1
|
Zhang F, Su Q, Gao Z, Wu Z, Ji Q, He T, Zhu K, Chen X, Zhang Y, Hou S, Gui L. Impact of Lysine to Methionine Ratios on Antioxidant Capacity and Immune Function in the Rumen of Tibetan Sheep: An RNA-Seq Analysis. Vet Med Sci 2025; 11:e70173. [PMID: 39708312 DOI: 10.1002/vms3.70173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 07/29/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024] Open
Abstract
With global protein prices on the rise, lowering protein levels in animal feed, together with balancing diet composition and reducing nitrogen emissions, can both reduce the environmental impact of agriculture and save on feed costs. However, the formulation of an ideal amino acid (AA) composition is crucial for better protein utilization by livestock. This study aimed to investigate the effects of different lysine to methionine ratios on the antioxidant capacity and immune function of the rumen in Tibetan sheep. Ninety male Tibetan sheep, weaned at 2 months of age, were randomly divided into three groups (1:1, 2:1 and 3:1 lysine ratios) and subjected to a 100-day feeding trial. RNA sequencing (RNA-seq) was utilized to analyse the impact of different AA ratios on gene expression in rumen tissue, whereas the levels of antioxidant enzymes (total antioxidant capacity [T-AOC], superoxide dismutase [SOD], glutathione peroxidase [GSH-Px] and catalase [CAT]) and immunoglobulins (immunoglobulin A [IgA], immunoglobulin G [IgG] and immunoglobulin M [IgM]) were evaluated. The results indicated that the 1:1 group significantly upregulated the expression of PTGS2, PLA2G12A and PLA2G4 genes, enhancing antioxidant enzyme activity, reducing free radical production and modulating systemic immune responses. COL16A1 and KCNK5 were highly expressed in the protein digestion and absorption pathway, maintaining the structural integrity and function of the rumen epithelium. BMP4 and TGFBR2 were significantly enriched in the cytokine-cytokine receptor interaction pathway and positively correlated with CAT and T-AOC. ITGA8 was upregulated in the 1:1 group, participating in the regulation of various cellular signalling pathways. ATP2B1 was enriched in the cyclic guanosine monophosphate (cGMP)- protein kinase G (PKG) signalling and mineral absorption pathways, primarily influencing oxidative stress and immune responses by regulating intracellular calcium ion concentration. This study demonstrates that a 1:1 lysine to methionine ratio is most beneficial for enhancing the antioxidant capacity and immune function of the rumen in Tibetan sheep.
Collapse
Affiliation(s)
- Fengshuo Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Quyangangmao Su
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Zhanhong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Zhenling Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Qiurong Ji
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Tingli He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Kaina Zhu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Xuan Chen
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Yu Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| |
Collapse
|
2
|
Chen X, Zhang F, Raza SHA, Wu Z, Su Q, Ji Q, He T, Zhu K, Zhang Y, Hou S, Gui L. Immune, Oxidative, and Morphological Changes in the Livers of Tibetan Sheep after Feeding Resveratrol and β-Hydroxy-β-methyl Butyric Acid: A Transcriptome-Metabolome Integrative Analysis. Int J Mol Sci 2024; 25:9865. [PMID: 39337353 PMCID: PMC11432669 DOI: 10.3390/ijms25189865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the effects of dietary resveratrol (RES) and β-Hydroxy-β-methyl butyric acid (HMB) on immune, oxidative, and morphological changes in the livers of Tibetan sheep using transcriptomics and metabolomics. One hundred and twenty male Tibetan lambs of a similar initial weight (15.5 ± 0.14 kg) were randomly divided into four groups with thirty lambs per treatment: (1) H group (basal diet without RES or HMB); (2) H-RES group (1.5 g/day of RES); (3) H-HMB group (1250 mg/day of HMB); (4) H-RES-HMB group (1.5 g/day of RES and 1250 mg/day of HMB). The experiment was conducted for 100 days, including a pre-test period of 10 days and a formal period of 90 days. The results showed significantly increased concentrations of glutathione peroxidase, superoxide dismutase, and IgM in the H-RES-HMB group (p < 0.05), while the malondialdehyde levels were significantly decreased (p < 0.05). The glycolytic indices including creatinine kinase (CK), malate dehydrogenase (MDH), and succinate dehydrogenase (SDH) were significantly increased in the H-RES-HMB group compared with the others (p < 0.05). A histological analysis showed that the hepatic plate tissue in the H-RES-HMB group appeared normal with multiple cells. The transcriptomic analysis showed that the expression of genes associated with the calcium signaling pathway (MYLK2, CYSLTR2, ADCY1, HRH1, ATP2B2, NOS2, HRC, ITPR1, and CAMK2B) and the NF-κB signaling pathway (BCL2 and CARD14) in the H-RES-HMB group were upregulated. The key differential metabolites (d-pyroglutamic acid, DL-serine, DL-threonine, fumarate, and glyceric acid) were enriched in the pathways associated with D-amino acid metabolism, the citrate cycle (TCA cycle), and carbon metabolism. The combined transcriptomic and non-targeted metabolomic analyses showed the co-enrichment of differential genes (NOS2 and GLUD1) and metabolites (fumarate) in arginine biosynthesis-regulated glycolytic activity, whereas the differential genes (ME1, SCD5, FABP2, RXRG, and CPT1B) and metabolites (Leukotriene b4) co-enriched in the PPAR signaling pathway affected the immune response by regulating the PI3K/AKT and cGMP/PKG signaling. In conclusion, the dietary RES and HMB affected the hepatic antioxidant capacity, immune response, and glycolytic activity through modulating the transcriptome (BCL2, CAMK2B, ITPR1, and IL1R1) and metabolome (DL-serine, DL-threonine, fumaric acid, and glycolic acid).
