1
|
Hwang EM, Jeong KS, Yoo SY, Kim J, Choe S, Kim JY. Development of a diagnostic variable number tandem repeat marker and dual TaqMan genotyping assay to distinguish Lophophora species. Int J Legal Med 2025; 139:1-13. [PMID: 39190119 DOI: 10.1007/s00414-024-03318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
The Lophophora genus of the Cactaceae family includes Lophophora diffusa and Lophophora williamsii, which has traditionally been used as a natural analgesic; however, its use is now under strict regulation worldwide as it contains mescaline, a unique psychotropic agent. Recently, non-medical and illegal distribution and abuse of L. williamsii have increased worldwide; thus, effective species identification methods are urgently needed. Here, we identified a new variable number tandem repeat (VNTR) marker in the trnL intron region to identify and characterize species in forensic analyses. The VNTR marker has a unique structure of tandem repeats, each with 13 nucleotides; one repeat unit was found in L. williamsii and two in L. diffusa. Phylogenetic and length polymorphism analyses confirmed that this novel VNTR marker could distinguish between Lophophora species. Furthermore, our newly developed TaqMan genotyping assay utilizes two probes; the color and position of dots on the discrimination plot differ according to the tandem repeat count within the VNTR marker. The limits of detection of the assay were 0.000063 ng (LW-VNTR probe-1) and 0.000066 ng (LW-VNTR probe-2), indicating high sensitivity. Moreover, when crime scene samples of 16 presumed L. williamsii species were analyzed, the results coincided with those of gas chromatography-mass spectrometry, confirming the applicability of our marker for Lophophora species identification. Thus, the tandem repeats within the trnL intron region can be exploited as a VNTR marker to identify L. williamsii and L. diffusa. Our dual TaqMan genotyping assay based on a novel marker demonstrates potential for forensic applications.
Collapse
Affiliation(s)
- Eun-Mi Hwang
- Forensic DNA Division, National Forensic Service, Wonju, 26460, Republic of Korea
| | - Kyu-Sik Jeong
- Forensic DNA Division, National Forensic Service, Wonju, 26460, Republic of Korea
| | - Seong Yeon Yoo
- Forensic DNA Division, National Forensic Service, Wonju, 26460, Republic of Korea
| | - Jihyun Kim
- Forensic Toxicology and Chemistry Division, Seoul Institute, National Forensic Service, Seoul, 08036, Republic of Korea
| | - Sanggil Choe
- Forensic Toxicology Division, National Forensic Service, Wonju, 26460, Republic of Korea
| | - Joo-Young Kim
- Forensic DNA Division, National Forensic Service, Wonju, 26460, Republic of Korea.
| |
Collapse
|
2
|
Wu F, Cai G, Xi P, Guo Y, Xu M, Li A. Genetic Diversity Analysis and Fingerprint Construction for 87 Passionfruit ( Passiflora spp.) Germplasm Accessions on the Basis of SSR Fluorescence Markers. Int J Mol Sci 2024; 25:10815. [PMID: 39409142 PMCID: PMC11476748 DOI: 10.3390/ijms251910815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
A comprehensive genetic diversity analysis of 87 Passiflora germplasm accessions domesticated and cultivated for several years in the karst region of Guizhou, China, was conducted utilizing simple sequence repeat (SSR) fluorescent markers. These Passiflora species, renowned for their culinary and medicinal value, could bring significant economic and ecological benefits to the region. This study aimed to assess the genetic resources of these species and facilitate the selection of superior cultivars adapted to the karst environment. Our analysis revealed an abundance of SSR loci within the Passiflora transcriptome, with single-base repeats being the most prevalent type. Through rigorous primer screening and amplification, we successfully identified 27 SSR primer pairs exhibiting robust polymorphisms. Further interrogation at eight microsatellite loci revealed 68 alleles, underscoring the high level of genetic diversity present in the cultivated accessions. The average expected heterozygosity was 0.202, with the ssr18 locus exhibiting the highest value of 0.768, indicating significant genetic variation. The mean polymorphic information content (PIC) of 0.657 indicates the informativeness of these SSR markers. Comparative analyses of the cultivated and potential wild progenitors revealed distinct genetic variations among the different Passiflora types. Genetic structure and clustering analyses of the 87 accessions revealed seven distinct groups, suggesting gene flow and similarities among the resources. Notably, a DNA fingerprinting system was established using eight SSR primer pairs, effectively distinguishing the selected cultivars that had adapted to the karst mountainous region. This study not only deepens our understanding of Passiflora genetic resources in the karst environment but also provides a valuable reference for conservation, genetic improvement, and cultivar selection. The rich genetic diversity of the Passiflora germplasm underscores their potential for sustainable utilization in breeding programs aimed at enhancing the economic and ecological viability of these valuable plant species.
