1
|
Kotb E, Al-Abdalall AH, Ababutain I, AlAhmady NF, Aldossary S, Alkhaldi E, Alghamdi AI, Alzahrani HAS, Almuhawish MA, Alshammary MN, Ahmed AA. Anticandidal Activity of a Siderophore from Marine Endophyte Pseudomonas aeruginosa Mgrv7. Antibiotics (Basel) 2024; 13:347. [PMID: 38667023 PMCID: PMC11047651 DOI: 10.3390/antibiotics13040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024] Open
Abstract
An endophytic symbiont P. aeruginosa-producing anticandidal siderophore was recovered from mangrove leaves for the first time. Production was optimal in a succinate medium supplemented with 0.4% citric acid and 15 µM iron at pH 7 and 35 °C after 60 h of fermentation. UV spectra of the acidic preparation after purification with Amberlite XAD-4 resin gave a peak at 400 nm, while the neutralized form gave a peak at 360 nm. A prominent peak with RP-HPLC was obtained at RT 18.95 min, confirming its homogeneity. It was pH stable at 5.0-9.5 and thermally stable at elevated temperatures, which encourages the possibility of its application in extreme environments. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) against Candida spp. Were in the range of 128 µg/mL and lower. It enhanced the intracellular iron accumulation with 3.2-4.2-fold (as judged by atomic absorption spectrometry) with a subsequent increase in the intracellular antioxidative enzymes SOD and CAT. Furthermore, the malondialdehyde (MDA) concentration due to cellular lipid peroxidation increased to 3.8-fold and 7.3-fold in C. albicans and C. tropicalis, respectively. The scanning electron microscope (SEM) confirmed cellular damage in the form of roughness, malformation, and production of defensive exopolysaccharides and/or proteins after exposure to siderophore. In conclusion, this anticandidal siderophore may be a promising biocontrol, nonpolluting agent against waterborne pathogens and pathogens of the skin. It indirectly kills Candida spp. by ferroptosis and mediation of hyperaccumulation of iron rather than directly attacking the cell targets, which triggers the activation of antioxidative enzymes.
Collapse
Affiliation(s)
- Essam Kotb
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Amira H. Al-Abdalall
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ibtisam Ababutain
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Nada F. AlAhmady
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sahar Aldossary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Eida Alkhaldi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Azzah I. Alghamdi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hind A. S. Alzahrani
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
| | - Mashael A. Almuhawish
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Moudhi N. Alshammary
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.H.A.-A.); (I.A.); (N.F.A.); (A.I.A.); (M.A.A.)
| | - Asmaa A. Ahmed
- Department of Statistics, Faculty of Commerce, Al-Azhar University, Cairo P.O. Box 11751, Egypt
| |
Collapse
|
2
|
Moraes D, Assunção LDP, Silva KLPD, Soares CMDA, Silva-Bailão MG, Bailão AM. High copper promotes cell wall remodeling and oxidative stress in Histoplasma capsulatum, as revealed by proteomics. Fungal Biol 2023; 127:1551-1565. [PMID: 38097329 DOI: 10.1016/j.funbio.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 12/18/2023]
Abstract
Histoplasma experiences nutritional stress during infection as a result of immune cells manipulating essential nutrients, such as metal ions, carbon, nitrogen, and vitamins. Copper (Cu) is an essential metallic micronutrient for living organisms; however, it is toxic in excess. Microbial pathogens must resist copper toxicity to survive. In the case of Histoplasma, virulence is supported by high-affinity copper uptake during late infection, and copper detoxification machinery during early macrophage infection. The objective of this study was to characterize the global molecular adaptation of Histoplasma capsulatum to copper excess using proteomics. Proteomic data revealed that carbohydrate breakdown was repressed, while the lipid degradation pathways were induced. Surprisingly, the production of fatty acids/lipids was also observed, which is likely a result of Cu-mediated damage to lipids. Additionally, the data showed that the fungus increased the exposition of glycan and chitin on the cell surface in high copper. Yeast upregulated antioxidant enzymes to counteract ROS accumulation. The induction of amino acid degradation, fatty acid oxidation, citric acid cycle, and oxidative phosphorylation suggest an increase in aerobic respiration for energy generation. Thus, H. capsulatum's adaptive response to high Cu is putatively composed of metabolic changes to support lipid and cell wall remodeling and fight oxidative stress.
Collapse
Affiliation(s)
- Dayane Moraes
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Leandro do Prado Assunção
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Kassyo Lobato Potenciano da Silva
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Mirelle Garcia Silva-Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular (LBM), Instituto de Ciências Biológicas (ICB), Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil.
| |
Collapse
|
3
|
de Almeida TT, Tschoeke BAP, Quecine MC, Tezzoto T, Gaziola SA, Azevedo RA, Piotto FA, Orlandelli RC, Dourado MN, Azevedo JL. Mechanisms of Mucor sp. CM3 isolated from the aquatic macrophyte Eichhornia crassipes (Mart.) Solms to increase cadmium bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93846-93861. [PMID: 37523087 DOI: 10.1007/s11356-023-29003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Bioremediation of toxic metals is a feasible and low-cost remediation tool to reduce metal contamination. Plant-fungus interactions can improve this technique. Eichhornia crassipes (Mart.) Solms is a macrophyte reported to bioremediate contaminated water. Thus, the present study aimed to isolate endophytic fungi from E. crassipes, select a highly cadmium (Cd) tolerant isolate and evaluate its bioremediation potential. This was evaluated by (1) the fungus tolerance and capacity to accumulate Cd; (2) Cd effects on cell morphology (using SEM and TEM) and on the fungal antioxidant defense system, as well as (3) the effect on model plant Solanum lycopersicum L. cultivar Calabash Rouge, inoculated with the endophyte fungus and exposed to Cd. Our results selected the endophyte Mucor sp. CM3, which was able to tolerate up to 1000 g/L of Cd and to accumulate 900 mg of Cd/g of biomass. Significant changes in Mucor sp. CM3 morphology were observed when exposed to high Cd concentrations, retaining this metal both in its cytoplasm and in its cell wall, which may be linked to detoxification and metal sequestration mechanisms related to the formation of Cd-GSH complexes. In addition, Cd stress induced the activation of all tested antioxidant enzymes - superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) - in this endophytic fungus. Moreover, when inoculated in tomato plants, this fungus promoted plant growth (in treatments without Cd) and induced an increased metal translocation to plant shoot, showing its potential to increase metal bioremediation. Therefore, this study indicates that the isolated endophyte Mucor sp. CM3 can be applied as a tool in different plant conditions, improving plant bioremediation and reducing the environmental damage caused by Cd, while also promoting plant growth in the absence of contaminants.
Collapse
Affiliation(s)
- Tiago Tognolli de Almeida
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Av. Centenário, 303 - São Dimas, Piracicaba, SP, 13400-970, Brazil.
