1
|
Li Z, He S, Liu J, Zhi X, Yang L, Zhang J, Zhao R, Zhang R, Li L, Wang W. High expression of SDC1 in stromal cells is associated with good prognosis in colorectal cancer. Anticancer Drugs 2023; 34:479-482. [PMID: 36730554 PMCID: PMC9997619 DOI: 10.1097/cad.0000000000001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/06/2022] [Indexed: 02/04/2023]
Abstract
We have previously reported that patients with high Syndecan 1 (SDC1) expression in colorectal cancer (CRC) cells have a favorable prognosis, and we also found that stromal cells showed upregulation of SDC1, but the clinical significance is unclear. The expression of SDC1 in the stroma cells was assessed by immunohistochemistry using a tissue microarray comprising representative cores from 513 CRC patients. The correlation between the expression of SDC1 in the stroma cells and the clinicopathological features of patients was analyzed. The data showed that the expression of SDC1 in the stroma cells was correlated with the degree of differentiation ( P = 0.012) and tumor location (up or down) ( P = 0.005). Also, CRCs patients with high expression of SDC1 in the stromal cells have a good prognosis ( P = 0.0369). Accumulating evidence indicates that SDC1, whether in tumor cells or stromal cells, plays a tumor-suppressor role in CRCs.
Collapse
Affiliation(s)
- Zhejie Li
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong
| | - Shujin He
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jianli Liu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong
| | - Xiao Zhi
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong
| | - Lili Yang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong
| | - Junjun Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong
| | - Ran Zhao
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong
| | - Renya Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong
| | - Lei Li
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong
| |
Collapse
|
2
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 221] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
3
|
Comparative evaluation and Immunohistochemical expression of Syndecan-1 in Ameloblastoma and Dentigerous cyst. Int J Health Sci (Qassim) 2022. [DOI: 10.53730/ijhs.v6ns1.6121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: Syndecans are type-1 heparan sulphate proteoglycans which play significant role in cell-cell and cell-extracellular matrix interaction. Syndecans are involved in tooth development and differentiation of mesenchymal cells. Amongst odontogenic lesions, ameloblastomas and dentigerous cysts are routinely encountered lesions with difference in treatment modality based on its aggressiveness. The objective of the present research was to study and compare immunohistochemical expression of syndecan-1 in ameloblastoma and dentigerous cyst. Method: 40 retrospectively diagnosed cases of ameloblastomas and dentigerous cysts were immunohistochemically stained against syndecan-1. The intensity of immunostaining and percentage of positive cells was assessed by three independent blind observers. Weighted kappa test was used to find out inter-observer reliability. Comparative evaluation of syndecan-1 expression between the two lesions was done using student t-test.
Results: There was statistically significant difference between the mean of score for intensity, mean of score for percentage of positive cells and total mean score of syndecan-1 between ameloblastoma and dentigerous cyst. Conclusion: Syndecan-1 may be involved in aetiopathogenesis of odontogenic lesions like ameloblastoma and dentigerous cyst. Also, weak expression in ameloblastoma indicates that tumor invasion and aggressiveness is related to cell adhesion molecule like syndecan-1.
Collapse
|
4
|
Structural Biology of the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1350:91-100. [PMID: 34888845 DOI: 10.1007/978-3-030-83282-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancers can be described as "rogue organs" (Balkwill FR, Capasso M, Hagemann T, J Cell Sci 125:5591-5596, 2012) because they are composed of multiple cell types and tissues. The transformed cells can recruit and alter healthy cells from surrounding tissues for their own benefit. It is these interactions that create the tumor microenvironment (TME). The TME describes the cells, factors, and extracellular matrix proteins that make up the tumor and the area around it; the biology of the TME influences tumor progression. Changes in the TME can lead to the growth and development of the tumor, the death of the tumor, or tumor metastasis. Metastasis is the process by which cancer spreads from its initial site to a different part of the body. Metastasis occurs when cancer cells enter the circulatory system or lymphatic system after they break away from a tumor. Once the cells leave, they can travel to a different part of the body and form new tumors. Therefore, understanding the TME is critical to fully understand cancer and find a way to successfully combat it. Knowledge of the TME can better inform researchers of the ability of potential therapies to reach tumor cells. It can also give researchers potential targets to kill the tumor. Instead of directly killing the cancer cells, therapies can target an aspect of the TME which could then halt tumor development or lead to tumor death. In other cases, targeting another aspect of the TME could make it easier for another therapy to kill the cancer cells, for example, using nanoparticles with collagenases to target the collagen in the surrounding environment to expose the cancer cells to drugs (Zinger A, et al, ACS Nano 13(10):11008-11021, 2019).The TME can be split simply into cells and the structural matrix. Within these groups are fibroblasts, structural proteins, immune cells, lymphocytes, bone marrow-derived inflammatory cells, blood vessels, and signaling molecules (Spill F, et al, Curr Opin Biotechnol 40:41-48, 2016; Del Prete A, et al, Curr Opin Pharmacol 35:40-47, 2017; Arneth B, Medicina (Kaunas) 56(1), 2019). From structure to providing nutrients for growth, each of these components plays a critical role in tumor maintenance. Together these components impact cancer growth, development, and resistance to therapies (Hanahan D, Coussens LM, Cancer Cell 21:309-322, 2012). In this chapter, we will describe the TME and express the importance of the cellular and structural elements of the TME.
Collapse
|
5
|
Circulating syndecan-1 is reduced in pregnancies with poor fetal growth and its secretion regulated by matrix metalloproteinases and the mitochondria. Sci Rep 2021; 11:16595. [PMID: 34400721 PMCID: PMC8367987 DOI: 10.1038/s41598-021-96077-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/30/2021] [Indexed: 11/08/2022] Open
Abstract
Fetal growth restriction is a leading cause of stillbirth that often remains undetected during pregnancy. Identifying novel biomarkers may improve detection of pregnancies at risk. This study aimed to assess syndecan-1 as a biomarker for small for gestational age (SGA) or fetal growth restricted (FGR) pregnancies and determine its molecular regulation. Circulating maternal syndecan-1 was measured in several cohorts; a large prospective cohort collected around 36 weeks’ gestation (n = 1206), a case control study from the Manchester Antenatal Vascular service (285 women sampled at 24–34 weeks’ gestation); two prospective cohorts collected on the day of delivery (36 + 3–41 + 3 weeks’ gestation, n = 562 and n = 405 respectively) and a cohort who delivered for preterm FGR (< 34 weeks). Circulating syndecan-1 was consistently reduced in women destined to deliver growth restricted infants and those delivering for preterm disease. Syndecan-1 secretion was reduced by hypoxia, and its loss impaired proliferation. Matrix metalloproteinases and mitochondrial electron transport chain inhibitors significantly reduced syndecan-1 secretion, an effect that was rescued by coadministration of succinate, a mitochondrial electron transport chain activator. In conclusion, circulating syndecan-1 is reduced among cases of term and preterm growth restriction and has potential for inclusion in multi-marker algorithms to improve detection of poorly grown fetuses.
Collapse
|
6
|
Tomiyama E, Matsuzaki K, Fujita K, Shiromizu T, Narumi R, Jingushi K, Koh Y, Matsushita M, Nakano K, Hayashi Y, Wang C, Ishizuya Y, Kato T, Hatano K, Kawashima A, Ujike T, Uemura M, Takao T, Adachi J, Tomonaga T, Nonomura N. Proteomic analysis of urinary and tissue-exudative extracellular vesicles to discover novel bladder cancer biomarkers. Cancer Sci 2021; 112:2033-2045. [PMID: 33721374 PMCID: PMC8088963 DOI: 10.1111/cas.14881] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Proteomic analysis of urinary extracellular vesicles (EVs) is a powerful approach to discover potential bladder cancer (BCa) biomarkers, however urine contains numerous EVs derived from the kidney and normal urothelial epithelium, which can obfuscate information related to BCa cell-derived EVs. In this study, we combined proteomic analysis of urinary EVs and tissue-exudative EVs (Te-EVs), which were isolated from culture medium of freshly resected viable BCa tissues. Urinary EVs were isolated from urine samples of 11 individuals (7 BCa patients and 4 healthy individuals), and Te-EVs were isolated from 7 BCa tissues. We performed tandem mass tag (TMT)-labeling liquid chromatography (LC-MS/MS) analysis for both urinary EVs and Te-EVs and identified 1960 proteins in urinary EVs and 1538 proteins in Te-EVs. Most of the proteins identified in Te-EVs were also present in urinary EVs (82.4%), with 55 of these proteins showing upregulated levels in the urine of BCa patients (fold change > 2.0; P < .1). Among them, we selected 22 membrane proteins as BCa biomarker candidates for validation using selected reaction monitoring/multiple reaction monitoring (SRM/MRM) analysis on urine samples from 70 individuals (40 BCa patients and 30 healthy individuals). Six urinary EV proteins (heat-shock protein 90, syndecan-1, myristoylated alanine-rich C-kinase substrate (MARCKS), MARCKS-related protein, tight junction protein ZO-2, and complement decay-accelerating factor) were quantified using SRM/MRM analysis and validated as significantly upregulated in BCa patients (P < .05). In conclusion, the novel strategy that combined proteomic analysis of urinary EVs and Te-EVs enabled selective detection of urinary BCa biomarkers.