Collapse
Affiliation(s)
- Fengchan Wu
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China; (F.W.); (P.X.); (Y.G.)
| | - Guojun Cai
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China;
| | - Peiyu Xi
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China; (F.W.); (P.X.); (Y.G.)
| | - Yulin Guo
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China; (F.W.); (P.X.); (Y.G.)
| | - Meng Xu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| | - Anding Li
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China; (F.W.); (P.X.); (Y.G.)
| |
Collapse
|
3
|
Pires GP, Fioresi VS, Canal D, Canal DC, Fernandes M, Brustolini OJB, de Avelar Carpinetti P, Ferreira A, da Silva Ferreira MF. Effects of trimer repeats on Psidium guajava L. gene expression and prospection of functional microsatellite markers. Sci Rep 2024; 14:9811. [PMID: 38684872 PMCID: PMC11059378 DOI: 10.1038/s41598-024-60417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Most research on trinucleotide repeats (TRs) focuses on human diseases, with few on the impact of TR expansions on plant gene expression. This work investigates TRs' effect on global gene expression in Psidium guajava L., a plant species with widespread distribution and significant relevance in the food, pharmacology, and economics sectors. We analyzed TR-containing coding sequences in 1,107 transcripts from 2,256 genes across root, shoot, young leaf, old leaf, and flower bud tissues of the Brazilian guava cultivars Cortibel RM and Paluma. Structural analysis revealed TR sequences with small repeat numbers (5-9) starting with cytosine or guanine or containing these bases. Functional annotation indicated TR-containing genes' involvement in cellular structures and processes (especially cell membranes and signal recognition), stress response, and resistance. Gene expression analysis showed significant variation, with a subset of highly expressed genes in both cultivars. Differential expression highlighted numerous down-regulated genes in Cortibel RM tissues, but not in Paluma, suggesting interplay between tissues and cultivars. Among 72 differentially expressed genes with TRs, 24 form miRNAs, 13 encode transcription factors, and 11 are associated with transposable elements. In addition, a set of 20 SSR-annotated, transcribed, and differentially expressed genes with TRs was selected as phenotypic markers for Psidium guajava and, potentially for closely related species as well.
Collapse
Affiliation(s)
- Giovanna Pinto Pires
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Vinicius Sartori Fioresi
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Drielli Canal
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Dener Cezati Canal
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Miquéias Fernandes
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Otávio José Bernardes Brustolini
- Laboratório Nacional de Computação Científica (LNCC). Av. Getulio Vargas, 333, Petrópolis, Rio de Janeiro, Quitandinha, 25651-076, Brazil
| | - Paola de Avelar Carpinetti
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Adésio Ferreira
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil
| | - Marcia Flores da Silva Ferreira
- Centro de Ciências Agrárias e Engenharias, Departamento de Agronomia, Universidade Federal Do Espírito Santo, Alto Universitário, s/n, Alegre, ES, 29500-000, Brazil.
| |
Collapse
|
4
|
Gu X, Li L, Zhong X, Su Y, Wang T. The size diversity of the Pteridaceae family chloroplast genome is caused by overlong intergenic spacers. BMC Genomics 2024; 25:396. [PMID: 38649816 PMCID: PMC11036588 DOI: 10.1186/s12864-024-10296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND While the size of chloroplast genomes (cpDNAs) is often influenced by the expansion and contraction of inverted repeat regions and the enrichment of repeats, it is the intergenic spacers (IGSs) that appear to play a pivotal role in determining the size of Pteridaceae cpDNAs. This provides an opportunity to delve into the evolution of chloroplast genomic structures of the Pteridaceae family. This study added five Pteridaceae species, comparing them with 36 published counterparts. RESULTS Poor alignment in the non-coding regions of the Pteridaceae family was observed, and this was attributed to the widespread presence of overlong IGSs in Pteridaceae cpDNAs. These overlong IGSs were identified as a major factor influencing variations in cpDNA size. In comparison to non-expanded IGSs, overlong IGSs exhibited significantly higher GC content and were rich in repetitive sequences. Species divergence time estimations suggest that these overlong IGSs may have already existed during the early radiation of the Pteridaceae family. CONCLUSIONS This study reveals new insights into the genetic variation, evolutionary history, and dynamic changes in the cpDNA structure of the Pteridaceae family, providing a fundamental resource for further exploring its evolutionary research.
