1
|
Liang J, Chen X, Majura JJ, Tan M, Chen Z, Gao J, Cao W. Insight into the structure-activity relationship of thermal hysteresis activity of cod collagen peptides through peptidomics and bioinformatics approaches. Food Chem 2025; 463:141514. [PMID: 39378722 DOI: 10.1016/j.foodchem.2024.141514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
To elucidate the correlation between variations in thermal hysteresis activity (THA) and the physicochemical properties and structure, antifreeze peptides (AFPs) of isolated fractions (CCP-1 and CCP-2) were characterized on based peptidomics and bioinformatics. The results revealed a positive correlation between the THA of cod collagen antifreeze peptide (CCAFP) and peptide chain length, isoelectric point, and hydrophobic amino acid content. Notably, the THA of CCP-1, which has higher alkaline amino acid content, was 2.60 °C at a concentration of 10 mg/mL, significantly higher than CCP (1.90 °C) and CCP-2 (2.27 °C). Glycine, proline, and valine were the vital amino acids to the formation of hydrogen bonds. Conversely, aspartic and glutamic acids at terminal regions of AFPs tended to introduce kinks in their structures. This distortion reduced binding sites for ice crystals, thereby decreasing their THA, providing a theory for understanding the physicochemical properties and structure of AFPs that influence their THA.
Collapse
Affiliation(s)
- Jiajian Liang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiujuan Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Julieth Joram Majura
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mingtang Tan
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Zhongqin Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Jialong Gao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China
| | - Wenhong Cao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China.
| |
Collapse
|
2
|
Xia B, Wang J, Chen H, Lin S, Pan B, Wang N. Recent Advances in Antifreeze Peptide Preparation: A Review. Molecules 2024; 29:4913. [PMID: 39459283 PMCID: PMC11510398 DOI: 10.3390/molecules29204913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Antifreeze agents play a critical role in various fields including tissue engineering, gene therapy, therapeutic protein production, and transplantation. Commonly used antifreeze agents such as DMSO and other organic substances are known to have cytotoxic effects. Antifreeze proteins sourced from cold-adapted organisms offer a promising solution by inhibiting ice crystal formation; however, their effectiveness is hindered by a dynamic ice-shaping (DIS) effect and thermal hysteresis (TH) properties. In response to these limitations, antifreeze peptides (AFPs) have been developed as alternatives to antifreeze proteins, providing similar antifreeze properties without the associated drawbacks. This review explores the methods for acquiring AFPs, with a particular emphasis on chemical synthesis. It aims to offer valuable insights and practical implications to drive the realm of sub-zero storage.
Collapse
Affiliation(s)
- Bo Xia
- Correspondence: (B.X.); (N.W.)
| | | | | | | | | | - Nan Wang
- Department of Bioenvironment, Jiyang College of Zhejiang A&F University, Zhuji 311800, China
| |
Collapse
|
3
|
Umumararungu T, Gahamanyi N, Mukiza J, Habarurema G, Katandula J, Rugamba A, Kagisha V. Proline, a unique amino acid whose polymer, polyproline II helix, and its analogues are involved in many biological processes: a review. Amino Acids 2024; 56:50. [PMID: 39182198 PMCID: PMC11345334 DOI: 10.1007/s00726-024-03410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Proline is a unique amino acid in that its side-chain is cyclised to the backbone, thus giving proline an exceptional rigidity and a considerably restricted conformational space. Polyproline forms two well-characterized helical structures: a left-handed polyproline helix (PPII) and a right-handed polyproline helix (PPI). Usually, sequences made only of prolyl residues are in PPII conformation, but even sequences not rich in proline but which are rich in glycine, lysine, glutamate, or aspartate have also a tendency to form PPII helices. Currently, the only way to study unambiguously PPII structure in solution is to use spectroscopies based on optical activity such as circular dichroism, vibrational circular dichroism and Raman optical activity. The importance of the PPII structure is emphasized by its ubiquitous presence in different organisms from yeast to human beings where proline-rich motifs and their binding domains are believed to be involved in vital biological processes. Some of the domains that are bound by proline-rich motifs include SH3 domains, WW domains, GYF domains and UEV domains, etc. The PPII structure has been demonstrated to be essential to biological activities such as signal transduction, transcription, cell motility, and immune response.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Industrial Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
| | - Noël Gahamanyi
- Department of Biology, School of Science, College of Science and Technology, University of Rwanda, Kigali, Rwanda
- Rwanda Biomedical Center, Microbiology Unit, National Reference Laboratory, Kigali, Rwanda
| | - Janvier Mukiza
- Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Jonathan Katandula
- Department of Pharmacology and Toxicology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Alexis Rugamba
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Vedaste Kagisha
- Department of Pharmaceuticals and Biomolecules Analysis, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
4
|
Tirado-Kulieva VA, Miranda-Zamora WR, Hernández-Martínez E, Pantoja-Tirado LR, Bazán-Tantaleán DL, Camacho-Orbegoso EW. Effect of antifreeze proteins on the freeze-thaw cycle of foods: fundamentals, mechanisms of action, current challenges and recommendations for future work. Heliyon 2022; 8:e10973. [PMID: 36262292 PMCID: PMC9573917 DOI: 10.1016/j.heliyon.2022.e10973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
Freezing is widely used in food preservation, but if not carried out properly, ice crystals can multiply (nucleation) or grow (recrystallization) rapidly. This also affects thawing, causing structural damage and affecting overall quality. The objective of this review is to comprehensively study the cryoprotective effect of antifreeze proteins (AFPs), highlighting their role in the freeze-thaw process of food. The properties of AFPs are based on their thermal hysteresis capacity (THC), on the modification of crystal morphology and on the inhibition of ice recrystallization. The mechanism of action of AFPs is based on the adsorption-inhibition theory, but the specific role of hydrogen and hydrophobic bonds/residues and structural characteristics is also detailed. Because of the properties of AFPs, they have been successfully used to preserve the quality of a wide variety of refrigerated and frozen foods. Among the limitations of the use of AFPs, the high cost of production stands out, but currently there are solutions such as the use the production of recombinant proteins, cloning and chemical synthesis. Although in vitro, in vivo and human studies have shown that AFPs are non-toxic, their safety remains a matter of debate. Further studies are recommended to expand knowledge about AFPs, to reduce costs in their large-scale production, to understand their interaction with other food compounds and their possible effects on the consumer.
Collapse
Affiliation(s)
| | | | | | - Lucia Ruth Pantoja-Tirado
- Carrera Profesional de Ingeniería en Industrias Alimentarias, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Peru
| | | | | |
Collapse
|