Collapse
Affiliation(s)
- Eisuke Tomiyama
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kyosuke Matsuzaki
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kazutoshi Fujita
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of UrologyKindai University Faculty of MedicineSayamaJapan
| | - Takashi Shiromizu
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Ryohei Narumi
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular PhysiologyOsaka University Graduate School of Pharmaceutical SciencesSuitaJapan
| | - Yoko Koh
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Makoto Matsushita
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Kosuke Nakano
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yujiro Hayashi
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Cong Wang
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Yu Ishizuya
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Taigo Kato
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of Urological Immuno‐oncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Koji Hatano
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Atsunari Kawashima
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Takeshi Ujike
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| | - Motohide Uemura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
- Department of Urological Immuno‐oncologyOsaka University Graduate School of MedicineSuitaJapan
| | - Tetsuya Takao
- Department of UrologyOsaka General Medical CenterOsakaJapan
| | - Jun Adachi
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Takeshi Tomonaga
- Laboratory of Proteome ResearchNational Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Norio Nonomura
- Department of UrologyOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
7
|
Syndecan-1 (CD138), Carcinomas and EMT. Int J Mol Sci 2021; 22:ijms22084227. [PMID: 33921767 PMCID: PMC8072910 DOI: 10.3390/ijms22084227] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Cell surface proteoglycans are known to be important regulators of many aspects of cell behavior. The principal family of transmembrane proteoglycans is the syndecans, of which there are four in mammals. Syndecan-1 is mostly restricted to epithelia, and bears heparan sulfate chains that are capable of interacting with a large array of polypeptides, including extracellular matrix components and potent mediators of proliferation, adhesion and migration. For this reason, it has been studied extensively with respect to carcinomas and tumor progression. Frequently, but not always, syndecan-1 levels decrease as tumor grade, stage and invasiveness and dedifferentiation increase. This parallels experiments that show depletion of syndecan-1 can be accompanied by loss of cadherin-mediated adhesion. However, in some tumors, levels of syndecan-1 increase, but the characterization of its distribution is relevant. There can be loss of membrane staining, but acquisition of cytoplasmic and/or nuclear staining that is abnormal. Moreover, the appearance of syndecan-1 in the tumor stroma, either associated with its cellular component or the collagenous matrix, is nearly always a sign of poor prognosis. Given its relevance to myeloma progression, syndecan-1-directed antibody—toxin conjugates are being tested in clinical and preclinical trials, and may have future relevance to some carcinomas.
Collapse
|
8
|
Increased Cytoplasmic CD138 Expression Is Associated with Aggressive Characteristics in Prostate Cancer and Is an Independent Predictor for Biochemical Recurrence. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5845374. [PMID: 33195694 PMCID: PMC7641694 DOI: 10.1155/2020/5845374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 01/11/2023]
Abstract
Syndecan-1 (CD138) is a transmembrane proteoglycan expressed in various normal and malignant tissues. It is of interest due to a possible prognostic effect in tumors and its role as a target for the antibody-drug conjugate indatuximab ravtansine. Here, we analyzed 17,747 prostate cancers by immunohistochemistry. Membranous and cytoplasmic CD138 staining was separately recorded. In normal prostate glands, CD138 staining was limited to basal cells. In cancers, membranous CD138 positivity was seen in 19.6% and cytoplasmic CD138 staining in 11.2% of 12,851 interpretable cases. A comparison with clinico-pathological features showed that cytoplasmic CD138 staining was more linked to unfavorable tumor features than membranous staining. Cytoplasmic CD138 immunostaining was associated with high tumor stage (p < 0.0001), high Gleason grade (p < 0.0001), nodal metastases (p < 0.0001), positive surgical margin (p < 0.0001), and biochemical recurrence (p < 0.0001). This also holds true for both V-ets avian erythroblastosis virus E26 oncogene homolog (ERG) fusion positive and ERG fusion negative tumors although the cytoplasmic CD138 expression was markedly more frequent in ERG positive than in ERG negative tumors (p < 0.0001). Comparison with 11 previously analyzed chromosomal deletions identified a conspicuous association between cytoplasmic CD138 expression and 8p deletions (p < 0.0001) suggesting a possible functional interaction of CD138 with one or several 8p genes. Multivariate analysis revealed the cytoplasmic CD138 expression as an independent prognostic parameter in all cancers and in the ERG positive subgroup. In summary, our study indicates the cytoplasmic CD138 expression as a strong and independent predictor of poor prognosis in prostate cancer. Immunohistochemical measurement of CD138 protein may thus—perhaps in combination with other parameters—become clinically useful in the future.
Collapse
|
9
|
Proteoglycans in the Pathogenesis of Hormone-Dependent Cancers: Mediators and Effectors. Cancers (Basel) 2020; 12:cancers12092401. [PMID: 32847060 PMCID: PMC7563227 DOI: 10.3390/cancers12092401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Hormone-dependent cancers exhibit high morbidity and mortality. In spite of advances in therapy, the treatment of hormone-dependent cancers remains an unmet health need. The tumor microenvironment (TME) exhibits unique characteristics that differ among various tumor types. It is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded and supported by components of the extracellular matrix (ECM). Therefore, the interactions among cancer cells, stromal cells, and components of the ECM determine cancer progression and response to therapy. Proteoglycans (PGs), hybrid molecules consisting of a protein core to which sulfated glycosaminoglycan chains are bound, are significant components of the ECM that are implicated in all phases of tumorigenesis. These molecules, secreted by both the stroma and cancer cells, are crucial signaling mediators that modulate the vital cellular pathways implicated in gene expression, phenotypic versatility, and response to therapy in specific tumor types. A plethora of deregulated signaling pathways contributes to the growth, dissemination, and angiogenesis of hormone-dependent cancers. Specific inputs from the endocrine and immune systems are some of the characteristics of hormone-dependent cancer pathogenesis. Importantly, the mechanisms involved in various aspects of cancer progression are executed in the ECM niche of the TME, and the PG components crucially mediate these processes. Here, we comprehensively discuss the mechanisms through which PGs affect the multifaceted aspects of hormone-dependent cancer development and progression, including cancer metastasis, angiogenesis, immunobiology, autophagy, and response to therapy.
Collapse
|
10
|
Zhang K, Li R, Xu G, Han H, Qin L. Effect of GM6001 on the expression of syndecan-1 in rats with acute kidney injury and its protective effect on the kidneys. Exp Ther Med 2020; 20:2049-2054. [PMID: 32782516 PMCID: PMC7401296 DOI: 10.3892/etm.2020.8892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 11/15/2022] Open
Abstract
Expression of syndecan-1 (SDC-1) in rats with acute kidney injury and the protective effect of GM6001 on the kidney were investigated. Fifty SD rats were selected and randomly divided into control group (CG) (n=15), treatment control group (TCG) (n=10), module group (MG) (n=15) and treatment group (TG) (n=10). In TG, the model of acute renal injury (AKI) in rats was established after pretreatment of intraperitoneal injection of GM6001 one day before modeling. In MG, the same amount of saline was injected intraperitoneally one day before modeling and the same treatment was done on the day of modeling. In CG, the same amount of saline was injected intraperitoneally one day before modeling but the model was not made. In TCG, rats were pretreated with intraperitoneal injection of GM6001 one day before modeling but the model was not made. The contents of blood urea nitrogen (BUN) in serum, serum creatinine (SCR), uric acid (UA) and blood β2-microglobulin (β2-MG) were detected by ELISA. The content of SDC-1 in renal tissues was detected by qRT-PCR and western blotting. Expression of SDC-1 in renal tissue of 24 rats after modeling was lower than that of MG (P<0.050). SDC-1 expression was the highest in TG (P<0.05). Compared with before modeling, the contents of BUN, SCR, UA and β2-MG in MG and TG increased (P<0.05). After modeling, the contents of serum BUN, SCR, UA and β2-MG in TG were significantly lower than those in MG (P<0.05). The levels of SDC-1 in renal tissue of rats with acute kidney injury increased. After GM6001 treatment, SDC-1 levels can be improved and has a certain protective effect on the kidneys.