Collapse
Affiliation(s)
- Xiaolin Gu
- College of Life Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Lingling Li
- College of Life Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Xiaona Zhong
- College of Life Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
- Research Institute of Sun Yat-sen University in Shenzhen, 518057, Shenzhen, China.
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
5
|
Hesse U. K-Mer-Based Genome Size Estimation in Theory and Practice. Methods Mol Biol 2023; 2672:79-113. [PMID: 37335470 DOI: 10.1007/978-1-0716-3226-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Recent advances in sequencing technologies have made genome sequencing of non-model organisms with very large and complex genomes possible. The data can be used to estimate diverse genome characteristics, including genome size, repeat content, and levels of heterozygosity. K-mer analysis is a powerful biocomputational approach with a wide range of applications, including estimation of genome sizes. However, interpretation of the results is not always straightforward. Here, I review k-mer-based genome size estimation, focusing specifically on k-mer theory and peak calling in k-mer frequency histograms. I highlight common pitfalls in data analysis and result interpretation, and provide a comprehensive overview on current methods and programs developed to conduct these analyses.
Collapse
Affiliation(s)
- Uljana Hesse
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
6
|
Rakkammal K, Priya A, Pandian S, Maharajan T, Rathinapriya P, Satish L, Ceasar SA, Sohn SI, Ramesh M. Conventional and Omics Approaches for Understanding the Abiotic Stress Response in Cereal Crops-An Updated Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:2852. [PMID: 36365305 PMCID: PMC9655223 DOI: 10.3390/plants11212852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 05/22/2023]
Abstract
Cereals have evolved various tolerance mechanisms to cope with abiotic stress. Understanding the abiotic stress response mechanism of cereal crops at the molecular level offers a path to high-yielding and stress-tolerant cultivars to sustain food and nutritional security. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. Omics approaches generate a massive amount of data, and adequate advancements in computational tools have been achieved for effective analysis. The combination of integrated omics and bioinformatics approaches has been recognized as vital to generating insights into genome-wide stress-regulation mechanisms. In this review, we have described the self-driven drought, heat, and salt stress-responsive mechanisms that are highlighted by the integration of stress-manipulating components, including transcription factors, co-expressed genes, proteins, etc. This review also provides a comprehensive catalog of available online omics resources for cereal crops and their effective utilization. Thus, the details provided in the review will enable us to choose the appropriate tools and techniques to reduce the negative impacts and limit the failures in the intensive crop improvement study.
Collapse
Affiliation(s)
- Kasinathan Rakkammal
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Arumugam Priya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683104, Kerala, India
| | - Periyasamy Rathinapriya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Lakkakula Satish
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, Mandapam Camp, CSIR—Central Salt and Marine Chemicals Research Institute, Bhavnagar 623519, Tamil Nadu, India
| | | | - Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
7
|
Walker K, Kalra D, Lowdon R, Chen G, Molik D, Soto DC, Dabbaghie F, Khleifat AA, Mahmoud M, Paulin LF, Raza MS, Pfeifer SP, Agustinho DP, Aliyev E, Avdeyev P, Barrozo ER, Behera S, Billingsley K, Chong LC, Choubey D, De Coster W, Fu Y, Gener AR, Hefferon T, Henke DM, Höps W, Illarionova A, Jochum MD, Jose M, Kesharwani RK, Kolora SRR, Kubica J, Lakra P, Lattimer D, Liew CS, Lo BW, Lo C, Lötter A, Majidian S, Mendem SK, Mondal R, Ohmiya H, Parvin N, Peralta C, Poon CL, Prabhakaran R, Saitou M, Sammi A, Sanio P, Sapoval N, Syed N, Treangen T, Wang G, Xu T, Yang J, Zhang S, Zhou W, Sedlazeck FJ, Busby B. The third international hackathon for applying insights into large-scale genomic composition to use cases in a wide range of organisms. F1000Res 2022; 11:530. [PMID: 36262335 PMCID: PMC9557141 DOI: 10.12688/f1000research.110194.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 01/25/2023] Open
Abstract
In October 2021, 59 scientists from 14 countries and 13 U.S. states collaborated virtually in the Third Annual Baylor College of Medicine & DNANexus Structural Variation hackathon. The goal of the hackathon was to advance research on structural variants (SVs) by prototyping and iterating on open-source software. This led to nine hackathon projects focused on diverse genomics research interests, including various SV discovery and genotyping methods, SV sequence reconstruction, and clinically relevant structural variation, including SARS-CoV-2 variants. Repositories for the projects that participated in the hackathon are available at https://github.com/collaborativebioinformatics.