Collapse
Affiliation(s)
- Xuan Chen
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Fengshuo Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zhenling Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Quyangangmao Su
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Qiurong Ji
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Tingli He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Kaina Zhu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Yu Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| |
Collapse
|
3
|
Ma B, Raza SHA, Pant SD, Gao Z, Zhang F, Wang Z, Hou S, Alkhateeb MA, Al Abdulmonem W, Alharbi YM, Aljohani ASM, Gui L. The impact of different levels of wheat diets on hepatic oxidative stress, immune response, and lipid metabolism in Tibetan sheep (Ovis aries). BMC Vet Res 2024; 20:26. [PMID: 38233918 PMCID: PMC10795223 DOI: 10.1186/s12917-023-03874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Compared with corn, wheat contains higher crude protein, amino acids concentration. However, wheat contains a mass of anti-nutritional factors, resulting in increased of the digesta viscosity and impaired the intestinal function in ruminant. OBJECTIVE This study aimed to investigate the effects of substitution of different amounts of wheat for corn on hepatic metabolism in the Tibetan lamb. METHODS Ninety Tibetan lambs (Body weight = 12.37 ± 0.92 kg) were randomly assigned to three groups: 0% wheat diet (Control), 10% wheat diet (Low group), and 15% wheat diet (High group). The feeding trial lasted for 130 d, including a 10 d adaption period. Hepatic gene expression profiling was performed via RNA sequencing after the conclusion of the feeding trials. RESULTS Results showed that greater level of glutathione peroxidase levels in L group compared with those of the C and H groups (P < 0.05). The immune indexes, including interleukin-1β (IL-1β), immunoglobulin A (IgA), and IgM were also elevated in L group compared with the other groups (P < 0.05). Compared with H group, the hepatocytes were arranged radially, and hepatic plates anastomosed with each other to form a labyrinth-like structure in L group. Transcriptomic analysis showed 872 differentially expressed genes (DEG) between H and L group, of which 755 were down-regulated and 117 were up-regulated. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, 32 pathways were significantly enriched (Q-value < 0.05), such as the cAMP signaling pathway, Th1 and Th2 cell differentiation, leukocyte transendothelial migration, platelet activation and adipocytokine signaling pathway. Additionally, the expression of comment DEGs were verified via quantitative reverse-transcription polymerase chain reaction. CONCLUSION In summary, our findings suggest that wheat can be supplemented up to 10% in Tibetan sheep, contributing to improve the hepatic oxidative stress, immune response and lipid metabolism through regulating the expression of related genes.
Collapse
Affiliation(s)
- Boyan Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Zhanhong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Fengshuo Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Mariam Abdulaziz Alkhateeb
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, 51452, Buraidah, Saudi Arabia
| | - Yousef Mesfer Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China.
| |
Collapse
|
4
|
Ma Y, Han L, Zhang S, Zhang X, Hou S, Gui L, Sun S, Yuan Z, Wang Z, Yang B. Insight into the differences of meat quality between Qinghai white Tibetan sheep and black Tibetan sheep from the perspective of metabolomics and rumen microbiota. Food Chem X 2023; 19:100843. [PMID: 37780244 PMCID: PMC10534161 DOI: 10.1016/j.fochx.2023.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
The purpose of this study was to investigate the differences in meat quality between two local breeds of Tibetan sheep, the White Tibetan sheep and the Black Tibetan sheep in Qinghai, and to search for metabolic mechanisms that produce meat quality differences by analyzing differential metabolites and key rumen microorganisms. The meat quality results showed that one breed, SG73, was superior to the other (WG). Further investigation identified differences in the composition of muscle metabolites and rumen microorganisms between the two Tibetan sheep breeds. It also regulates muscle tenderness, water retention, fat content and the composition and content of AA and FA through two major metabolic pathways, AA metabolism and carbohydrate metabolism. These findings could be beneficial for the development of breeding strategies for Tibetan sheep in Qinghai in the future.