Collapse
Affiliation(s)
- Kunying Zhang
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Rongxin Li
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Guodong Xu
- Department of Pathology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Huirong Han
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Lili Qin
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
11
|
Kumar Katakam S, Tria V, Sim WC, Yip GW, Molgora S, Karnavas T, Elghonaimy EA, Pelucchi P, Piscitelli E, Ibrahim SA, Zucchi I, Reinbold R, Greve B, Götte M. The heparan sulfate proteoglycan syndecan-1 regulates colon cancer stem cell function via a focal adhesion kinase-Wnt signaling axis. FEBS J 2020; 288:486-506. [PMID: 32367652 DOI: 10.1111/febs.15356] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022]
Abstract
In colon cancer, downregulation of the transmembrane heparan sulfate proteoglycan syndecan-1 (Sdc-1) is associated with increased invasiveness, metastasis, and dedifferentiation. As Sdc-1 modulates signaling pathways relevant to stem cell function, we tested the hypothesis that it may regulate a tumor-initiating cell phenotype. Sdc-1 small-interfering RNA knockdown in the human colon cancer cell lines Caco2 and HT-29 resulted in an increased side population (SP), enhanced aldehyde dehydrogenase 1 activity, and higher expression of CD133, LGR5, EPCAM, NANOG, SRY (sex-determining region Y)-box 2, KLF2, and TCF4/TCF7L2. Sdc-1 knockdown enhanced sphere formation, cell viability, Matrigel invasiveness, and epithelial-to-mesenchymal transition-related gene expression. Sdc-1-depleted HT-29 xenograft growth was increased compared to controls. Decreased Sdc-1 expression was associated with an increased activation of β1-integrins, focal adhesion kinase (FAK), and wingless-type (Wnt) signaling. Pharmacological FAK and Wnt inhibition blocked the enhanced stem cell phenotype and invasive growth. Sequential flow cytometric SP enrichment substantially enhanced the stem cell phenotype of Sdc-1-depleted cells, which showed increased resistance to doxorubicin chemotherapy and irradiation. In conclusion, Sdc-1 depletion cooperatively enhances activation of integrins and FAK, which then generates signals for increased invasiveness and cancer stem cell properties. Our findings may provide a novel concept to target a stemness-associated signaling axis as a therapeutic strategy to reduce metastatic spread and cancer recurrence. DATABASES: The GEO accession number of the Affymetrix transcriptomic screening is GSE58751.
Collapse
Affiliation(s)
| | - Valeria Tria
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | - Wey-Cheng Sim
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - George W Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stefano Molgora
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | - Theodoros Karnavas
- Chromatin Dynamics Unit, Vita Salute San Raffaele University and Research Institute, Milan, Italy.,Department of Neurosurgery, NYU Langone Medical Center, New York, NY, USA
| | - Eslam A Elghonaimy
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Paride Pelucchi
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | - Eleonora Piscitelli
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | | | - Ileana Zucchi
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | - Rolland Reinbold
- Istituto di Technologie Biomediche Consiglio Nazionale dell Ricerche, ITB-CNR, Segrate-Milano, Italy
| | - Burkhard Greve
- Department of Radiotherapy - Radiooncology, University Hospital Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| |
Collapse
|
12
|
Katakam SK, Pelucchi P, Cocola C, Reinbold R, Vlodavsky I, Greve B, Götte M. Syndecan-1-Dependent Regulation of Heparanase Affects Invasiveness, Stem Cell Properties, and Therapeutic Resistance of Caco2 Colon Cancer Cells. Front Oncol 2020; 10:774. [PMID: 32477959 PMCID: PMC7240066 DOI: 10.3389/fonc.2020.00774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
The heparan sulfate proteoglycan Syndecan-1 binds cytokines, morphogens and extracellular matrix components, regulating cancer stem cell properties and invasiveness. Syndecan-1 is modulated by the heparan sulfate-degrading enzyme heparanase, but the underlying regulatory mechanisms are only poorly understood. In colon cancer pathogenesis, complex changes occur in the expression pattern of Syndecan-1 and heparanase during progression from well-differentiated to undifferentiated tumors. Loss of Syndecan-1 and increased expression of heparanase are associated with a change in phenotypic plasticity and an increase in invasiveness, metastasis and dedifferentiation. Here we investigated the regulatory and functional interplay of Syndecan-1 and heparanase employing siRNA-mediated silencing and plasmid-based overexpression approaches in the human colon cancer cell line Caco2. Heparanase expression and activity were upregulated in Syndecan-1 depleted cells. This increase was linked to an upregulation of the transcription factor Egr1, which regulates heparanase at the promoter level. Inhibitor experiments demonstrated an impact of focal adhesion kinase, Wnt and ROCK-dependent signaling on this process. siRNA-depletion of Syndecan-1, and upregulation of heparanase increased the colon cancer stem cell phenotype based on sphere formation assays and phenotypic marker analysis (Side-population, NANOG, KLF4, NOTCH, Wnt, and TCF4 expression). Syndecan-1 depletion increased invasiveness of Caco2 cells in vitro in a heparanase-dependent manner. Finally, upregulated expression of heparanase resulted in increased resistance to radiotherapy, whereas high expression of enzymatically inactive heparanase promoted chemoresistance to paclitaxel and cisplatin. Our findings provide a new avenue to target a stemness-associated signaling axis as a therapeutic strategy to reduce metastatic spread and cancer recurrence.
Collapse
Affiliation(s)
- Sampath Kumar Katakam
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Paride Pelucchi
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Cinzia Cocola
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Rolland Reinbold
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Israel Vlodavsky
- The Rappaport Faculty of Medicine, Technion Integrated Cancer Center (TICC), Haifa, Israel
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
13
|
Karászi K, Vigh R, Máthé M, Fullár A, Oláh L, Füle T, Papp Z, Kovalszky I. Aberrant Expression of Syndecan-1 in Cervical Cancers. Pathol Oncol Res 2020; 26:2255-2264. [PMID: 32388727 PMCID: PMC7471205 DOI: 10.1007/s12253-020-00816-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 02/02/2023]
Abstract
Syndecan-1, is a transmembrane heparan/chondroitin sulfate proteoglycan necessary for cell-cell and cell-matrix interactions. Its decreased level on the cell surface correlates with poor prognosis in several tumor types. Aberrant stromal localization of syndecan-1 is also considered an unfavorable prognostic factor in various human malignancies. In the presented work the question was addressed if changes in syndecan-1 expression are related to the prognosis of cervical cancer. Immunohistochemistry for syndecan-1 extracellular domain was performed on surgical specimens of primary cervical cancer. To follow the communication between tumor cells and stromal fibroblasts, their mono-and co-cultures were studied, detecting the expression of syndecan-1, smooth muscle actin, vimentin, and desmin. Immunohistochemistry of tumorous specimens revealed that while cell surface syndecan-1 expression was reduced on cancer cells, it appeared on the surface of tumor-associated fibroblasts. Until year 7, the cohort with high cell surface syndecan-1 expression had significantly longer survival. No difference in the same time-period could be detected when stromal syndecan-1 expression was analyzed. In vitro analysis revealed, that tumor cells can induce syndecan-1 expression on fibroblast, and fibroblasts showed that fibroblast-like cells are built by two cell types: (a) syndecan-1 positive, cytokeratin negative real fibroblasts, and (b) syndecan-1 and cytokeratin positive epithelial-mesenchymal transformed tumor cells. Syndecan-1 on the surface of cancer cells appears to be a positive prognostic marker. Although syndecan-1 positive fibroblasts promote tumor cell proliferation in vitro, we failed to detect their cancer promoting effect in vivo.