- Stricto Sensu Postgraduate Program in Environmental Sciences and Agricultural Sustainability, Dom Bosco Catholic University (UCDB), Av. Tamandaré, 6000 - Jardim Seminário, Campo Grande, MS, 79117-900, Brazil.
| | - Bruno Augusto Prohmann Tschoeke
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Maria Carolina Quecine
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Tiago Tezzoto
- Plant Production Department, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Salete Aparecida Gaziola
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Ricardo Antunes Azevedo
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Fernando Angelo Piotto
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| | - Ravely Casarotti Orlandelli
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá (UEM), Av. Colombo, 5790, Bloco H67, Maringá, PR, 87020-900, Brazil
| | - Manuella Nóbrega Dourado
- Postgraduate Program in Technological and Environmental Processes, University of Sorocaba (UNISO), Rod. Raposo Tavares, Km 92,5 - Vila Artura, Sorocaba, SP, 18023-000, Brazil
| | - João Lucio Azevedo
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Av. Centenário, 303 - São Dimas, Piracicaba, SP, 13400-970, Brazil
- Department of Genetics, Superior School of Agriculture'Luiz de Queiroz', University of São Paulo (USP), Av. Pádua Dias, 11 - Agronomia, Piracicaba, SP, 13418-260, Brazil
| |
Collapse
|
4
|
Fardus J, Hossain S, Rob MM, Fujita M. ʟ-glutamic acid modulates antioxidant defense systems and nutrient homeostasis in lentil (Lens culinaris Medik.) under copper toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27993-0. [PMID: 37270757 DOI: 10.1007/s11356-023-27993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Copper (Cu), an essential micronutrient, can generate reactive oxygen species (ROS) at its supra-optimal level in living cells as a transition metal, thus producing oxidative stress in plants. Therefore, protecting plants from Cu-induced oxidative stress via the exogenous application of chemical substances, particularly L-glutamic acid (L-Glu), could be a viable strategy for mitigating the toxicity of Cu. The aim of our present study was to investigate how ʟ-Glu protects lentil seedlings from oxidative stress produced by toxic Cu and allows them to survive under Cu toxicity. The results exhibited that when lentil seedlings were exposed to excessive Cu, their growth was inhibited and their biomass decreased due to an increase in Cu accumulation and translocation to the root, shoot, and leaves. Exposure to toxic Cu also depleted photosynthetic pigments, imbalanced water content, and other essential nutrients, increased oxidative stress, and reduced enzymatic and non-enzymatic antioxidants. However, pre-treatment of ʟ-Glu improved the phenotypic appearance of lentil seedlings, which was distinctly evidenced by higher biomass production, maintenance of water balance, and an increase in photosynthetic pigments when exposed to toxic Cu. ʟ-Glu also protected the seedlings from Cu-induced oxidative stress by reducing the oxidative stress marker, specifically by the efficient action of enzymatic and non-enzymatic antioxidants, particularly ascorbate, catalase, monodehydroascorbate, and glutathione peroxidase and maintaining redox balance. Furthermore, ʟ-Glu assisted in maintaining the homeostasis of Cu and other nutrient in the roots, shoots, and leaves of lentil. Collectively, our results provide evidence of the mechanism of ʟ-Glu-mediated protective role in lentil against Cu toxicity, thus proposed as a potential chemical for managing Cu toxicity not only in lentil but also other plants.
Collapse
Affiliation(s)
- Jannatul Fardus
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Ikenobe 2393 Kita Gun, Kagawa, Miki-Cho, 761-0795, Japan.
| | - Shahadat Hossain
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Ikenobe 2393 Kita Gun, Kagawa, Miki-Cho, 761-0795, Japan
| | - Md Mahfuzur Rob
- Department of Horticulture, Faculty of Agriculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Ikenobe 2393 Kita Gun, Kagawa, Miki-Cho, 761-0795, Japan
| |
Collapse
|
5
|
Vulpe CB, Matica MA, Kovačević R, Dascalu D, Stevanovic Z, Isvoran A, Ostafe V, Menghiu G. Copper Accumulation Efficiency in Different Recombinant Microorganism Strains Available for Bioremediation of Heavy Metal-Polluted Waters. Int J Mol Sci 2023; 24:ijms24087575. [PMID: 37108736 PMCID: PMC10146616 DOI: 10.3390/ijms24087575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this research was to investigate the bioremediation conditions of copper in synthetic water. In the present study, copper ions accumulation efficiency was determined using various genetically modified strains of Saccharomyces cerevisiae (EBY100, INVSc1, BJ5465, and GRF18), Pichia pastoris (X-33, KM71H), Escherichia coli (XL10 Gold, DH5α, and six types of BL21 (DE3)), and Escherichia coli BL21 (DE3) OverExpress expressing two different peroxidases. Viability tests of yeast and bacterial strains showed that bacteria are viable at copper concentrations up to 2.5 mM and yeasts up to 10 mM. Optical emission spectrometry with inductively coupled plasma analysis showed that the tolerance of bacterial strains on media containing 1 mM copper was lower than the tolerance of yeast strains at the same copper concentration. The E. coli BL21 RIL strain had the best copper accumulation efficiency (4.79 mg/L of culture normalized at an optical density of 1.00), which was 1250 times more efficient than the control strain. The yeast strain S. cerevisiae BJ5465 was the most efficient in copper accumulation out of a total of six yeast strains used, accumulating over 400 times more than the negative control strain. In addition, E. coli cells that internally expressed recombinant peroxidase from Thermobifida fusca were able to accumulate 400-fold more copper than cells that produced periplasmic recombinant peroxidases.