Collapse
Affiliation(s)
- Kimberly Walker
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Guangyi Chen
- Drug Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - David Molik
- Tropical Crop and Commodity Protection Research Unit, Pacific Basin Agricultural Research Center, Hilo, HI, 96720, USA
| | - Daniela C. Soto
- Biochemistry & Molecular Medicine, Genome Center, MIND Institute, University of California, Davis, Davis, CA, 95616, USA
| | - Fawaz Dabbaghie
- Drug Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- Institute for Medical Biometry and Bioinformatics, University hospital Düsseldorf, Düsseldorf, Germany
| | - Ahmad Al Khleifat
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Luis F Paulin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Muhammad Sohail Raza
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Beijing, China
| | - Susanne P. Pfeifer
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Daniel Paiva Agustinho
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Elbay Aliyev
- Research Department, Sidra Medicine, Doha, Qatar
| | - Pavel Avdeyev
- Computational Biology Institute, The George Washington University, Washington, DC, 20052, USA
| | - Enrico R. Barrozo
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sairam Behera
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kimberley Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Li Chuin Chong
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, Istanbul, Turkey
| | - Deepak Choubey
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Wouter De Coster
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Yilei Fu
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Alejandro R. Gener
- Association of Public Health Labs, Centers for Disease Control and Prevention, Downey, CA, USA
| | - Timothy Hefferon
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Morgan Henke
- Department Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wolfram Höps
- EMBL Heidelberg, Genome Biology Unit, Heidelberg, Germany
| | | | - Michael D. Jochum
- Department of Obstetrics & Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Maria Jose
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India
| | - Rupesh K. Kesharwani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | | | - Priya Lakra
- Department of Zoology, University of Delhi, Delhi, India
| | - Damaris Lattimer
- University of Applied Sciences Upper Austria - FH Hagenberg, Mühlkreis, Austria
| | - Chia-Sin Liew
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Bai-Wei Lo
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Chunhsuan Lo
- Human Genetics Laboratory, National Institute of Genetics, Japan, Mishima City, Japan
| | - Anneri Lötter
- Department of Biochemistry, University of Pretoria, Pretoria, South Africa
| | - Sina Majidian
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | | | - Rajarshi Mondal
- Department of Biotechnology, The University of Burdwan, West Bengal, India
| | - Hiroko Ohmiya
- Genetic Reagent Development Unit, Medical & Biological Laboratories Co., Ltd., Tokoyo, Japan
| | - Nasrin Parvin
- Department of Biotechnology, The University of Burdwan, West Bengal, India
| | | | | | | | - Marie Saitou
- Center of Integrative Genetics (CIGENE),Faculty of Biosciences, Norwegian University of Life Sciences, As, Norway
| | - Aditi Sammi
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Philippe Sanio
- University of Applied Sciences Upper Austria - FH Hagenberg, Hagenberg im Mühlkreis, Austria
| | - Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Najeeb Syed
- Research Department, Sidra Medicine, Doha, Qatar
| | - Todd Treangen
- Department of Computer Science, Rice University, Houston, TX, USA
| | | | - Tiancheng Xu
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Jianzhi Yang
- Department of Quantitative and Computational Biology,, University of Southern California, Los Angeles, CA, USA
| | - Shangzhe Zhang
- School of Biology, University of St Andrews, St Andrews, UK
| | - Weiyu Zhou
- Department of Statistical Science, George Mason University, Fairfax, Virginia, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | | |
Collapse
|
8
|
Marsh JI, Hu H, Petereit J, Bayer PE, Valliyodan B, Batley J, Nguyen HT, Edwards D. Haplotype mapping uncovers unexplored variation in wild and domesticated soybean at the major protein locus cqProt-003. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1443-1455. [PMID: 35141762 PMCID: PMC9033719 DOI: 10.1007/s00122-022-04045-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/22/2022] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE The major soy protein QTL, cqProt-003, was analysed for haplotype diversity and global distribution, and results indicate 304 bp deletion and variable tandem repeats in protein coding regions are likely causal candidates. Here, we present association and linkage analysis of 985 wild, landrace and cultivar soybean accessions in a pan genomic dataset to characterize the major high-protein/low-oil associated locus cqProt-003 located on chromosome 20. A significant trait-associated region within a 173 kb linkage block was identified, and variants in the region were characterized, identifying 34 high confidence SNPs, 4 insertions, 1 deletion and a larger 304 bp structural variant in the high-protein haplotype. Trinucleotide tandem repeats of variable length present in the second exon of gene Glyma.20G085100 are strongly correlated with the high-protein phenotype and likely represent causal variation. Structural variation has previously been found in the same gene, for which we report the global distribution of the 304 bp deletion and have identified additional nested variation present in high-protein individuals. Mapping variation at the cqProt-003 locus across demographic groups suggests that the high-protein haplotype is common in wild accessions (94.7%), rare in landraces (10.6%) and near absent in cultivated breeding pools (4.1%), suggesting its decrease in frequency primarily correlates with domestication and continued during subsequent improvement. However, the variation that has persisted in under-utilized wild and landrace populations holds high breeding potential for breeders willing to forego seed oil to maximize protein content. The results of this study include the identification of distinct haplotype structures within the high-protein population, and a broad characterization of the genomic context and linkage patterns of cqProt-003 across global populations, supporting future functional characterization and modification.
