1
|
Sebiani-Calvo A, Hernández-Soto A, Hensel G, Gatica-Arias A. Crop genome editing through tissue-culture-independent transformation methods. Front Genome Ed 2024; 6:1490295. [PMID: 39703881 PMCID: PMC11655202 DOI: 10.3389/fgeed.2024.1490295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Genome editing and plant transformation are crucial techniques in plant biotechnology, allowing for the precise modification of plant genomes to enhance agronomically essential traits. The advancement of CRISPR-based genome editing tools in plants is limited, among others, by developing novel in vitro tissue culture methodologies for efficient plant genetic transformation. In-planta methodologies offer a promising alternative to overcome tissue culture limitations and facilitate crops' genetic improvement. The in-planta transformation methods can be categorized under the definition of means of plant genetic transformation with no or minimal tissue culture steps meeting the conditions for minimal steps: short duration with a limited number of transfers, high technical simplicity, limited list of hormones, and that the regeneration does not undergo callus development. In this review, we analyzed over 250 articles. We identified studies that follow an in-planta transformation methodology for delivering CRISPR/Cas9 components focusing on crop plants, as model species have been previously reviewed in detail. This approach has been successfully applied for genome editing in crop plants: camelina, cotton, lemon, melon, orange, peanut, rice, soybean, and wheat. Overall, this study underscores the importance of in-planta methodologies in overcoming the limitations of tissue culture and advancing the field of plant genome editing.
Collapse
Affiliation(s)
- Alejandro Sebiani-Calvo
- Plant Biotechnology Laboratory, School of Biology, University of Costa Rica, San José, Costa Rica
- Programa de Posgrado en Biología, School of Biology, University of Costa Rica, San José, Costa Rica
| | - Alejandro Hernández-Soto
- Biotechnology Research Center, Biology School, Costa Rica Institute of Technology, Cartago, Costa Rica
| | - Götz Hensel
- Centre for Plant Genome Engineering, Institute for Plant Biochemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence in Plant Sciences “SMART Plants for Tomorrow’s Needs”, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrés Gatica-Arias
- Plant Biotechnology Laboratory, School of Biology, University of Costa Rica, San José, Costa Rica
- Programa de Posgrado en Biología, School of Biology, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
2
|
Debnath SC, Ghosh A. Phenotypic variation and epigenetic insight into tissue culture berry crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1042726. [PMID: 36600911 PMCID: PMC9806182 DOI: 10.3389/fpls.2022.1042726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Berry crops, a nutrient powerhouse for antioxidant properties, have long been enjoyed as a health-promoting delicious food. Significant progress has been achieved for the propagation of berry crops using tissue culture techniques. Although bioreactor micropropagation has been developed as a cost-effective propagation technology for berry crops, genetic stability can be a problem for commercial micropropagation that can be monitored at morphological, biochemical, and molecular levels. Somaclonal variations, both genetic and epigenetic, in tissue culture regenerants are influenced by different factors, such as donor genotype, explant type and origin, chimeral tissues, culture media type, concentration and combination of plant growth regulators, and culture conditions and period. Tissue culture regenerants in berry crops show increased vegetative growth, rhizome production, and berry yield, containing higher antioxidant activity in fruits and leaves that might be due to epigenetic variation. The present review provides an in-depth study on various aspects of phenotypic variation in micropropagated berry plants and the epigenetic effects on these variations along with the role of DNA methylation, to fill the existing gap in literature.
Collapse
Affiliation(s)
- Samir C. Debnath
- St. John’s Research and Development Centre, Agriculture and Agri-Food Canada, St. John’s, NL, Canada
| | - Amrita Ghosh
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
3
|
Valenzuela F, D’Afonseca V, Hernández R, Gómez A, Arencibia AD. Validation of Reference Genes in a Population of Blueberry (Vaccinium corymbosum) Plants Regenerated in Colchicine. PLANTS (BASEL, SWITZERLAND) 2022; 11:2645. [PMID: 36235509 PMCID: PMC9573746 DOI: 10.3390/plants11192645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
For the first time we report the validation of reference genes in plants from a population of blueberry (Vaccinium corymbosum) clones cultured in vitro on a colchicine-supplemented medium. Nodal segment explants of the cultivar Duke were regenerated by organogenesis under different periods of colchicine 1 mg/L exposure (1, 2, 3, 5, 30 days). The clones selected for the study showed variability for phenotypic traits after 2 years of adaptation to field conditions, compared to plants of the donor genotype that were regenerated on a medium without colchicine. Vaccinium myrtillus (GAPDH) and Vaccinium macrocarpon (ATP1, NADH, RPOB and COX2) were used as reference genomes for primer design. The results show that colchicine treatments can cause genomic changes in blueberry plants. At the molecular level, exposure of plants to colchicine in early periods could promote an increase in gene expression of specific genes such as ATP1, COX2, GAPDH, MATK, NADH and RPOB. However, prolonged exposure (30 days) could decrease gene expression of the genes studied. For qPCR assays, the primers designed for ATP1, COX2, GAPDH and MATK genes showed high efficiency. In addition, the GAPDH, ATP1, NADH and COX2 genes showed high stability and could be recommended as potential reference genes for gene expression assays in Vaccinium.