Collapse
Affiliation(s)
- Constantina Bianca Vulpe
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, West University of Timisoara, Oituz 4A, 300086 Timisoara, Romania
| | - Mariana Adina Matica
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, West University of Timisoara, Oituz 4A, 300086 Timisoara, Romania
- Institute for Advanced Environmental Research, Department of Biology-Chemistry, West University of Timisoara, Oituz 4C, 300086 Timisoara, Romania
| | - Renata Kovačević
- Mining and Metallurgy Institute, Zeleni Bulevar 35, 19210 Bor, Serbia
| | - Daniela Dascalu
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, West University of Timisoara, Oituz 4A, 300086 Timisoara, Romania
| | - Zoran Stevanovic
- Mining and Metallurgy Institute, Zeleni Bulevar 35, 19210 Bor, Serbia
| | - Adriana Isvoran
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, West University of Timisoara, Oituz 4A, 300086 Timisoara, Romania
| | - Vasile Ostafe
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, West University of Timisoara, Oituz 4A, 300086 Timisoara, Romania
| | - Gheorghița Menghiu
- Advanced Environmental Research Laboratories, Department of Biology-Chemistry, West University of Timisoara, Oituz 4A, 300086 Timisoara, Romania
| |
Collapse
|
6
|
Tauqeer HM, Basharat Z, Adnan Ramzani PM, Farhad M, Lewińska K, Turan V, Karczewska A, Khan SA, Faran GE, Iqbal M. Aspergillus niger-mediated release of phosphates from fish bone char reduces Pb phytoavailability in Pb-acid batteries polluted soil, and accumulation in fenugreek. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120064. [PMID: 36055452 DOI: 10.1016/j.envpol.2022.120064] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Soil receiving discharges from Pb-acid batteries dismantling and restoring units (PBS) can have a high concentration of phytoavailable Pb. Reducing Pb phytoavailability in PBS can decline Pb uptake in food crops and minimize the risks to humans and the environment. This pot study aimed to reduce the concentration of phytoavailable Pb in PBS through Aspergillus niger (A. niger)-mediated release of PO43- from fish bone [Apatite II (APII)] products. The PBS (Pb = 639 mg kg-1 soil) was amended with APII powder (APII-P), APII char (APII-C), and A. niger inoculum as separate doses, and combining A. niger with APII-P (APII-P + A. niger) and APII-C (APII-C + A. niger). The effects of these treatments on reducing the phytoavailability of Pb in PBS and its uptake in fenugreek were examined. Additionally, enzymatic activities and microbial biomass carbon (MBC) in the PBS and the indices of plant physiology, nutrition, and antioxidant defense machinery were scoped. Results revealed that the APII-C + A. niger treatment was the most efficient one. Compared to the control, it significantly reduced the Pb phytoavailability (DTPA-extractable Pb fraction) in soil and its uptake in plant shoots, roots, and grain, up to 61%, 83%, 74%, and 92%. The grain produced under APII-C + A. niger were safe for human consumption as Pb concentration in grain was 4.01 mg kg-1 DW, remaining within the permissible limit set by WHO/FAO (2007). The APII-C + A. niger treatment also improved soil pH, EC, CEC, MBC, available P content and enzymatic activities, and the fenugreek quality parameters. A. niger played a significant role in solubilizing PO43- from APII-C, which reacted with Pb and formed insoluble Pb-phosphates, thereby reducing Pb phytoavailability in PBS and its uptake in plants. This study suggests APII-C + A. niger can remediate Pb-polluted soils via reducing Pb phytoavailability in them.
Collapse
Affiliation(s)
| | - Zeeshan Basharat
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | | | - Muniba Farhad
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Karolina Lewińska
- Adam Mickiewicz University in Poznan, Faculty of Geographical and Geological Sciences, Department of Soil Science and Remote Sensing of Soilsul, Bogumiła Krygowskiego 10, 61-680, Poznań, Poland
| | - Veysel Turan
- Department of Soil Science and Plant Nutrition, Bingöl University, Bingöl, Turkey
| | - Anna Karczewska
- Wrocław University of Environmental and Life Sciences, Institute of Soil Science, Plant Nutrition and Environmental Protection, ul. Grunwaldzka 53, 50-357, Wrocław, Poland
| | - Shahbaz Ali Khan
- Department of Environmental Sciences, University of Okara, Okara, 56300, Pakistan
| | - Gull-E Faran
- Department of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
7
|
Karam ZM, Baba Salari M, Anjom Shoaa A, Dehghan Kouhestani S, Bahram Nejad A, Ashourzadeh S, Zangouyee MR, Bazrafshani MR. Impact of oxidative stress SNPs on sperm DNA damage and male infertility in a south-east Iranian population. Reprod Fertil Dev 2022; 34:633-643. [PMID: 35361312 DOI: 10.1071/rd21305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
AIM We examined four single nucleotide polymorphisms in four antioxidant genes (PON1 , CAT , GPx1 and SOD2 ) in 100 infertility cases and 100 controls from an Iranian population-based case-control study to confirm the assumption that polymorphisms in oxidative stress genes increase the risk of sperm DNA damage and idiopathic male infertility. METHODS Restriction fragment length polymorphism and tetra-primer amplification refractory mutation system PCR were used to identify genotypes. Sperm DNA damage was assessed using the Sperm Chromatin Dispersion test (Halo Sperm), and the total antioxidant capacity of seminal fluid was determined using the FRAP assay. KEY RESULTS Our findings demonstrated that alleles Arg-PON1 (rs662) and Ala-MnSOD (rs4880) variant genotypes were considerably linked with a higher risk of male infertility. CONCLUSIONS Linear regression analysis revealed that those with the PON1 Gln192Arg or SOD2 Val16Ala variants have significantly higher levels of sperm DNA fragmentation and lower levels of the total antioxidant capacity in seminal fluid. IMPLICATIONS These findings suggest that genetic differences in antioxidant genes may be linked to oxidative stress, sperm DNA damage, and idiopathic male infertility.
Collapse
Affiliation(s)
- Zahra Miri Karam
- Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; and Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Baba Salari
- Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Anjom Shoaa
- Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Somaye Dehghan Kouhestani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Moddares University, Tehran, Iran; and Dr. Bazrafshani's Medical Genetic Laboratory, Kerman, Iran
| | | | - Sareh Ashourzadeh
- Afzalipour Clinical Center for Infertility, Kerman University of Medical Sciences, Kerman, Iran
| | - Moahammad Reza Zangouyee
- Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Bazrafshani
- Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; and Centre for Integrated Genomic Medical Research (CIGMR), University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
8
|
Evaluation of endoglucanase and xylanase production by Aspergillus tamarii cultivated in agro-industrial lignocellulosic biomasses. Folia Microbiol (Praha) 2022; 67:721-732. [PMID: 35451731 DOI: 10.1007/s12223-022-00971-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/06/2022] [Indexed: 11/04/2022]
Abstract
To better understand the production of enzymes of industrial interest from microorganisms with biotechnological potential using lignocellulosic biomass, we evaluated the production of endoglucanase and xylanase from Aspergillus tamarii. CAZymes domains were evaluated in the genome, and a screening of the enzymatic potential of A. tamarii in various agricultural biomasses was done. The enzymatic profile could be associated with the biomass complexity, with increased biomass recalcitrance yielding higher activity. A time-course profile defined 48 h of cultivation as the best period for cultivating A. tamarii in sugarcane bagasse reached 12.05 IU/mg for endoglucanase and 74.86 IU/mg for xylanase. Using 0.1% (w/v) tryptone as the only nitrogen source and 12 µmol/L CuSO4 addition had an overall positive effect on the enzymatic activity and protein production. A 22 factorial central composite design was used then to investigate the simultaneous influence of tryptone and CuSO4 on enzyme activity. Tryptone strongly affected enzymatic activity, decreasing endoglucanase activity but increasing xylanase activity. CuSO4 supplementation was advantageous for endoglucanases, increasing their activity, and it had a negative effect on xylanases. But overall, the experimental design increased the enzymatic activity of all biomasses used. For the clean cotton residue, the experimental design was able to reach the highest enzyme activity for endoglucanase and xylanase, with 1.195 IU/mL and 6.353 IU/mL, respectively. More experimental studies are required to investigate how the biomass induction effect impacts enzyme production.