Collapse
Affiliation(s)
- Jacob I Marsh
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Haifei Hu
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Jakob Petereit
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Babu Valliyodan
- Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, MO, 65101, USA
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
9
|
Chen Y, Zhu X, Loukopoulos P, Weston LA, Albrecht DE, Quinn JC. Genotypic identification of Panicum spp. in New South Wales, Australia using DNA barcoding. Sci Rep 2021; 11:16055. [PMID: 34362980 PMCID: PMC8346583 DOI: 10.1038/s41598-021-95610-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Australia has over 30 Panicum spp. (panic grass) including several non-native species that cause crop and pasture loss and hepatogenous photosensitisation in livestock. It is critical to correctly identify them at the species level to facilitate the development of appropriate management strategies for efficacious control of Panicum grasses in crops, fallows and pastures. Currently, identification of Panicum spp. relies on morphological examination of the reproductive structures, but this approach is only useful for flowering specimens and requires significant taxonomic expertise. To overcome this limitation, we used multi-locus DNA barcoding for the identification of ten selected Panicum spp. found in Australia. With the exception of P. buncei, other native Australian Panicum were genetically separated at the species level and distinguished from non-native species. One nuclear (ITS) and two chloroplast regions (matK and trnL intron-trnF) were identified with varying facility for DNA barcode separation of the Panicum species. Concatenation of sequences from ITS, matK and trnL intron-trnF regions provided clear separation of eight regionally collected species, with a maximum intraspecific distance of 0.22% and minimum interspecific distance of 0.33%. Two of three non-native Panicum species exhibited a smaller genome size compared to native species evaluated, and we speculate that this may be associated with biological advantages impacting invasion of non-native Panicum species in novel locations. We conclude that multi-locus DNA barcoding, in combination with traditional taxonomic identification, provides an accurate and cost-effective adjunctive tool for further distinguishing Panicum spp. at the species level.
Collapse
Affiliation(s)
- Yuchi Chen
- grid.1037.50000 0004 0368 0777School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW Australia ,grid.1680.f0000 0004 0559 5189Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW Australia ,grid.1008.90000 0001 2179 088XMelbourne Veterinary School, The University of Melbourne, Werribee, VIC Australia
| | - Xiaocheng Zhu
- grid.1680.f0000 0004 0559 5189Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW Australia ,grid.1680.f0000 0004 0559 5189Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW Australia
| | - Panayiotis Loukopoulos
- grid.1037.50000 0004 0368 0777School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW Australia ,grid.1008.90000 0001 2179 088XMelbourne Veterinary School, The University of Melbourne, Werribee, VIC Australia
| | - Leslie A. Weston
- grid.1037.50000 0004 0368 0777School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW Australia ,grid.1680.f0000 0004 0559 5189Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW Australia
| | - David E. Albrecht
- grid.467784.e0000 0001 2231 5722Australian National Herbarium, Centre for Australian National Biodiversity Research (a Joint Venture Between Parks Australia and CSIRO), Canberra, Australian Capital Territory, Australia
| | - Jane C. Quinn
- grid.1037.50000 0004 0368 0777School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW Australia ,grid.1680.f0000 0004 0559 5189Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW Australia
| |
Collapse
|