Collapse
Affiliation(s)
- Francisca Valenzuela
- Centro de Biotecnología en Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
| | - Vivían D’Afonseca
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
| | - Ricardo Hernández
- Centro de Biotecnología en Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
- Doctorado en Biotecnología Traslacional. Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
| | - Aleydis Gómez
- Centro de Biotecnología en Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
| | - Ariel D. Arencibia
- Centro de Biotecnología en Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Ave San Miguel 3605, Talca 3466706, Chile
| |
Collapse
|
4
|
Ali SS, Al-Tohamy R, Koutra E, Moawad MS, Kornaros M, Mustafa AM, Mahmoud YAG, Badr A, Osman MEH, Elsamahy T, Jiao H, Sun J. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148359. [PMID: 34147795 DOI: 10.1016/j.scitotenv.2021.148359] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 05/12/2023]
Abstract
The high demand for sufficient and safe food, and continuous damage of environment by conventional agriculture are major challenges facing the globe. The necessity of smart alternatives and more sustainable practices in food production is crucial to confront the steady increase in human population and careless depletion of global resources. Nanotechnology implementation in agriculture offers smart delivery systems of nutrients, pesticides, and genetic materials for enhanced soil fertility and protection, along with improved traits for better stress tolerance. Additionally, nano-based sensors are the ideal approach towards precision farming for monitoring all factors that impact on agricultural productivity. Furthermore, nanotechnology can play a significant role in post-harvest food processing and packaging to reduce food contamination and wastage. In this review, nanotechnology applications in the agriculture and food sector are reviewed. Implementations of nanotechnology in agriculture have included nano- remediation of wastewater for land irrigation, nanofertilizers, nanopesticides, and nanosensors, while the beneficial effects of nanomaterials (NMs) in promoting genetic traits, germination, and stress tolerance of plants are discussed. Furthermore, the article highlights the efficiency of nanoparticles (NPs) and nanozymes in food processing and packaging. To this end, the potential risks and impacts of NMs on soil, plants, and human tissues and organs are emphasized in order to unravel the complex bio-nano interactions. Finally, the strengths, weaknesses, opportunities, and threats of nanotechnology are evaluated and discussed to provide a broad and clear view of the nanotechnology potentials, as well as future directions for nano-based agri-food applications towards sustainability.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Mohamed S Moawad
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Nanoscience Program, Zewail City of Science and Technology, 6th of October, Giza 12588, Egypt
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Resourses Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| | - Mohamed E H Osman
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Li Q, Sapkota M, van der Knaap E. Perspectives of CRISPR/Cas-mediated cis-engineering in horticulture: unlocking the neglected potential for crop improvement. HORTICULTURE RESEARCH 2020; 7:36. [PMID: 32194972 PMCID: PMC7072075 DOI: 10.1038/s41438-020-0258-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/09/2020] [Accepted: 02/11/2020] [Indexed: 05/14/2023]
Abstract
Directed breeding of horticultural crops is essential for increasing yield, nutritional content, and consumer-valued characteristics such as shape and color of the produce. However, limited genetic diversity restricts the amount of crop improvement that can be achieved through conventional breeding approaches. Natural genetic changes in cis-regulatory regions of genes play important roles in shaping phenotypic diversity by altering their expression. Utilization of CRISPR/Cas editing in crop species can accelerate crop improvement through the introduction of genetic variation in a targeted manner. The advent of CRISPR/Cas-mediated cis-regulatory region engineering (cis-engineering) provides a more refined method for modulating gene expression and creating phenotypic diversity to benefit crop improvement. Here, we focus on the current applications of CRISPR/Cas-mediated cis-engineering in horticultural crops. We describe strategies and limitations for its use in crop improvement, including de novo cis-regulatory element (CRE) discovery, precise genome editing, and transgene-free genome editing. In addition, we discuss the challenges and prospects regarding current technologies and achievements. CRISPR/Cas-mediated cis-engineering is a critical tool for generating horticultural crops that are better able to adapt to climate change and providing food for an increasing world population.
Collapse
Affiliation(s)
- Qiang Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, China
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA USA
| | - Manoj Sapkota
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA USA
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA USA
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA USA
- Department of Horticulture, University of Georgia, Athens, GA USA
| |
Collapse
|