Collapse
|
9
|
Liu M, Wang S, Yang M, Ning X, Nan Z. Experimental study on treatment of heavy metal-contaminated soil by manganese-oxidizing bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5526-5540. [PMID: 34424469 DOI: 10.1007/s11356-021-15475-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
There are many studies on the treatment of heavy metals by manganese-oxidizing bacteria and the reaction is good; the problem of compound pollution of heavy metals in soil has been difficult to solve. In this study, the application of manganese-oxidizing bacteria in soil was studied. The tolerance of manganese-oxidizing strains (Pseudomonas taiwanensis) to environmental conditions and the treatment effect of heavy metals As, Pb, and Cd in aqueous solution were investigated, and the effect of iron-manganese ratio on the treatment effect was discussed. The results showed that the suitable pH conditions for the growth of P. taiwanensis were 5-9, and the salt tolerance was 6% (by sodium chloride). The tolerant concentrations for heavy metals As(V) and Mn(II) were 500 mg L-1 and 120 mg L-1, respectively. The strains were enriched by nutrient broth medium. After the logarithmic phase, the bacterial suspension was mixed with ATCC#279 medium at a ratio of 1:10, and a certain amount (10 mg L-1) of Mn(II) was added. The results of As, Pb, and Cd removal in the composite polluted water phase were 22.09%, 30.75%, and 35.33%, respectively. The molar ratio of manganese and iron affected the removal efficiency of single arsenic, the highest efficiency is 68%, and the ratio of iron to manganese is 1:5. However, when the soil was treated by the same method, the results showed that not all metals were passivated, such as Cu. At the same time, for As, Pb, and Cd, the treatment effects in soil were worse than those in water, perhaps more consideration should be given to environmental conditions, such as soil moisture and temperature, when manganese-oxidizing bacteria are used to treat soil.
Collapse
Affiliation(s)
- Mengbo Liu
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Shengli Wang
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
| | - Meng Yang
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Xiang Ning
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Zhongren Nan
- College of Earth and Environmental Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| |
Collapse
|
10
|
Gamal M, Zaid MA, Mourad IKA, El Kareem HA, Gomaa OM. Trichoderma viride bioactive peptaibol induces apoptosis in Aspergillus niger infecting tilapia in fish farms. AQUACULTURE 2022; 547:737474. [DOI: 10.1016/j.aquaculture.2021.737474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Khan A, Singh P, Kumar R, Das S, Singh RK, Mina U, Agrawal GK, Rakwal R, Sarkar A, Srivastava A. Antifungal Activity of Siderophore Isolated From Escherichia coli Against Aspergillus nidulans via Iron-Mediated Oxidative Stress. Front Microbiol 2021; 12:729032. [PMID: 34803944 PMCID: PMC8596375 DOI: 10.3389/fmicb.2021.729032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/11/2021] [Indexed: 01/11/2023] Open
Abstract
Microorganisms produce various secondary metabolites for growth and survival. During iron stress, they produce secondary metabolites termed siderophores. In the current investigation, antifungal activity of catecholate siderophore produced by Escherichia coli has been assessed against Aspergillus nidulans. Exogenous application of the bacterial siderophore to fungal cultures resulted in decreased colony size, increased filament length, and changes in hyphal branching pattern. Growth inhibition was accompanied with increased intracellular iron content. Scanning electron microscopy revealed dose-dependent alteration in fungal morphology. Fluorescent staining by propidium iodide revealed cell death in concert with growth inhibition with increasing siderophore concentration. Antioxidative enzyme activity was also compromised with significant increase in catalase activity and decrease in ascorbate peroxidase activity. Siderophore-treated cultures showed increased accumulation of reactive oxygen species as observed by fluorescence microscopy and enhanced membrane damage in terms of malondialdehyde content. Antifungal property might thus be attributed to xenosiderophore-mediated iron uptake leading to cell death. STRING analysis showed interaction of MirB (involved in transport of hydroxamate siderophore) and MirA (involved in transport of catecholate siderophore), confirming the possibility of uptake of iron-xenosiderophore complex through fungal transporters. MirA structure was modeled and validated with 95% residues occurring in the allowed region. In silico analysis revealed MirA-Enterobactin-Fe3+ complex formation. Thus, the present study reveals a promising antifungal agent in the form of catecholate siderophore and supports involvement of MirA fungal receptors in xenosiderophore uptake.
Collapse
Affiliation(s)
- Azmi Khan
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| | - Pratika Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| | - Ravinsh Kumar
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| | - Sujit Das
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, India
| | - Rakesh Kumar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Usha Mina
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal
| | - Randeep Rakwal
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda, India
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
12
|
El-Sayed MT, Ezzat SM, Taha AS, Ismaiel AA. Iron stress response and bioaccumulation potential of three fungal strains isolated from sewage-irrigated soil. J Appl Microbiol 2021; 132:1936-1953. [PMID: 34796581 DOI: 10.1111/jam.15372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/01/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
AIMS Contamination with heavy metal (HM) is a severe environmental issue. Therefore, there is a pressing need to create environmentally safe and cost-effective HM bioremediation approaches. METHODS AND RESULTS Three iron-tolerant fungal strains were isolated from sewage-irrigated soils, molecularly identified and deposited in the GenBank as Aspergillus flavus MT639638, A. terreus MT605370 and Fusarium oxysporum MT605399. The fungal growth, minimum inhibitory concentration (MIC), tolerance index (TI), removal efficiency, bioaccumulation, and enzymatic and non-enzymatic antioxidants were determined. Based on MIC values, A. flavus MT639638 was the most resistant strain. F. oxysporum displayed the highest percent removal efficiency (93.65% at 4000 mg L-1 ) followed by A. flavus (92.92%, at 11,000 mg L-1 ), and A. terreus (91.18% at 3000 mg L-1 ). F. oxysporum was selected based on its highly sensitivity for further characterization of its response to Fe(II) stress using TEM, SEM and EDX, in addition to HPLC analysis of organic acids. These analyses demonstrated the localization of bioaccumulated Fe(II) and ultrastructural changes induced by iron and indicated induction release of organic acids. CONCLUSIONS Our fungal strains showed an effective capacity for removal of Fe(II) via bioaccumulation and biosorption mechanisms which were supported by instrumental analyses. The iron tolerance potentiality was mediated by induction of selected antioxidative enzymes and biomolecules. SIGNIFICANCE AND IMPACT OF THE STUDY This study depicts a potential utilization of the three fungal strains for the bioremediation of iron-contaminated soils.
Collapse
Affiliation(s)
- Manal T El-Sayed
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Saeid M Ezzat
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Asmaa S Taha
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Ahmed A Ismaiel
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
13
|
Huang J, Liu C, Price GW, Li Y, Wang Y. Identification of a novel heavy metal resistant Ralstonia strain and its growth response to cadmium exposure. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125942. [PMID: 34492869 DOI: 10.1016/j.jhazmat.2021.125942] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/02/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
A novel Ralstonia Bcul-1 strain was isolated from soil samples that was closest to Ralstonia pickettii. Broad-spectrum resistance was identified to a group of heavy metal ions and tolerance to concentrations of Cd2+ up to 400 mg L-1. Low concentrations of heavy metal ions did not have distinctive impact on heavy metal resistance genes and appeared to induce greater expression. Under exposure to Cd2+, cell wall components were significantly enhanced, and some proteins were also simultaneously expressed allowing the bacteria to adapt to the high Cd2+ living environment. The maximum removal rate of Cd2+ by the Ralstonia Bcul-1 strain was 78.97% in the culture medium supplemented with 100 mg L-1 Cd2+. Ralstonia Bcul-1 was able to survive and grow in a low nutrient and cadmium contaminated (0.42 mg kg-1) vegetable soil, and the cadmium removal rate was up to 65.76% in 9th growth. Ralstonia Bcul-1 mixed with biochar could maintain sustainable growth of this strain in the soil up to 75 d and the adsorption efficiency of cadmium increased by 16.23-40.80% as compared to biochar application alone. Results from this work suggests that Ralstonia Bcul-1 is an ideal candidate for bioremediation of nutrient deficient heavy metal contaminated soil.