Collapse
Affiliation(s)
- Katalin Karászi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Renáta Vigh
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Miklós Máthé
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Alexandra Fullár
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Lászlóné Oláh
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Tibor Füle
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Zoltán Papp
- 1st Department of Obstetrics and Gynecology, Semmelweis University, H-1082, Budapest, Hungary.,Maternity Obstetrics and Gynecology Private Clinic, H-1126, Budapest, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary.
| |
Collapse
|
14
|
Elgundi Z, Papanicolaou M, Major G, Cox TR, Melrose J, Whitelock JM, Farrugia BL. Cancer Metastasis: The Role of the Extracellular Matrix and the Heparan Sulfate Proteoglycan Perlecan. Front Oncol 2020; 9:1482. [PMID: 32010611 PMCID: PMC6978720 DOI: 10.3389/fonc.2019.01482] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer metastasis is the dissemination of tumor cells to new sites, resulting in the formation of secondary tumors. This process is complex and is spatially and temporally regulated by intrinsic and extrinsic factors. One important extrinsic factor is the extracellular matrix, the non-cellular component of tissues. Heparan sulfate proteoglycans (HSPGs) are constituents of the extracellular matrix, and through their heparan sulfate chains and protein core, modulate multiple events that occur during the metastatic cascade. This review will provide an overview of the role of the extracellular matrix in the events that occur during cancer metastasis, primarily focusing on perlecan. Perlecan, a basement membrane HSPG is a key component of the vascular extracellular matrix and is commonly associated with events that occur during the metastatic cascade. Its contradictory role in these events will be discussed and we will highlight the recent advances in cancer therapies that target HSPGs and their modifying enzymes.
Collapse
Affiliation(s)
- Zehra Elgundi
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Michael Papanicolaou
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Gretel Major
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Brooke L Farrugia
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Handra-Luca A. Syndecan-1 in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:39-53. [PMID: 32845501 DOI: 10.1007/978-3-030-48457-6_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Syndecan-1 along with the other three syndecan proteins is present in the varied components of the tumor microenvironment: fibroblasts, inflammatory tumor immunity-associated cells, vessels, and extracellular matrix. Epithelial and non-epithelial tumors may show stromal syndecans. The main relevance of stromal syndecans as tumor biomarker resides in the relationships to tumor features such as type and differentiation as well as to prognosis.
Collapse
Affiliation(s)
- Adriana Handra-Luca
- Service d'Anatomie pathologique; APHP GHU Avicenne, University Sorbonne Paris Nord, Bobigny, France.
| |
Collapse
|
16
|
Götte M, Kovalszky I. Extracellular matrix functions in lung cancer. Matrix Biol 2018; 73:105-121. [DOI: 10.1016/j.matbio.2018.02.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
|
17
|
Comparison of Syndecan-1 Immunohistochemical Expression in Lobular and Ductal Breast Carcinoma with Nodal Metastases. Anal Cell Pathol (Amst) 2018; 2018:9432375. [PMID: 30151336 PMCID: PMC6087611 DOI: 10.1155/2018/9432375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/03/2018] [Indexed: 01/30/2023] Open
Abstract
Syndecan-1 (Sdc1) is a transmembrane heparan sulfate proteoglycan, an extracellular matrix receptor involved in intercellular communication, proliferation, angiogenesis, and metastasis. This study determined and compared Sdc1 expression in the tumor cells and stroma of 30 invasive lobular and 30 invasive ductal breast carcinomas (ILCs/IDCs), also in the axillary node metastases of ductal type, and correlated it with clinical and tumor parameters. Sdc1 was expressed in the epithelium of 90% carcinoma of both histological types. Also, it was most frequently expressed in their tumor stroma, but in ILC, stromal expression was negative in 40%. Sdc1 was expressed in 86.7% of the metastatic epithelium of IDC nodal metastases (in even 50% as high expression), while the nodal stroma was negative in 46.7%. Primary IDC showed a negative correlation between epithelial Sdc1 and progesterone receptors (PRs), whereas ILC showed a positive correlation between stromal Sdc1 and histological gradus. In the metastatic epithelium, Sdc1 was negatively correlated with a patient's age, estrogen receptors (ERs), and PRs in the primary tumors, while the stroma of metastases demonstrated a positive correlation with the focus number in primary tumors and a negative correlation with PRs in primary tumors. This research revealed identical overall epithelial Sdc1 expression in both breast carcinomas with no statistically significant difference in its stromal expression and confirmed the role of Sdc1 in the progression of both tumor types and in the development of ductal carcinoma's metastatic potential.
Collapse
|
18
|
Azevedo R, Peixoto A, Gaiteiro C, Fernandes E, Neves M, Lima L, Santos LL, Ferreira JA. Over forty years of bladder cancer glycobiology: Where do glycans stand facing precision oncology? Oncotarget 2017; 8:91734-91764. [PMID: 29207682 PMCID: PMC5710962 DOI: 10.18632/oncotarget.19433] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
The high molecular heterogeneity of bladder tumours is responsible for significant variations in disease course, as well as elevated recurrence and progression rates, thereby hampering the introduction of more effective targeted therapeutics. The implementation of precision oncology settings supported by robust molecular models for individualization of patient management is warranted. This effort requires a comprehensive integration of large sets of panomics data that is yet to be fully achieved. Contributing to this goal, over 40 years of bladder cancer glycobiology have disclosed a plethora of cancer-specific glycans and glycoconjugates (glycoproteins, glycolipids, proteoglycans) accompanying disease progressions and dissemination. This review comprehensively addresses the main structural findings in the field and consequent biological and clinical implications. Given the cell surface and secreted nature of these molecules, we further discuss their potential for non-invasive detection and therapeutic development. Moreover, we highlight novel mass-spectrometry-based high-throughput analytical and bioinformatics tools to interrogate the glycome in the postgenomic era. Ultimately, we outline a roadmap to guide future developments in glycomics envisaging clinical implementation.
Collapse
Affiliation(s)
- Rita Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- New Therapies Group, INEB-Institute for Biomedical Engineering, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Biomaterials for Multistage Drug and Cell Delivery, INEB-Institute for Biomedical Engineering, Porto, Portugal
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Malek-Hosseini Z, Jelodar S, Talei A, Ghaderi A, Doroudchi M. Elevated Syndecan-1 levels in the sera of patients with breast cancer correlate with tumor size. Breast Cancer 2017; 24:742-747. [PMID: 28382590 DOI: 10.1007/s12282-017-0773-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 03/31/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND Breast cancer is the leading type of cancer in Iranian women and affects them at least one decade younger than their counterparts in developed countries. Breast tumor progression and metastasis is accompanied by a decrease in the membranous expression of Syndecan-1 and an increase in its shedding. We measured the level of soluble Syndecan-1 in the sera of Iranian patients with breast cancer. METHODS The study population included 61 chemotherapy-naïve breast cancer patients and 30 age/sex-matched healthy individuals. Blood was collected by venipuncture method and serum was separated, aliquoted and kept at -40 °C until used. A commercial ELISA was used to detect Syndecan-1 levels in the sera. RESULTS Soluble Syndecan-1 levels were increased in the sera of patients with breast cancer compared to healthy controls (87.89 ± 89.29 vs. 47.57 ± 46.46 ng/ml, p = 0.005). There was a positive correlation between soluble Syndecan-1 levels and tumor size (p = 0.017). The serum level of Syndecan-1 in patients without calcification showed a trend of increase compared to that of patients with calcification (108.80 ± 101.76 vs. 59.82 ± 57.13 ng/ml). CONCLUSION The positive correlation between soluble Syndecan-1 levels and tumor size in the present study highlights the importance of different varieties (cell-bound and soluble) of this molecule in the breast tumor progression and their significance as tumor biomarkers.