Collapse
Affiliation(s)
- Ying Ma
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People’s Republic of China
| | - Lijuan Han
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People’s Republic of China
| | - Shutong Zhang
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People’s Republic of China
| | - Xue Zhang
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People’s Republic of China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People’s Republic of China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People’s Republic of China
| | - Shengnan Sun
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People’s Republic of China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People’s Republic of China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People’s Republic of China
| | - Baochun Yang
- College of Agriculture and Animal Husbandry, Qinghai University Xining, 810016, People’s Republic of China
| |
Collapse
|
5
|
Fonseca PAS, Lam S, Chen Y, Waters SM, Guan LL, Cánovas A. Multi-breed host rumen epithelium transcriptome and microbiome associations and their relationship with beef cattle feed efficiency. Sci Rep 2023; 13:16209. [PMID: 37758745 PMCID: PMC10533831 DOI: 10.1038/s41598-023-43097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Understanding host-microbial interactions in the rumen and its influence on desirable production traits may lead to potential microbiota manipulation or genetic selection for improved cattle feed efficiency. This study investigated the host transcriptome and its correlation with the rumen archaea and bacteria differential abundance of two pure beef cattle breeds (Angus and Charolais) and one composite beef hybrid (Kinsella) divergent for residual feed intake (RFI; low-RFI vs. high-RFI). Using RNA-Sequencing of rumen tissue and 16S rRNA gene amplicon sequencing, differentially expressed genes (FDR ≤ 0.05, |log2(Fold-change) >|2) and differentially abundant (p-value < 0.05) archaea and bacteria amplicon sequence variants (ASV) were determined. Significant correlations between gene expression and ASVs (p-value < 0.05) were determine using Spearman correlation. Interesting associations with muscle contraction and the modulation of the immune system were observed for the genes correlated with bacterial ASVs. Potential functional candidate genes for feed efficiency status were identified for Angus (CCL17, CCR3, and CXCL10), Charolais (KCNK9, GGT1 and IL6), and Kinsella breed (ESR2). The results obtained here provide more insights regarding the applicability of target host and rumen microbial traits for the selection and breeding of more feed efficient beef cattle.
Collapse
Grants
- Beef Farmers of Ontario, Genome Canada and the Sustainable Beef and Forage Science Cluster funded by the Canadian Beef Cattle Check-Off, Beef Cattle Research Council (BCRC), Alberta Beef Producers, Alberta Cattle Feeders’ Association, Beef Farmers of Ontario, La Fédération des Productuers de bovins du Québec, and Agriculture and Agri-Food Canada’s Canadian Agricultural Partnership
- Ontario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA), Ontario Ministry of Research and Innovation, and the Ontario Agri-Food Innovation Alliance
Collapse
Affiliation(s)
- P A S Fonseca
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - S Lam
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Y Chen
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6H 2P5, Canada
| | - S M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, C15 PW93, Co. Meath, Ireland
| | - L L Guan
- Livestock Gentec, Department of Agriculture, Food & Nutritional Science, University of Alberta, Edmonton, AB, T6H 2P5, Canada
| | - A Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
6
|
Wu Z, Liu M, Yan M, Dong S, Wu S. Regulation Mechanism and functional Verification of key functional genes regulating muscle Development in Black Tibetan Sheep. Gene 2023; 868:147375. [PMID: 36940761 DOI: 10.1016/j.gene.2023.147375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
Black Tibetan sheep is a branch of Tibetan sheep on the Qinghai-Tibet Plateau (QTP). It is mainly distributed in Guinan County, Qinghai Province. In order to accurately identify the core regulatory genes in the process of muscle development of black Tibetan sheep, further explore the physiological processes of growth, development and myogenesis of black Tibetan sheep, and carry out molecular breeding of black Tibetan sheep, this experiment took the unique black Tibetan sheep on the Qinghai-Tibet Plateau as the experimental object, and selected three stages of 4-month-old embryo (embryonic stage, MF group), 10-month-old(breeding stage, ML group) and 36-month-old (adult, MA group). The longissimus dorsi tissues of 3 sheep were taken at each stage to quantify the expression of genes during muscle development at different developmental stages. Meanwhile, overexpression and interference techniques were used to detect the role of core genes in the proliferation of primary muscle cells of black Tibetan sheep. In the process from embryonic stage to mature stage and adulthood, more than 1000 genes were up-regulated and more than 4000 down-regulated in black Tibetan sheep, while from breeding to adulthood, there were only 51 up-regulated genes and 83 down-regulated genes. About 998 genes were newly identified in each group. During muscle development from embryonic stage to mature stage to adulthood, two significant differential trend gene sets of Profile1 and Profile 6 were screened and identified, in which there were 121 and 31 core regulatory genes identified, respectively. In the trend of first decreasing and then stable expression in the whole development stage, 121 genes are core regulatory transcripts, which are mainly related to axonal guidance, cell cycle and other functions. 