Collapse
Affiliation(s)
- Jiaqing Huang
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences (FAAS), Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China
| | - Cenwei Liu
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences (FAAS), Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China
| | - G W Price
- Department of Engineering, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Yanchun Li
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences (FAAS), Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China
| | - Yixiang Wang
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences (FAAS), Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China.
| |
Collapse
|
14
|
Zhen Y, Wang M, Gu Y, Yu X, Shahzad K, Xu J, Gong Y, Li P, Loor JJ. Biosorption of Copper in Swine Manure Using Aspergillus and Yeast: Characterization and Its Microbial Diversity Study. Front Microbiol 2021; 12:687533. [PMID: 34475858 PMCID: PMC8406632 DOI: 10.3389/fmicb.2021.687533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Dietary copper supplementation in the feed of piglets generally exceeds 250-800 mg/kg, where a higher quantity (>250 mg/kg) can promote growth and improve feed conversion. Despite the reported positive effects, 90% of copper is excreted and can accumulate and pollute the soil. Data indicate that fungi have a biosorptive capacity for copper. Thus, the objectives of the present experiment were to study the effects of adding different strains of fungi on the biosorptive capacity for copper in swine manure and to evaluate potential effects on microbiota profiles. Aspergillus niger (AN), Aspergillus oryzae (AO), and Saccharomyces cerevisiae (SC) were selected, and each added 0.4% into swine manure, which contain 250 mg/kg of copper. The incubations lasted for 29 days, and biosorption parameters were analyzed on the 8th (D8), 15th (D15), 22nd (D22), and 29th (D29) day. Results showed that after biosorption, temperature was 18.47-18.77°C; pH was 6.33-6.91; and content of aflatoxin B1, ochratoxin A, and deoxynivalenol were low. In addition, residual copper concentration with AN was the lowest on D15, D22, and D29. The copper biosorption rate was also highest with AN, averaging 84.85% on D29. Biosorption values for AO reached 81.12% and for SC were lower than 80%. Illumina sequencing of 16S and ITS rRNA gene revealed that fungal treatments reduced the diversity and richness of fungal abundance, but had no effect on bacterial abundance. Unknown_Marinilabiliaceae, Proteiniphilum, Tissierella, and Curvibacter were the dominant bacteria, while Aspergillus and Trichoderma were the dominant fungi. However, the added strain of S. cerevisiae was observed to be lower than the dominant fungi, which contained less than 0.05%. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment predicted via PICRUSt2 that there were bacterial genes potentially related to various aspects of metabolism and environmental information processing. Overall, data indicated that Aspergillus can provide microbial materials for adsorption of copper.
Collapse
Affiliation(s)
- Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yalan Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Jun Xu
- Institute for Quality and Safety and Standards of Agricultural Products Research, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yuqing Gong
- Jiangsu Provincial Station of Animal Husbandry, Nanjing, China
| | - Peizhen Li
- Jiangsu Provincial Station of Animal Husbandry, Nanjing, China
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Division of Nutritional Sciences, Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
15
|
Lorenzo-Gutiérrez D, Gómez-Gil L, Guarro J, Roncero MIG, Capilla J, López-Fernández L. Cu transporter protein CrpF protects against Cu-induced toxicity in Fusarium oxysporum. Virulence 2021; 11:1108-1121. [PMID: 32862758 PMCID: PMC7549990 DOI: 10.1080/21505594.2020.1809324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cu is an essential trace element for cell growth and proliferation. However, excess of Cu accumulation leads to cellular toxicity. Thus, precise and tight regulation of Cu homeostasis processes, including transport, delivery, storage, detoxification, and efflux machineries, is required. Moreover, the maintenance of Cu homeostasis is critical for the survival and virulence of fungal pathogens. Cu homeostasis has been extensively studied in mammals, bacteria, and yeast, but it has not yet been well documented in filamentous fungi. In the present work, we investigated Cu tolerance in the filamentous fungus Fusarium oxysporum by analysing the Cu transporter coding gene crpF, previously studied in Aspergillus fumigatus. The expression studies demonstrated that crpF is upregulated in the presence of Cu and its deletion leads to severe sensitivity to low levels of CuSO4 in F. oxysporum. Targeted deletion of crpF did not significantly alter the resistance of the fungus to macrophage killing, nor its pathogenic behaviour on the tomato plants. However, the targeted deletion mutant ΔcrpF showed increased virulence in a murine model of systemic infection compared to wild-type strain (wt).
Collapse
Affiliation(s)
- Damaris Lorenzo-Gutiérrez
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut and Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili , Reus, Spain
| | - Lucía Gómez-Gil
- Departamento de Genetica, Facultad de Ciencias and Campus De Excelencia Internacional Agroalimentario ceiA3, Universidad de Cordoba , Cordoba, Spain
| | - Josep Guarro
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut and Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili , Reus, Spain
| | - M Isabel G Roncero
- Departamento de Genetica, Facultad de Ciencias and Campus De Excelencia Internacional Agroalimentario ceiA3, Universidad de Cordoba , Cordoba, Spain
| | - Javier Capilla
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut and Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili , Reus, Spain
| | - Loida López-Fernández
- Unitat de Microbiologia, Facultat de Medicina i Ciències de la Salut and Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili , Reus, Spain
| |
Collapse
|
16
|
Priyadarshini E, Priyadarshini SS, Cousins BG, Pradhan N. Metal-Fungus interaction: Review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. CHEMOSPHERE 2021; 274:129976. [PMID: 33979913 DOI: 10.1016/j.chemosphere.2021.129976] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/24/2021] [Accepted: 02/11/2021] [Indexed: 05/06/2023]
Abstract
The most adverse outcome of increasing industrialization is contamination of the ecosystem with heavy metals. Toxic heavy metals possess a deleterious effect on all forms of biota; however, they affect the microbial system directly. These heavy metals form complexes with the microbial system by forming covalent and ionic bonds and affecting them at the cellular level and biochemical and molecular levels, ultimately leading to mutation affecting the microbial population. Microbes, in turn, have developed efficient resistance mechanisms to cope with metal toxicity. This review focuses on the vital tolerance mechanisms employed by the fungus to resist the toxicity caused by heavy metals. The tolerance mechanisms have been basically categorized into biosorption, bioaccumulation, biotransformation, and efflux of metal ions. The mechanisms of tolerance to some toxic metals as copper, arsenic, zinc, cadmium, and nickel have been discussed. The article summarizes and provides a detailed illustration of the tolerance means with specific examples in each case. Exposure of metals to fungal cells leads to a response that may lead to the formation of metal nanoparticles to overcome the toxicity by immobilization in less toxic forms. Therefore, fungal-mediated green synthesis of metal nanoparticles, their mechanism of synthesis, and applications have also been discussed. An understanding of how fungus resists metal toxicity can provide insights into the development of adaption techniques and methodologies for detoxification and removal of metals from the environment.