Collapse
Affiliation(s)
- Zahra Malek-Hosseini
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 71345-3119, Shiraz, 71348-45794, Iran
| | - Sina Jelodar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 71345-3119, Shiraz, 71348-45794, Iran
| | - Abdolrasoul Talei
- Breast Disease Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 71345-3119, Shiraz, 71348-45794, Iran.,Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, P.O. Box: 71345-3119, Shiraz, 71348-45794, Iran. .,Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
20
|
Urbinati C, Grillo E, Chiodelli P, Tobia C, Caccuri F, Fiorentini S, David G, Rusnati M. Syndecan-1 increases B-lymphoid cell extravasation in response to HIV-1 Tat via α vβ 3/pp60src/pp125FAK pathway. Oncogene 2016; 36:2609-2618. [PMID: 27819680 DOI: 10.1038/onc.2016.420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/21/2016] [Accepted: 09/30/2016] [Indexed: 01/11/2023]
Abstract
Syndecan-1 is a heparan sulfate proteoglycan (HSPG) commonly upregulated in AIDS-related B lymphoid malignancies. Tat is the main HIV-1 transactivating factor that has a major role in the pathogenesis of AIDS-related lymphomas (ARL) by engaging heparan sulfate proteoglycans (HSPGs), chemokine receptors and integrins at the lymphoid cell (LC) surface. Here B-lymphoid Namalwa cell clones that do not express or overexpress syndecan-1 (EV-Ncs and SYN-Ncs, respectively) were compared for their responsiveness with Tat: in the absence of syndecan-1, Tat induces a limited EV-Nc migration via C-X-C motif chemokine receptor 4 (CXCR4), G-proteins and Rac. Syndecan-1 overexpression increases SYN-Nc responsiveness to Tat and makes this response independent from CXCR4 and G-protein and dependent instead on pp60src phosphorylation. Tat-induced SYN-Nc migration and pp60src phosphorylation require the engagement of αvβ3 integrin and consequent pp125FAK phosphorylation. This complex set of Tat-driven activations is orchestrated by the direct interaction of syndecan-1 with pp60src and its simultaneous coupling with αvβ3. The Tat/syndecan-1/αvβ3 interplay is retained in vivo and is shared also by other syndecan-1+ B-LCs, including BJAB cells, whose responsiveness to Tat is inhibited by syndecan-1 knockdown. In conclusion, overexpression of syndecan-1 confers to B-LCs an increased capacity to migrate in response to Tat, owing to a switch from a CXCR4/G-protein/Rac to a syndecan-1/αvβ3/pp60src/pp125FAK signal transduction pathway that depends on the formation of a complex in which syndecan-1 interacts with Tat via its HS-chains, with αvβ3 via its core protein ectodomain and with pp60src via its intracellular tail. These findings have implications in ARL progression and may help in identifying new therapeutical targets for the treatment of AIDS-associated neoplasia.
Collapse
Affiliation(s)
- C Urbinati
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - E Grillo
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - P Chiodelli
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - C Tobia
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - F Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - S Fiorentini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - G David
- Department of Human Genetics, University of Leuven and Flanders Institute for Biotechnology, Leuven, Belgium
| | - M Rusnati
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
21
|
Čunderlíková B. Clinical significance of immunohistochemically detected extracellular matrix proteins and their spatial distribution in primary cancer. Crit Rev Oncol Hematol 2016; 105:127-44. [DOI: 10.1016/j.critrevonc.2016.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 04/03/2016] [Accepted: 04/27/2016] [Indexed: 02/07/2023] Open
|
22
|
Berntsson J, Nodin B, Eberhard J, Micke P, Jirström K. Prognostic impact of tumour-infiltrating B cells and plasma cells in colorectal cancer. Int J Cancer 2016; 139:1129-39. [DOI: 10.1002/ijc.30138] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/23/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Jonna Berntsson
- Division of Oncology and Pathology; Department of Clinical Sciences; Lund University; SE-221 85 Lund Sweden
| | - Björn Nodin
- Division of Oncology and Pathology; Department of Clinical Sciences; Lund University; SE-221 85 Lund Sweden
| | - Jakob Eberhard
- Division of Oncology and Pathology; Department of Clinical Sciences; Lund University; SE-221 85 Lund Sweden
| | - Patrick Micke
- Department of Immunology; Genetics and Pathology, Uppsala University; SE-751 85 Uppsala Sweden
| | - Karin Jirström
- Division of Oncology and Pathology; Department of Clinical Sciences; Lund University; SE-221 85 Lund Sweden
| |
Collapse
|
23
|
Abstract
BACKGROUND The histopathological structure of malignant tumours involves two essential compartments - the tumour parenchyma with the actual transformed cells, and the supportive tumour stroma. The latter consists of specialized mesenchymal cells, such as fibroblasts, macrophages, lymphocytes and vascular cells, as well as of their secreted products, including components of the extracellular matrix, matrix modifying enzymes and numerous regulatory growth factors and cytokines. In consequence, the tumour stroma has the ability to influence virtually all aspects of tumour development and progression, including therapeutic response. AIM In this article we review the current knowledge of tumor stroma interactions in urothelial carcinoma and present various experimental systems that are currently in use to unravel the biological basis of these heterotypic cell interactions. RESULTS For urothelial carcinoma, an extensive tumour stroma is quite typical and markers of activated fibroblasts correlate significantly with clinical parameters of advanced disease. Another clinically important variable is provided by the stromal expression of syndecan-1. CONCLUSION Integration of markers of activated stroma into clinical risk evaluation could aid to better stratification of urothelial bladder carcinoma patients. Elucidation of biological mechanisms underlying tumour-stroma interactions could provide new therapeutical targets.
Collapse
|
24
|
Fujii T, Shimada K, Tatsumi Y, Hatakeyama K, Obayashi C, Fujimoto K, Konishi N. microRNA-145 promotes differentiation in human urothelial carcinoma through down-regulation of syndecan-1. BMC Cancer 2015; 15:818. [PMID: 26514209 PMCID: PMC4625524 DOI: 10.1186/s12885-015-1846-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/23/2015] [Indexed: 01/01/2023] Open
Abstract
Background A new molecular marker of carcinoma in the urinary bladder is needed as a diagnostic tool or as a therapeutic target. Potential markers include microRNAs (miRNAs), which are short, low molecular weight RNAs 19–24 nt long that regulate genes associated with cell proliferation, differentiation, and development in various cancers. In this study, we investigated the molecular mechanisms by which miR-145 promotes survival of urothelial carcinoma cells and differentiation into multiple lineages. We found miR-145 to regulate expression of syndecan-1, a heparin sulfate proteoglycan. Methods Cell proliferation in the human urothelial carcinoma cell lines T24 and KU7 was assessed by MTS assay. Cellular senescence and apoptosis were measured by senescence-associated β-galactosidase (SA-β-gal) and TUNEL assay, respectively. Quantitative RT-PCR was used to measure mRNA expression of various genes, including syndecan-1, stem cell factors, and markers of differentiation into squamous, glandular, or neuroendocrine cells. Results Overexpression of miR-145 induced cell senescence, and thus significantly inhibited cell proliferation in T24 and KU7 cells. Syndecan-1 expression diminished, whereas stem cell markers such as SOX2, NANOG, OCT4, and E2F3 increased. miR-145 also up-regulated markers of differentiation into squamous (p63, TP63, and CK5), glandular (MUC-1, MUC-2, and MUC-5 AC), and neuroendocrine cells (NSE and UCHL-1). Finally, expression of miR-145 was down-regulated in high-grade urothelial carcinomas, but not in low-grade tumors. Conclusions Results indicate that miR-145 suppresses syndecan-1 and, by this mechanism, up-regulates stem cell factors and induces cell senescence and differentiation. We propose that miR-145 may confer stem cell-like properties on urothelial carcinoma cells and thus facilitate differentiation into multiple cell types. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1846-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomomi Fujii
- Department of Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| | - Keiji Shimada
- Department of Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| | - Yoshihiro Tatsumi
- Department of Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan. .,Department of Urology, Nara Medical University School of Medicine, Nara, Japan.
| | - Kinta Hatakeyama
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan.
| | - Chiho Obayashi
- Department of Diagnostic Pathology, Nara Medical University School of Medicine, Nara, Japan.
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University School of Medicine, Nara, Japan.
| | - Noboru Konishi
- Department of Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan.
| |
Collapse
|
25
|
Syndecan-1 in Cancer: Implications for Cell Signaling, Differentiation, and Prognostication. DISEASE MARKERS 2015; 2015:796052. [PMID: 26420915 PMCID: PMC4569789 DOI: 10.1155/2015/796052] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/16/2015] [Indexed: 11/17/2022]
Abstract
Syndecan-1, a cell surface heparan sulfate proteoglycan, is critically involved in the differentiation and prognosis of various tumors. In this review, we highlight the synthesis, cellular interactions, and the signalling pathways regulated by syndecan-1. The basal syndecan-1 level is also crucial for understanding the sequential changes involving malignant transformation, tumor progression, and advanced or disseminated cancer stages. Moreover, we focus on the cellular localization of this proteoglycan as cell membrane anchored and/or shed, soluble syndecan-1 with stromal or nuclear accumulation and how this may carry different, highly tissue specific prognostic information for individual tumor types.