31 genes are core regulatory transcripts in the first rising and then stable expression, which are mainly related to biological metabolic pathway, oxidative phosphorylation and other processes. In the MF-ML stage, 75 genes were selected as the core regulatory gene set, the core genes were PTEN, AKT3, etc., and there were 134 differentially expressed genes in the ML-MA stage, and the core regulatory genes were IL6, ABCA1 and so on. In the MF-ML stage, the core gene set widely plays a role in cell components, cell matrix and other biological processes, while in the ML-MA stage, the core gene set widely plays a role in cell migration, cell differentiation, tissue development and so on. Adenovirus vector overexpressed and interfered with the core gene PTEN in primary muscle satellite cells of black Tibetan sheep shown that, interference and overexpression of PTEN would correspondingly increase and decrease the expression of other core genes, like AKT3, CKD2, CCNB1, ERBB3, HDAC2, but the specific interaction mechanism of each gene still needs to be further explored.
Collapse
Affiliation(s)
- Zhanyue Wu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai 810016, R.P. China; Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, Qinghai 810016, R.P. China
| | - Meng Liu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai 810016, R.P. China; Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, Qinghai 810016, R.P. China
| | - Mingyi Yan
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai 810016, R.P. China; Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, Qinghai 810016, R.P. China; Key Laboratory of Livestock and Poultry Genetics and Breeding on the Qinghai-Tibet Plateau (Qinghai), Ministry of Agriculture and Rural Affairs, Xining, Qinghai 810016, R.P. China
| | - Shutong Dong
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai 810016, R.P. China; Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, Qinghai 810016, R.P. China
| | - Sen Wu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai 810016, R.P. China; Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, Qinghai 810016, R.P. China; Key Laboratory of Livestock and Poultry Genetics and Breeding on the Qinghai-Tibet Plateau (Qinghai), Ministry of Agriculture and Rural Affairs, Xining, Qinghai 810016, R.P. China.
| |
Collapse
|
7
|
Xin G, Ge C, Gao Q, Zhang J, Nie Y, Yang Y, Zhang D, Li H, Ren Y. Effects of soil ingestion on nutrient digestibility and rumen bacterial diversity of Tibetan sheep. CHEMOSPHERE 2022; 308:136000. [PMID: 35973501 DOI: 10.1016/j.chemosphere.2022.136000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Tibetan sheep (Ovis aries) are the most numerous livestock in Tibet Plateau pasture ecosystem and have strong ecological adaptability. In the natural grazing system, soil as a natural nutrient carrier and involuntarily or intentionally ingested by Tibetan sheep contribute as an important feed approach. However, quantifying the dosages of soil ingestion for the Tibetan sheep still needs to be clarified. This study aims to characterize nutrient digestibility and rumen bacterial communities by Tibetan sheep in response to different levels of soil ingestion. Thirty sheep were selected and divided into five treatments with soil ingestion (0%, 5%, 10%, 15%, and 20%). The conclusion demonstrated that soil ingestion improved the dry matter digestibility (59.3-62.97%), ether extract (59.79-67.87%) and crude protein (59.81-66.47%) digestibility, particularly 10% soil ingestion has highest nutrient digestibility. The rumen fermentation environment adjusted after soil ingestion by improvement of pH, ammonia nitrogen and volatile fatty acids. Appropriate soil ingestion reduced the bacterial diversity ranged from 946 to 1000 OUTs as compared control (1012), and the rumen bacterial community dominant by typical fiber digestion associated Firmicutes (47.48-53.56%), Bacteroidetes (34.93-40.02%) and Fibrobacteres (4.36-9.27%). Especially, the highest digestible feed capacity and stronger environment adaptability present in 10% soil ingestion Tibetan sheep. Overall, soil ingestion stimulates rumen metabolism by creating a favorable environment for microbial fermentation, improved bacterial community abundance associated with cellulose and saccharide degradation, contribute nutrient digestibility and growth performance of Tibetan sheep.