Collapse
Affiliation(s)
- Eepsita Priyadarshini
- Academy of Scientific and Innovative Research, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Sushree Sangita Priyadarshini
- Academy of Scientific and Innovative Research, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India; Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Brian G Cousins
- Biomaterials & Nanoscience, Interdisciplinary Science Centre from Laboratory to Fabrication (Lab2Fab), Loughborough University, Leicestershire, United Kingdom
| | - Nilotpala Pradhan
- Academy of Scientific and Innovative Research, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India; Environment & Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India.
| |
Collapse
|
17
|
Antifungal Effects of Fusion Puroindoline B on the Surface and Intracellular Environment of Aspergillus flavus. Probiotics Antimicrob Proteins 2021; 13:249-260. [PMID: 32488675 DOI: 10.1007/s12602-020-09667-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aspergillus flavus infection is a major issue for safe food storage. In this study, we constructed an efficient prokaryotic expression system for puroindoline B (PINB) protein to detect its antifungal activity. The Puroindoline b gene was cloned into pET-28a (+) vector and expressed in Escherichia coli. Treatment with fusion PINB revealed that it inhibits mycelial growth of A. flavus, a common grain mold. Moreover, fusion PINB-treated A. flavus mycelium withered and exhibited a sunken spore head. As fusion PINB concentration increased, electrical conductivity in mycelium also increased, indicative of cell membrane damage. Furthermore, intracellular malate dehydrogenase and succinate dehydrogenase activity decreased, revealing a disruption in the tricarboxylic acid cycle. Moreover, the dampened activity of the ion pump Na+K+-ATPase negatively affected the intracellular regulation of both ions. Catalase and superoxide dismutase activity decreased, thus reducing antioxidant capacity, a result confirmed with an increase in malondialdehyde content. Changes to the GSH/GSSG ratio indicated a shift to an intracellular oxidative state. At the same time, laser scanning confocal microscopy assay showed the accumulation of reactive oxygen species and nuclear damage. Therefore, the PINB fusion protein may have the potential to control A. flavus in grain storage and food preservation.
Collapse
|
18
|
Ragasa LRP, Joson SEA, Bagay WLR, Perez TR, Velarde MC. Transcriptome analysis reveals involvement of oxidative stress response in a copper-tolerant Fusarium oxysporum strain. Fungal Biol 2021; 125:435-446. [PMID: 34024591 DOI: 10.1016/j.funbio.2021.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 01/10/2023]
Abstract
High amount of copper is toxic to most organisms, but endophytic fungi can develop survival strategies to tolerate and respond to environmental stressors such as heavy metal contaminants. While high copper induces oxidative stress, it is still unclear which genes are associated with copper tolerance. Here, we performed a metatranscriptome analysis of endophytic fungi isolated from a black nightshade plant Solanum nigrum L. growing on mine tailings of a gold processing area. Initial screening revealed the presence of a copper-tolerant strain of Fusarium oxysporum, designated as IB-SN1W, which tolerated up to 1000 ppm and 300 ppm copper in solid and liquid media, respectively. Differential gene expression analysis by RNA sequencing showed that 23% of contigs are uniquely expressed in the copper-treated fungus. These genes are involved in copper ion import, polyamine transport, oxidoreductase activity, and oxidative stress response. Catalase transcripts were also highly upregulated in IB-SN1W compared to a non-tolerant F. oxysporum strain. Catalase inhibition decreased copper-tolerance in IB-SN1W, while the addition of antioxidants prevented the copper-dependent growth inhibition in the non-tolerant strain. Overall, these results suggest that oxidative stress response contributes to copper tolerance in F. oxysporum.
Collapse
Affiliation(s)
- Lorenz Rhuel P Ragasa
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Santiago Emil A Joson
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Windy Lou R Bagay
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines; Natural Sciences Research Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Teresita R Perez
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines; Natural Sciences Research Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines; Department of Environmental Science, Ateneo de Manila University, Quezon City, Philippines
| | - Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines; Natural Sciences Research Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
19
|
Kumar V, Dwivedi SK. Bioremediation mechanism and potential of copper by actively growing fungus Trichoderma lixii CR700 isolated from electroplating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111370. [PMID: 32979751 DOI: 10.1016/j.jenvman.2020.111370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Present study investigated the Cu2+ removal potential of Trichoderma lixii CR700, isolated from enormously heavy metal polluted electroplating wastewater. In the batch study, actively growing CR700 was able to remove 84.6% of Cu2+ at the concentration 10 mg/L of Cu2+ within 120 h after incubation and the accumulated and surface adsorbed amount of Cu was 0.51 and 0.47 mg/g of dry biomass respectively. T. lixii CR700 also showed efficient Cu2+ removal potential in the pH ranges from 5.0 to 8.0, in the presence of other co-occurring contaminant such as heavy metal, anions and metabolic inhibitor as well from real tannery wastewater. Alteration on cell surface of Cu2+ treated mycelia of T. lixii CR700 was analyzed using scanning electron microscope. Fourier transform infrared spectroscopic analysis was performed to identify the role of surface functional group in Cu2+ adsorption which revealed that COO─ functional group lead Cu2+ adsorption onto the surface of T. lixii CR700. Thus, T. lixii CR700 uses simultaneous surface sorption and accumulation mechanism in Cu2+ removal and can be potentially applied for bioremediation of Cu2+ contaminated wastewater in ecofriendly, safe and sustainable way.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Environmental Science, School of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - S K Dwivedi
- Department of Environmental Science, School of Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
20
|
Perdigão Cota de Almeida S, Rozas EE, Oller do Nascimento CA, Dias M, Mendes MA. Metabolomic and secretomic approach to the resistance features of the fungus Aspergillus niger IOC 4687 to copper stress. Metallomics 2020; 13:6050762. [PMID: 33570139 DOI: 10.1093/mtomcs/mfaa010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 11/14/2022]
Abstract
Metabolomic and secretomic analyses of Aspergillus niger IOC 4687 indicated the features of resistance of this strain to copper stress. To investigate the metabolites produced under oxidative stress conditions, gas chromatography-mass spectrometry analysis was performed. The secretome principal component analysis results showed that mannitol could be the main metabolite responsible for conferring resistance to the fungus, and gluconic acid is the possible cause of copper desorption because of its chelating ability. The meta-analysis of the metabolome of A. niger IOC 4687 indicated that a low concentration of sorbitol and ribonolactone during growth may be an indicator of oxidative stress.
