and conventional antibiotics and found that these combinations showed synergistic effects against most of the examined bacterial strains. Collectively, the results of this study indicate that PsHepcidin exhibits potent antibacterial activity both independently and when used in combination with conventional antibiotics.
Collapse
Affiliation(s)
- Zi-Ming Liu
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Yao-Ping Lv
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Ze-Hui Hu
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, 316021, China
| | - Qing-Min Dai
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Xiao-Li Fan
- College of Ecology, Lishui University, Lishui, 323000, China
| |
Collapse
|
7
|
Liu Y, Han X, Chen X, Yu S, Chai Y, Zhai T, Zhu Q. Molecular characterization and functional analysis of the hepcidin gene from roughskin sculpin (Trachidermus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2017; 68:349-358. [PMID: 28743631 DOI: 10.1016/j.fsi.2017.07.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/16/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Hepcidin is a kind of cysteine-rich antimicrobial peptide that plays a vital role in host innate immune activity and iron regulation. Here, we report the molecular characterization and functional analysis of a novel hamp1 hepcidin isoforms Tf-Hep from roughskin sculpin, Trachidermus fasciatus. A cDNA fragment of 988 bp with an ORF of 273 bp was obtained. The coding sequence encodes for a signal peptide of 24 amino acids coupled with a prodomain of 40 amino acids and a mature peptide of 26 amino acids. Tissue distribution analysis indicated that Tf-Hep was most abundant in the liver. It could be significantly induced post lipopolysaccharide (LPS) challenge and heavy metal exposure. The mature peptide was expressed as a 6.061 kDa fusion protein in Pichia pastoris GS115. The active purified recombinant protein (rTf-Hep) exhibited a wide spectrum of potent antimicrobial activity in vitro against 4 Gram-negative bacteria Escherichia coli, Vibrio Anguillarum, Klebsiella pneumoniae, and Pseudomonas aeruginosa and 4 Gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, Bacillus thuringiensis, and Bacillus megaterium with minimum inhibitory concentrations (MICs) of 5-80 μg/ml (0.825-13.2 μM). It also displayed high affinity to polysaccharides on bacteria surface including LPS, lipoteichoic acid (LTA) and peptidoglycan (PGN). We further revealed that rTf-hep was capable of agglutinating 6 of the 8 bacteria. All these results suggest that rTf-hep may be both an antibacterial effector and a pattern recognition molecule in fish immune defense. The in vivo bacterial treatment results demonstrated that rTf-Hep could significantly improve the survival rate of fish infected with V. anguillarum. Taken together, these data indicate an important role for Tf-hep in the innate immunity of Trachidermus fasciatus and suggest its potential application in aquaculture for increasing fish resistance to disease.
Collapse
Affiliation(s)
- Yingying Liu
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Xiaodi Han
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Xuezhao Chen
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Shanshan Yu
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Yingmei Chai
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Tongjie Zhai
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Qian Zhu
- Ocean College, Shandong University (Weihai), Weihai 264209, China.
| |
Collapse
|
8
|
Makrinos DL, Bowden TJ. Natural environmental impacts on teleost immune function. FISH & SHELLFISH IMMUNOLOGY 2016; 53:50-57. [PMID: 26973022 DOI: 10.1016/j.fsi.2016.03.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
The environment in which teleosts exist can experience considerable change. Short-term changes can occur in relation to tidal movements or adverse weather events. Long-term changes can be caused by anthropogenic impacts such as climate change, which can result in changes to temperature, acidity, salinity and oxygen capacity of aquatic environments. These changes can have important impacts on the physiology of an animal, including its immune system. This can have consequences on the well-being of the animal and its ability to protect against pathogens. This review will look at recent investigations of these types of environmental change on the immune response in teleosts.
Collapse
Affiliation(s)
| | - Timothy J Bowden
- School of Food & Agriculture, University of Maine, Orono, ME, USA
| |
Collapse
|
9
|
Gui L, Zhang P, Zhang Q, Zhang J. Two hepcidins from spotted scat (Scatophagus argus) possess antibacterial and antiviral functions in vitro. FISH & SHELLFISH IMMUNOLOGY 2016; 50:191-9. [PMID: 26845697 DOI: 10.1016/j.fsi.2016.01.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 05/06/2023]
Abstract
Hepcidins are small cysteine-rich antimicrobial peptides that play an important role in host immunity against pathogenic organisms. In this study, two hepcidins, SA-hepcidin1 and SA-hepcidin2, were cloned from spotted scat (Scatophagus argus), and the tissue distributions of SA-hepcidins were determined. In addition, mature SA-hepcidin peptides were synthesized to allow evaluation of their antimicrobial and antiviral functions in vitro. SA-hepcidin1 belongs to the HAMP1 class and is widely expressed in all tested tissues from spotted scat, whereas SA-hepcidin2 belongs to the HAMP2 class and present only in the liver. The synthetic SA-hepcidins had similar levels of antibacterial activity against Gram-positive and Gram-negative bacteria; however, the antibacterial activity of SA-hepcidin1 was stronger than that of SA-hepcidin2. The antiviral activities of the synthetic SA-hepcidins were assessed against Siniperca chuatsi rhabdovirus (SCRV) and largemouth bass Micropterus salmoides reovirus (MsReV) in epithelioma papulosum cyprini (EPC) and grass carp fin (GCF) cells. SA-hepcidin2 had antiviral activity, but SA-hepcidin1 did not. The results of this study suggest that SA-hepcidins are important multifunctional proteins in the spotted scat immune system that are involved in resistance to various pathogens.
Collapse
Affiliation(s)
- Lang Gui
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Peipei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qiya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Junbin Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|