Collapse
|
26
|
Theocharis AD, Skandalis SS, Neill T, Multhaupt HAB, Hubo M, Frey H, Gopal S, Gomes A, Afratis N, Lim HC, Couchman JR, Filmus J, Sanderson RD, Schaefer L, Iozzo RV, Karamanos NK. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochim Biophys Acta Rev Cancer 2015; 1855:276-300. [PMID: 25829250 DOI: 10.1016/j.bbcan.2015.03.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/27/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022]
Abstract
Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Mario Hubo
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Helena Frey
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Sandeep Gopal
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Angélica Gomes
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Nikos Afratis
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Hooi Ching Lim
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Jorge Filmus
- Department of Biological Sciences, Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Canada
| | - Ralph D Sanderson
- University of Alabama at Birmingham, Department of Pathology, UAB Comprehensive Cancer Center, 1720 2nd Ave. S, WTI 602B, Birmingham, AL 35294, USA
| | - Liliana Schaefer
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
27
|
Kamińska K, Szczylik C, Bielecka ZF, Bartnik E, Porta C, Lian F, Czarnecka AM. The role of the cell-cell interactions in cancer progression. J Cell Mol Med 2015; 19:283-96. [PMID: 25598217 PMCID: PMC4407603 DOI: 10.1111/jcmm.12408] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/18/2014] [Indexed: 12/11/2022] Open
Abstract
In the field of cancer research, scientific investigations are based on analysing differences in the secretome, the proteome, the transcriptome, the expression of cell surface molecules, and the deregulation of signal transduction pathways between neoplastic and normal cells. Accumulating evidence indicates a crucial role in carcinogenesis concerning not only stromal cells but also normal cells from target organs and tissue where tumours emerge. The tumour microenvironment (TME) definitively plays an important role in regulating neighbouring cell behaviour. To date, limited attention has been focused upon interactions between cancer cells and normal cells. This review concentrates on the interactions between stromal and healthy cells from the TME in cancer development. In the article, the authors also describe mutations, genes and proteins expression pattern that are involved in tumour development in target organ.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
28
|
Wang X, Zuo D, Chen Y, Li W, Liu R, He Y, Ren L, Zhou L, Deng T, Wang X, Ying G, Ba Y. Shed Syndecan-1 is involved in chemotherapy resistance via the EGFR pathway in colorectal cancer. Br J Cancer 2014; 111:1965-76. [PMID: 25321193 PMCID: PMC4229635 DOI: 10.1038/bjc.2014.493] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/30/2014] [Accepted: 08/13/2014] [Indexed: 01/03/2023] Open
Abstract
Background: Syndecan-1 (Sdc-1) shedding induced by matrix metalloproteinase-7 (MMP-7) and additional proteases has an important role in cancer development. However, the impact of Sdc-1 shedding on chemotherapeutic resistance has not been reported. Methods: We examined Sdc-1 shedding in colorectal cancer by enzyme-linked immunosorbent assay (ELISA), Dot blot, reverse transcription-PCR (RT-PCR), immunohistochemistry and so on, its impact on chemotherapeutic sensitivity by collagen gel droplet embedded culture-drug sensitivity test (CD-DST) and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), and potential mechanisms of action by Dot blot, western blot and immunofluorescence. Results: Sdc-1 shedding was increased in colorectal cancer patients, Sdc-1 serum levels in postoperative patients were lower than in preoperative patients, but still higher than those observed in healthy adults. Patients with high preoperative Sdc-1 serum levels were less responsive to 5-Fluorouracil, Oxaliplatin, Irintecan, Cisplatin or Paclitaxel chemotherapy. Moreover, the disease-free survival of patients with high preoperative Sdc-1 serum levels was significantly poorer. The possible mechanism of chemotherapy resistance in colorectal cancer can be attributed to Sdc-1 shedding, which enhances EGFR phosphorylation and downstream signalling. Conclusions: Shed Sdc-1 is involved in chemotherapy resistance via the EGFR pathway in colorectal cancer, and Sdc-1 serum levels could be a new prognostic marker in colorectal cancer.
Collapse
Affiliation(s)
- X Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Gastrointestinal Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - D Zuo
- Key Laboratory of Cancer Prevention and Therapy, Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Y Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Digestive Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - W Li
- Department of Cardiovascular Medicine, Tianjin Chest Hospital, Tianjin 300000, China
| | - R Liu
- Key Laboratory of Cancer Prevention and Therapy, Department of Gastrointestinal Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Y He
- Department of Hepatology and Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - L Ren
- Key Laboratory of Cancer Prevention and Therapy, Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - L Zhou
- Key Laboratory of Cancer Prevention and Therapy, Department of Gastrointestinal Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - T Deng
- Key Laboratory of Cancer Prevention and Therapy, Department of Gastrointestinal Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - X Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Digestive Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - G Ying
- Laboratory of Cancer Cell Biology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Y Ba
- Key Laboratory of Cancer Prevention and Therapy, Department of Gastrointestinal Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| |
Collapse
|
29
|
Sanaee MN, Malekzadeh M, Khezri A, Ghaderi A, Doroudchi M. Soluble CD138/Syndecan-1 Increases in the Sera of Patients with Moderately Differentiated Bladder Cancer. Urol Int 2014; 94:472-8. [PMID: 25115297 DOI: 10.1159/000364907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND CD138/Syndecan-1 (Sdc-1) is expressed on the tumor and stromal cells of invasive bladder carcinoma. CD138/Sdc-1 shedding from the cell surface is associated with the invasive phenotype in lung and breast cancers. PATIENTS AND METHODS Soluble CD138/Sdc-1 was measured in the sera of 86 bladder cancer patients and 57 healthy individuals by a commercial ELISA assay. RESULTS Soluble Sdc-1 was increased in the sera of patients with bladder cancer (138.42 ± 81.85 vs. 86.48 ± 82.58 ng/ml, p = 0.0003). Patients aged over 70 years had higher levels of CD138/Sdc-1 in their sera (159.7 ± 15.77 vs. 124.5 ± 9.99 ng/ml, p = 0.025), and soluble Sdc-1 levels were higher in the sera of patients with moderately differentiated tumors compared to poorly differentiated ones (170.47 ± 85.06 vs. 101.79 ± 68.24 ng/ml, p = 0.01). The soluble Sdc-1 level was higher in muscle-invasive (154.45 ± 83.60 vs. 89.9 ± 55.02 ng/ml) but not lymphatic-invasive (106.25 ± 52.10 vs. 123.43 ± 63.76 ng/ml) tumors (p = 0.027 and 0.45, respectively). A non-significant trend of soluble Sdc-1 increase in the sera of male patients compared to female patients was observed (145.38 ± 85.47 vs. 110.20 ± 59.04 ng/ml, p = 0.054). CONCLUSION The elevated levels of soluble CD138/Sdc-1 in older bladder cancer patients and those with muscular invasion sheds some light on the mechanisms of the disease invasion.
Collapse
Affiliation(s)
- Mohammad Nabi Sanaee
- Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | |
Collapse
|
30
|
Kim JH, Park J. Prognostic significance of heme oxygenase-1, S100 calcium-binding protein A4, and syndecan-1 expression in primary non-muscle-invasive bladder cancer. Hum Pathol 2014; 45:1830-8. [PMID: 24957789 DOI: 10.1016/j.humpath.2014.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 11/26/2022]
Abstract
We investigated the prognostic significance of heme oxygenase-1 (HO-1), S100 calcium-binding protein A4 (S100A4), and syndecan-1 (SYND1) expression in patients with primary non-muscle-invasive bladder cancer (NMIBC). Immunohistochemical studies were performed on tissue specimens from 109 patients diagnosed with primary NMIBC following complete transurethral resection, with the expression dichotomized as negative/mild ("low") versus moderate/strong ("high") according to scores based on staining area and intensity. The effect of each biomarker on recurrence-free survival (RFS) and progression-free survival (PFS) was analyzed. The predictive accuracy for RFS and PFS in multivariate Cox regression models with or without (the baseline model) biomarkers was estimated using the Harrell concordance index. High HO-1, S100A4, and SYND1 expressions were observed in 33.0%, 36.7%, and 63.3% cases, respectively. High HO-1 and S100A4 expressions were significantly associated with various adverse pathological characteristics (high T stage and grade); SYND1 expression was inversely correlated with these characteristics (all, P < .05). In the baseline multivariate model, multifocality, intravesical therapy, and T stage were significant predictors for RFS, whereas intravesical therapy and T stage had marginal statistical significance in predicting PFS. In the multivariate model with the biomarkers, the 3 biomarkers were significant predictors for RFS; and HO-1 expression was a significant predictor for PFS. Addition of the 3 biomarkers to the baseline model significantly increased the predictive accuracy for RFS from 0.754 to 0.828 (P = .043). Our findings suggest that HO-1, S100A4, and SYND1 expressions have prognostic value in primary NMIBC; thus, their evaluation might be useful for determining treatment strategies.