Collapse
Affiliation(s)
- Silas Perdigão Cota de Almeida
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, Rua do Lago 250, Bloco B 3 andar, 05508-080 São Paulo-SP, Brasil
| | - Enrique Eduardo Rozas
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, Rua do Lago 250, Bloco B 3 andar, 05508-080 São Paulo-SP, Brasil
| | - Cláudio Augusto Oller do Nascimento
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, Rua do Lago 250, Bloco B 3 andar, 05508-080 São Paulo-SP, Brasil
| | - Meriellen Dias
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, Rua do Lago 250, Bloco B 3 andar, 05508-080 São Paulo-SP, Brasil
| | - Maria Anita Mendes
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, Rua do Lago 250, Bloco B 3 andar, 05508-080 São Paulo-SP, Brasil
| |
Collapse
|
21
|
El Sayed MT, El-Sayed ASA. Bioremediation and tolerance of zinc ions using Fusarium solani. Heliyon 2020; 6:e05048. [PMID: 33024860 PMCID: PMC7527588 DOI: 10.1016/j.heliyon.2020.e05048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/28/2020] [Accepted: 09/21/2020] [Indexed: 11/26/2022] Open
Abstract
Evaluating the mechanism of tolerance and biotransformation Zn(II) ions by Fusarium solani based on the different physiological was the objective of this work. The physical properties of synthesized ZnONPs was determined by UV-spectroscopy, transmission electron microscope, and X-ray powder diffraction. The structural and anatomical changes of F. solani in response to Zn(II) was examined by TEM and SEM. From the HPLC profile, oxalic acid by F. solani was strongly increased by about 10.5 folds in response to 200 mg/l Zn(II) comparing to control cultures. The highest biosorption potential were reported at pH 4.0 (alkali-treated biomass) and 5.0 (native biomass), at 600 mg/l Zn(II) concentration, incubation temperature 30 °C, and contact time 40 min (alkali-treated biomass) and 6 h (native biomass). From the FT-IR spectroscopy, the main functional groups implemented on this remediation were C-S stretching, C=O C=N, C-H bending, C-N stretching and N-H bending. From the EDX spectra, fungal cellular sulfur and phosphorus compounds were the mainly compartments involved on ZN(II) binding.
Collapse
Affiliation(s)
- Manal T El Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| | - Ashraf S A El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| |
Collapse
|
22
|
Ernesto Juniors PT, Valeria CL, Santiago PO, Mario RM, Gabriela SJ. Tolerance to oxidative stress caused by copper (Cu) in Trichoderma asperellum To. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Lotlikar N, Damare S, Meena RM, Jayachandran S. Variable protein expression in marine-derived filamentous fungus Penicillium chrysogenum in response to varying copper concentrations and salinity. Metallomics 2020; 12:1083-1093. [PMID: 32301940 DOI: 10.1039/c9mt00316a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper is one of the essential trace dietary minerals for all living organisms, but is potentially toxic at higher concentrations, mainly due to the redox reactions in its transition state. Tolerance of microbes towards copper is primarily attributed to chelation and biosorption. In this study, marine-derived filamentous fungi were evaluated for their ability to remove Cu(ii) from a culture medium. Further, the cellular response of a select isolate to salinity stress (0, 35 and 100 PSU) and Cu(ii) stress (0, 100, and 500 ppm) was studied using the peptide mass fingerprinting technique, which revealed expression of 919 proteins, of which 55 proteins were commonly expressed across all conditions. Housekeeping proteins such as citrate synthase, pyruvate carboxylase, ribosomal proteins, ATP synthases, and more were expressed across all conditions. Reactive oxygen species scavenging proteins such as glutaredoxin, mitochondrial peroxiredoxins and thioredoxins were expressed under Cu(ii) and salinity stresses individually as well as in combination. Up-regulation of glutaredoxin under Cu(ii) stress with fold change values of 18.3 and 13.9 under 100 ppm and 500 ppm of Cu(ii) indicated active scavenging of free radicals to combat oxidative damage. The common mechanisms reported were enzymatic scavenging of free radicals, activation of DNA damage and repair proteins and probable intracellular metal chelation. This indicated multiple stress mechanisms employed by the isolate to combat the singular and synergistic effects of Cu(ii) and salinity stress.
Collapse
Affiliation(s)
- Nikita Lotlikar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa - 403004, India.
| | | | | | | |
Collapse
|
24
|
El Sayed MT, El-Sayed ASA. Tolerance and mycoremediation of silver ions by Fusarium solani. Heliyon 2020; 6:e03866. [PMID: 32426534 PMCID: PMC7225397 DOI: 10.1016/j.heliyon.2020.e03866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Silver ions discharged from various industries, are potentially toxic to living organisms at low concentrations, thus, there is an increasing need for development of an eco-friendly and cost-effective approach for its bioremediation. Filamentous fungi especially, Fusarium solani displayed a strong resistance to copper and cadmium ions as revealed from our previous study (El-Sayed 2014), however, the mechanisms of silver resistance by this fungus has not been resolved yet. Thus, this study was an extension to our previous work, to elucidate the mechanism of silver ions resistance and biotransformation by F. solani. The growth, bioaccumulation, thiol, total antioxidant, malondialdehyde (MDA), hydrogen peroxide (H2O2) contents and polyphenol oxidase (PPO) and catalase (CAT) activities of F. solani in response to silver ions were determined. Production and bioaccumulation of silver nanoparticles was characterized by UV-visible spectroscopy, TEM, and X-ray powder diffraction (XRD). The ultrastructural changes of F. solani induced by Ag(I) was examined by TEM and SEM. Production of oxalic acid by F. solani was increased by about 343.8% in response to 400 mg/l Ag(I), compared to control cultures (without silver ions) as revealed from HPLC analysis. The maximum biosorption levels by the native and alkali-treated biomass were carried out at pH 5.0, initial metal concentration 200 mg/l, biomass 0.5 g/l, temperature 35 °C, and contact time 1 h (native biomass) and 3 h (alkali-treated biomass). Fourier transform infrared spectroscopy (FTIR) results revealed that the main functional groups involved on this mycoremediation were C–S stretching, C=O C=N, C – H bending, C–N stretching and N–H bending. EDX spectra indicated the involvement of fungal cellular sulfur and phosphorus compounds in Ag(I) binding.