Collapse
Affiliation(s)
- Guosheng Xin
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, 750021, China; School of Life Science, Ningxia University, Yinchuan, 750021, China; School of Life Science, Lanzhou University, Yinchuan, 750021, China.
| | - Cuicui Ge
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, 750021, China; School of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Qiaoxian Gao
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, 750021, China; School of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Juan Zhang
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, 750021, China; Agricultural College, Ningxia University, Yinchuan, 750021, China
| | - Yumin Nie
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, 750021, China; School of Economics and Management, Ningxia University, Yinchuan, 750021, China
| | - Yi Yang
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, 750021, China; School of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Dongtao Zhang
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, 750021, China; School of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Hao Li
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, 750021, China; School of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Yali Ren
- Ningxia Hiby Analysis & Test Institute, Yinchuan, 750021, China
| |
Collapse
|
8
|
Endocrine-metabolic adaptations in Dorper ewes: comparison between single and twin pregnancies during gestation, parturition, and postpartum. Trop Anim Health Prod 2022; 54:307. [DOI: 10.1007/s11250-022-03306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
|
9
|
Ma B, Zhang C, Raza SHA, Yang B, Aloufi BH, Alshammari AM, AlGabbani Q, Khan R, Hou S, Gui L. Effects of Dietary Non-Fibrous Carbohydrate (NFC) to Neutral Detergent Fiber (NDF) Ratio Change on Rumen Bacterial Community and Ruminal Fermentation Parameters in Chinese Black Tibetan Sheep (Ovis aries). Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Zhou L, Raza SHA, Han L, Ma B, Althobaiti F, Kesba H, Shukry M, Ghamry HI, Gao Z, Hou S, Yang B, Wang Z, Gui LS. Effects of dietary concentrate: forage ratio on development of gastrointestinal tract in black Tibetan sheep. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2053131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Li Zhou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People’s Republic of China
| | - Sayed Haidar Abbas Raza
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, People’s Republic of China
| | - LiJuan Han
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People’s Republic of China
| | - BoYan Ma
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People’s Republic of China
| | - Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabi
| | - Hosny Kesba
- Zoology and Agricultural Nematology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Heba I. Ghamry
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - ZhanHong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People’s Republic of China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People’s Republic of China
| | - BaoChun Yang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People’s Republic of China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People’s Republic of China
| | - Lin-sheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People’s Republic of China
| |
Collapse
|
11
|
Zhang Z, Sui Z, Zhang J, Li Q, Zhang Y, Xing F. Transcriptome Sequencing-Based Mining of Genes Associated With Pubertal Initiation in Dolang Sheep. Front Genet 2022; 13:818810. [PMID: 35309120 PMCID: PMC8928774 DOI: 10.3389/fgene.2022.818810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/26/2022] [Indexed: 11/27/2022] Open
Abstract
Improving the fertility of sheep is an important goal in sheep breeding as it greatly increases the productivity. Dolang sheep is a typical representative breed of lamb in Xinjiang and is the main local sheep breed and meat source in the region. To explore the genes associated with the initiation of puberty in Dolang sheep, the hypothalamic tissues of Dolang sheep prepubertal, pubertal, and postpubertal periods were collected for RNA-seq analysis on the Illumina platform, generating 64.08 Gb clean reads. A total of 575, 166, and 648 differentially expressed genes (DEGs) were detected in prepuberty_vs._puberty, postpuberty_vs._prepuberty, and postpuberty_vs._puberty analyses, respectively. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, the related genes involved in the initiation of puberty in Dolang sheep were mined. Ten genes that have direct or indirect functions in the initiation of puberty in Dolang sheep were screened using the GO and KEGG results. Additionally, quantitative real-time PCR was used to verify the reliability of the RNA-Seq data. This study provided a new approach for revealing the mechanism of puberty initiation in sheep and provided a theoretical basis and candidate genes for the breeding of early-pubertal sheep by molecular techniques, and at the same time, it is also beneficial for the protection, development, and utilization of the fine genetic resources of Xinjiang local sheep.
Collapse
|