Collapse
Affiliation(s)
- Joo Heon Kim
- Department of Pathology, Eulji University Hospital, Eulji University College of Medicine, Daejeon, 302-799 Korea
| | - Jinsung Park
- Department of Urology, Eulji University Hospital, Eulji University College of Medicine, Daejeon, 302-799 Korea.
| |
Collapse
|
31
|
Heparan sulfate signaling in cancer. Trends Biochem Sci 2014; 39:277-88. [PMID: 24755488 DOI: 10.1016/j.tibs.2014.03.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 01/03/2023]
Abstract
Heparan sulfate (HS) is a biopolymer consisting of variably sulfated repeating disaccharide units. The anticoagulant heparin is a highly sulfated intracellular variant of HS. HS has demonstrated roles in embryonic development, homeostasis, and human disease via non-covalent interactions with numerous cellular proteins, including growth factors and their receptors. HS can function as a co-receptor by enhancing receptor-complex formation. In other contexts, HS disrupts signaling complexes or serves as a ligand sink. The effects of HS on growth factor signaling are tightly regulated by the actions of sulfyltransferases, sulfatases, and heparanases. HS has important emerging roles in oncogenesis, and heparin derivatives represent potential therapeutic strategies for human cancers. Here we review recent insights into HS signaling in tumor proliferation, angiogenesis, metastasis, and differentiation. A cancer-specific understanding of HS signaling could uncover potential therapeutic targets in this highly actionable signaling network.
Collapse
|
32
|
Szarvas T, Reis H, Kramer G, Shariat SF, vom Dorp F, Tschirdewahn S, Schmid KW, Kovalszky I, Rübben H. Enhanced stromal syndecan-1 expression is an independent risk factor for poor survival in bladder cancer. Hum Pathol 2014; 45:674-82. [DOI: 10.1016/j.humpath.2013.10.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/03/2013] [Accepted: 10/06/2013] [Indexed: 10/25/2022]
|
33
|
Li P, Yang R, Gao WQ. Contributions of epithelial-mesenchymal transition and cancer stem cells to the development of castration resistance of prostate cancer. Mol Cancer 2014; 13:55. [PMID: 24618337 PMCID: PMC3975176 DOI: 10.1186/1476-4598-13-55] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/03/2014] [Indexed: 01/06/2023] Open
Abstract
An important clinical challenge in prostate cancer therapy is the inevitable transition from androgen-sensitive to castration-resistant and metastatic prostate cancer. Albeit the androgen receptor (AR) signaling axis has been targeted, the biological mechanism underlying the lethal event of androgen independence remains unclear. New emerging evidences indicate that epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs) play crucial roles during the development of castration-resistance and metastasis of prostate cancer. Notably, EMT may be a dynamic process. Castration can induce EMT that may enhance the stemness of CSCs, which in turn results in castration-resistance and metastasis. Reverse of EMT may attenuate the stemness of CSCs and inhibit castration-resistance and metastasis. These prospective approaches suggest that therapies target EMT and CSCs may cast a new light on the treatment of castration-resistant prostate cancer (CRPC) in the future. Here we review recent progress of EMT and CSCs in CRPC.
Collapse
Affiliation(s)
| | - Ru Yang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | | |
Collapse
|
34
|
Miyake M, Lawton A, Dai Y, Chang M, Mengual L, Alcaraz A, Goodison S, Rosser CJ. Clinical implications in the shift of syndecan-1 expression from the cell membrane to the cytoplasm in bladder cancer. BMC Cancer 2014; 14:86. [PMID: 24524203 PMCID: PMC3930286 DOI: 10.1186/1471-2407-14-86] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 02/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To determine the diagnostic and prognostic capability of urinary and tumoral syndecan-1 (SDC-1) levels in patients with cancer of the urinary bladder. METHODS SDC-1 levels were quantitated by enzyme-linked immunosorbent assay (ELISA) in 308 subjects (102 cancer subjects and 206 non-cancer subjects) to assess its diagnostic capabilities in voided urine. The performance of SDC-1 was evaluated using the area under the curve of a receiver operating characteristic curve. In addition, immunohistochemical (IHC) staining assessed SDC-1 protein expression in 193 bladder specimens (185 cancer subjects and 8 non-cancer subjects). Outcomes were correlated to SDC-1 levels. RESULTS Mean urinary levels of SDC-1 did not differ between the cancer subjects and the non-cancer subjects, however, the mean urinary levels of SDC-1 were reduced in high-grade compared to low-grade disease (p < 0.0001), and in muscle invasive bladder cancer (MIBC) compared to non-muscle invasive bladder cancer (NMIBC) (p = 0.005). Correspondingly, preliminary data note a shift from a membranous cellular localization of SDC-1 in normal tissue, low-grade tumors and NMIBC, to a distinctly cytoplasmic localization in high-grade tumors and MIBC was observed in tissue specimens. CONCLUSION Alone urinary SDC-1 may not be a diagnostic biomarker for bladder cancer, but its urinary levels and cellular localization were associated with the differentiation status of patients with bladder tumors. Further studies are warranted to define the potential role for SDC-1 in bladder cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Charles J Rosser
- Cancer Research Institute, Orlando Health, Orlando, FL 32827, USA.
| |
Collapse
|
35
|
Poblete CE, Fulla J, Gallardo M, Muñoz V, Castellón EA, Gallegos I, Contreras HR. Increased SNAIL expression and low syndecan levels are associated with high Gleason grade in prostate cancer. Int J Oncol 2014; 44:647-54. [PMID: 24424718 PMCID: PMC3928469 DOI: 10.3892/ijo.2014.2254] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/27/2013] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer (PC) is a leading male oncologic malignancy wideworld. During malignant transformation, normal epithelial cells undergo genetic and morphological changes known as epithelial-mesenchymal transition (EMT). Several regulatory genes and specific marker proteins are involved in PC EMT. Recently, syndecans have been associated with malignancy grade and Gleason score in PC. Considering that SNAIL is mainly a gene repressor increased in PC and that syndecan promoters have putative binding sites for this repressor, we propose that SNAIL might regulate syndecan expression during PC EMT. The aim of this study was to analyze immunochemically the expression of SNAIL, syndecans 1 and 2 and other EMT markers in a tissue microarray (TMA) of PC samples and PC cell lines. The TMAs included PC samples of different Gleason grade and benign prostatic hyperplasia (BPH) samples, as non-malignant controls. PC3 and LNCaP cell lines were used as models of PC representing different tumorigenic capacities. Semi-quantitative immunohistochemistry was performed on TMAs and fluorescence immunocytochemistry and western blot analysis were conducted on cell cultures. Results show that SNAIL exhibits increased expression in high Gleason specimens compared to low histological grade and BPH samples. Accordingly, PC3 cells show higher SNAIL expression levels compared to LNCaP cells. Conversely, syndecan 1, similarly to E-cadherin (a known marker of EMT), shows a decreased expression in high Gleason grades samples and PC3 cells. Interestingly, syndecan 2 shows no changes associated to histological grade. It is concluded that increased SNAIL levels in advanced PC are associated with low expression of syndecan 1. The mechanism by which SNAIL regulates the expression of syndecan 1 remains to be investigated.
Collapse
Affiliation(s)
- Cristian E Poblete
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Fulla
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Marcela Gallardo
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Valentina Muñoz
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Enrique A Castellón
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ivan Gallegos
- Pathological Anatomy Service, Clinic Hospital, University of Chile, Santiago, Chile
| | - Hector R Contreras
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
36
|
Expression of syndecan-4 and correlation with metastatic potential in testicular germ cell tumours. BIOMED RESEARCH INTERNATIONAL 2013; 2013:214864. [PMID: 23844358 PMCID: PMC3697279 DOI: 10.1155/2013/214864] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/28/2013] [Indexed: 01/11/2023]
Abstract
Although syndecan-4 is implicated in cancer progression, there is no information for its role in testicular germ cell tumours (TGCTs). Thus, we examined the expression of syndecan-4 in patients with TGCTs and its correlation with the clinicopathological findings. Immunohistochemical staining in 71 tissue specimens and mRNA analysis revealed significant overexpression of syndecan-4 in TGCTs. In seminomas, high percentage of tumour cells exhibited membranous and/or cytoplasmic staining for syndecan-4 in all cases. Stromal staining for syndecan-4 was found in seminomas and it was associated with nodal metastasis (P = 0.04), vascular/lymphatic invasion (P = 0.01), and disease stage (P = 0.04). Reduced tumour cell associated staining for syndecan-4 was observed in nonseminomatous germ cell tumours (NSGCTs) compared to seminomas. This loss of syndecan-4 was associated with nodal metastasis (P = 0.01), vascular/lymphatic invasion (P = 0.01), and disease stage (P = 0.01). Stromal staining for syndecan-4 in NSGCTs did not correlate with any of the clinicopathological variables. The stromal expression of syndecan-4 in TGCTs was correlated with microvessel density (P = 0.03). Our results indicate that syndecan-4 is differentially expressed in seminomas and NSGCTs and might be a useful marker. Stromal staining in seminomas and reduced levels of syndecan-4 in tumour cells in NSGCTs are related to metastatic potential, whereas stromal staining in TGCTs is associated with neovascularization.