Collapse
Affiliation(s)
- Manal T El Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ashraf S A El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
25
|
Liu H, Song T, Lv T, Zhao X, Shao Y, Li C, Zhang W. Cu2+ regulated sulfonamides resistance gene (sul) via reactive oxygen species induced ArcA in a pathogenic Vibrio splendidus. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
26
|
Satapute P, Paidi MK, Kurjogi M, Jogaiah S. Physiological adaptation and spectral annotation of Arsenic and Cadmium heavy metal-resistant and susceptible strain Pseudomonas taiwanensis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:555-563. [PMID: 31108288 DOI: 10.1016/j.envpol.2019.05.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/03/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
In the present study, the 16S-rRNA sequencing of heavy metal-resistant and susceptible bacterial strains isolated from the industrial and agriculture soil showed resemblance with Pseudomonas taiwanensis. Based on the growth rate, two bacterial strains SJPS_KUD54 and KUD-MBBT4 exhibited 10 ppm tolerance to Arsenic and Cadmium. These two heavy metals caused, a significant increase in stress enzymes like superoxide dismutase, catalase and glutathione S-transferase activities in SJPS_KUD54 when compared to KUD-MBBT4. Following heavy metal treatment, the atomic-force-microscopy observations showed no change in the cell-wall of SJPS_KUD54, whereas the cell-wall of KUD-MBBT4 got ruptured. Moreover, the protein-profile of SJPS_KUD54 treated with heavy metals exhibited varied patterns in comparison with untreated control. In addition, the accumulation of hydroxyl, thiol and amides were found in the SJPS_KUD54 relative to its control. Furthermore, the resistant SJPS_KUD54 strain showed a remarkable bioaccumulation properties to both Arsenic and Cadmium. Thus, it is inferred that the growth rate, stress enzymes and functional-groups play a significant role in the physiological-adaption of SJPS_KUD54 during stress conditions, which is positively involved in the prevention or repair mechanism for reducing the risks caused by heavy metal stress.
Collapse
Affiliation(s)
- Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003, India
| | - Murali Krishna Paidi
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003, India
| | - Mahantesh Kurjogi
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003, India
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka 580003, India.
| |
Collapse
|
27
|
Dean AP, Hartley A, McIntosh OA, Smith A, Feord HK, Holmberg NH, King T, Yardley E, White KN, Pittman JK. Metabolic adaptation of a Chlamydomonas acidophila strain isolated from acid mine drainage ponds with low eukaryotic diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:75-87. [PMID: 30077857 DOI: 10.1016/j.scitotenv.2018.07.445] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
The diversity and biological characteristics of eukaryotic communities within acid mine drainage (AMD) sites is less well studied than for prokaryotic communities. Furthermore, for many eukaryotic extremophiles the potential mechanisms of adaptation are unclear. This study describes an evaluation of eight highly acidic (pH 1.6-3.1) and one moderately acidic (pH 5.6) metal-rich acid mine drainage ponds at a disused copper mine. The severity of AMD pollution on eukaryote biodiversity was examined, and while the most species-rich site was less acidic, biodiversity did not only correlate with pH but also with the concentration of dissolved and particulate metals. Acid-tolerant microalgae were present in all ponds, including the species Chlamydomonas acidophila, abundance of which was high in one very metal-rich and highly acidic (pH 1.6) pond, which had a particularly high PO4-P concentration. The C. acidophila strain named PM01 had a broad-range pH tolerance and tolerance to high concentrations of Cd, Cu and Zn, with bioaccumulation of these metals within the cell. Comparison of metal tolerance between the isolated strain and other C. acidophila strains previously isolated from different acidic environments found that the new strain exhibited much higher Cu tolerance, suggesting adaptation by C. acidophila PM01 to excess Cu. An analysis of the metabolic profile of the strains in response to increasing concentrations of Cu suggests that this tolerance by PM01 is in part due to metabolic adaptation and changes in protein content and secondary structure.
Collapse
Affiliation(s)
- Andrew P Dean
- School of Science and the Environment, Manchester Metropolitan University, Oxford Road, Manchester M1 5GD, UK
| | - Antoni Hartley
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Owen A McIntosh
- School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Alyssa Smith
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Helen K Feord
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Nicolas H Holmberg
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Thomas King
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Ellen Yardley
- Department of Geography, University of Sheffield, Sheffield S10 2TN, UK
| | - Keith N White
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jon K Pittman
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; School of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
28
|
Dias M, Gomes de Lacerda JTJ, Perdigão Cota de Almeida S, de Andrade LM, Oller do Nascimento CA, Rozas EE, Mendes MA. Response mechanism of mine-isolated fungus Aspergillus niger IOC 4687 to copper stress determined by proteomics. Metallomics 2019; 11:1558-1566. [DOI: 10.1039/c9mt00137a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteomic analysis of the fungus Aspergillus niger showed that its capacity to absorb metals was boosted by physiological modification under metal stress conditions.
Collapse
Affiliation(s)
- Meriellen Dias
- Dempster MS Lab – Chemical Engineering Department of Polytechnic School of University of São Paulo
- São Paulo-SP
- Brazil
| | | | | | - Lidiane Maria de Andrade
- Dempster MS Lab – Chemical Engineering Department of Polytechnic School of University of São Paulo
- São Paulo-SP
- Brazil
| | | | - Enrique Eduardo Rozas
- Dempster MS Lab – Chemical Engineering Department of Polytechnic School of University of São Paulo
- São Paulo-SP
- Brazil
| | - Maria Anita Mendes
- Dempster MS Lab – Chemical Engineering Department of Polytechnic School of University of São Paulo
- São Paulo-SP
- Brazil
| |
Collapse
|
29
|
Tolerance of Trichoderma sp. to Heavy Metals and its Antifungal Activity in Algerian Marine Environment. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.2.48] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Celis-Arias V, Loera-Serna S, Beltrán HI, Álvarez-Zeferino JC, Garrido E, Ruiz-Ramos R. The fungicide effect of HKUST-1 on Aspergillus niger, Fusarium solani and Penicillium chrysogenum. NEW J CHEM 2018. [DOI: 10.1039/c8nj00120k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We evaluated the fungicide effect of HKUST-1 and related materials on Aspergillus niger, Fusarium solani and Penicillium chrysogenum strains.
Collapse
Affiliation(s)
- Vanessa Celis-Arias
- División de Ciencias Básicas e Ingeniería
- Universidad Autónoma Metropolitana Azcapotzalco
- Ciudad de México
- Mexico
| | - Sandra Loera-Serna
- División de Ciencias Básicas e Ingeniería
- Universidad Autónoma Metropolitana Azcapotzalco
- Ciudad de México
- Mexico
| | - Hiram I. Beltrán
- Departamento de Ciencias Naturales
- DCNI
- Universidad Autónoma Metropolitana Cuajimalpa
- Ciudad de México
- Mexico
| | - J. Carlos Álvarez-Zeferino
- División de Ciencias Básicas e Ingeniería
- Universidad Autónoma Metropolitana Azcapotzalco
- Ciudad de México
- Mexico
- Instituto de Ingeniería
| | - Efrain Garrido
- Departamento de Genética y Bilogía Molecular
- CINVESTAV-IPN
- Ciudad de México
- Mexico
| | - Rubén Ruiz-Ramos
- Instituto de Medicina Forense
- Universidad Veracruzana
- Boca del Río
- Mexico
| |
Collapse
|
31
|
Tolerance and stress response of sclerotiogenic Aspergillus oryzae G15 to copper and lead. Folia Microbiol (Praha) 2017; 62:295-304. [DOI: 10.1007/s12223-017-0494-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/12/2017] [Indexed: 11/25/2022]
|