Collapse
|
37
|
Prognostic significance of syndecan-1 expression in squamous cell carcinoma of the tonsil. Int J Clin Oncol 2013; 19:247-53. [DOI: 10.1007/s10147-013-0552-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
|
38
|
Hassan H, Greve B, Pavao MSG, Kiesel L, Ibrahim SA, Götte M. Syndecan-1 modulates β-integrin-dependent and interleukin-6-dependent functions in breast cancer cell adhesion, migration, and resistance to irradiation. FEBS J 2013; 280:2216-27. [DOI: 10.1111/febs.12111] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/24/2012] [Accepted: 01/01/2013] [Indexed: 12/30/2022]
Affiliation(s)
| | - Burkhard Greve
- Department of Radiotherapy; University Hospital Münster; Germany
| | - Mauro S. G. Pavao
- Instituto de Bioquimica Medica; Universidade Federal do Rio de Janeiro; Brazil
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics; University Hospital Münster; Germany
| | | | - Martin Götte
- Department of Gynecology and Obstetrics; University Hospital Münster; Germany
| |
Collapse
|
39
|
Al-Otaibi O, Khounganian R, Anil S, Rajendran R. Syndecan-1 (CD 138) surface expression marks cell type and differentiation in ameloblastoma, keratocystic odontogenic tumor, and dentigerous cyst. J Oral Pathol Med 2012; 42:186-93. [PMID: 22747594 DOI: 10.1111/j.1600-0714.2012.01195.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
40
|
Ibrahim SA, Yip GW, Stock C, Pan JW, Neubauer C, Poeter M, Pupjalis D, Koo CY, Kelsch R, Schüle R, Rescher U, Kiesel L, Götte M. Targeting of syndecan-1 by microRNA miR-10b promotes breast cancer cell motility and invasiveness via a Rho-GTPase- and E-cadherin-dependent mechanism. Int J Cancer 2012; 131:E884-96. [PMID: 22573479 DOI: 10.1002/ijc.27629] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 04/25/2012] [Indexed: 12/22/2022]
Abstract
microRNAs are small endogenous noncoding RNAs, which post-transcriptionally regulate gene expression. In breast cancer, overexpression of the transmembrane heparan sulfate proteoglycan syndecan-1, a predicted target of the oncomiR miR-10b, correlates with poor clinical outcome. To investigate the potential functional relationship of miR-10b and syndecan-1, MDA-MB-231 and MCF-7 breast cancer cells were transiently transfected with pre-miR-10b, syndecan-1 siRNA or control reagents, respectively. Altered cell behavior was monitored by proliferation, migration and invasion chamber assays, and time-lapse video microscopy. miR-10b overexpression induced post-transcriptional downregulation of syndecan-1, as demonstrated by quantitative real-time PCR (qPCR), flow cytometry, and 3'UTR luciferase assays, resulting in increased cancer cell migration and matrigel invasiveness. Syndecan-1 silencing generated a copy of this phenotype. Adhesion to fibronectin and laminin and basal cell proliferation was increased. Syndecan-1 coimmunoprecipitated with focal adhesion kinase, which showed increased activation upon syndecan-1 depletion. Affymetrix screening and confirmatory qPCR and Western blotting analysis of syndecan-1-deficient cells revealed upregulation of ATF-2, COX-2, cadherin-11, vinculin, actin γ 2, MYL9, transgelin-1, RhoA/C, matrix metalloproteinase 2 (MMP2) and heparanase, and downregulation of AML1/RUNX1, E-cadherin, CLDN1, p21WAF/CIP, cyclin-dependent kinase 6, TLR-4, PAI1/2, Collagen1alpha1, JHDM1D, Mpp4, MMP9, matrilin-2 and ANXA3/A10. Video microscopy demonstrated massively increased Rho kinase-dependent motility of syndecan-1-depleted cells, which displayed increased filopodia formation. We conclude that syndecan-1 is a novel target of the oncomiR miR-10b. Rho-GTPase-dependent modulation of cytoskeletal function and downregulation of E-cadherin expression are identified as relevant effectors of the miR-10b-syndecan-1 axis, which emerges as a promising target for the development of new therapeutic approaches for breast cancer.
Collapse
Affiliation(s)
- Sherif A Ibrahim
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Polyunsaturated fatty acids (PUFA) play important roles in the normal physiology and in pathological states including inflammation and cancer. While much is known about the biosynthesis and biological activities of eicosanoids derived from ω6 PUFA, our understanding of the corresponding ω3 series lipid mediators is still rudimentary. The purpose of this review is not to offer a comprehensive summary of the literature on fatty acids in prostate cancer but rather to highlight some of the areas where key questions remain to be addressed. These include substrate preference and polymorphic variants of enzymes involved in the metabolism of PUFA, the relationship between de novo lipid synthesis and dietary lipid metabolism pathways, the contribution of cyclooxygenases and lipoxygenases as well as terminal synthases and prostanoid receptors in prostate cancer, and the potential role of PUFA in angiogenesis and cell surface receptor signaling.
Collapse
|
42
|
|
43
|
Garusi E, Rossi S, Perris R. Antithetic roles of proteoglycans in cancer. Cell Mol Life Sci 2012; 69:553-79. [PMID: 21964924 PMCID: PMC11114698 DOI: 10.1007/s00018-011-0816-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/01/2011] [Accepted: 09/05/2011] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs), a family of complex post-translationally sculptured macromolecules, are fundamental regulators of most normal and aberrant cellular functions. The unparalleled structural-functional diversity of PGs endows them with the ability to serve as critical mediators of the tumor cells' interaction with the host microenvironment, while directly contributing to the organization and dynamic remodeling of this milieu. Despite their indisputable importance during embryonic development and in the adult organism, and their frequent dysregulation in tumor lesions, their precise involvement in tumorigenesis awaits a more decisive demonstration. Particularly challenging is to ascertain to what extent selected PGs may catalyze tumor progression and to what extent they may inhibit it, implying antithetic functions of individual PGs. Integrated efforts are needed to consolidate the routine use of PGs in the clinical monitoring of cancer patients and to broaden the exploitation of these macromolecules as therapeutic targets. Several PGs have the required attributes to be contemplated as effective antigens for immunotherapeutic approaches, while the tangible results obtained in recent clinical trials targeting the NG2/CSPG4 transmembrane PG urge further development of PG-based cancer treatment modalities.
Collapse
Affiliation(s)
- Elena Garusi
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
| | - Silvia Rossi
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- Department of Genetic, Biology of Microorganism, Anthropology and Evolution, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
| | - Roberto Perris
- COMT, Centre for Molecular and Translational Oncology, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- Department of Genetic, Biology of Microorganism, Anthropology and Evolution, University of Parma, Via G.P. Usberti 11/A, 43100 Parma, Italy
- S.O.C. of Experimental Oncology 2, The National Cancer Institute Aviano, CRO-IRCCS, Via Franco Gallini, 2, 33081 Aviano, PN Italy
| |
Collapse
|
44
|
Rousseau C, Ruellan AL, Bernardeau K, Kraeber-Bodéré F, Gouard S, Loussouarn D, Saï-Maurel C, Faivre-Chauvet A, Wijdenes J, Barbet J, Gaschet J, Chérel M, Davodeau F. Syndecan-1 antigen, a promising new target for triple-negative breast cancer immuno-PET and radioimmunotherapy. A preclinical study on MDA-MB-468 xenograft tumors. EJNMMI Res 2011; 1:20. [PMID: 22214534 PMCID: PMC3250983 DOI: 10.1186/2191-219x-1-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 09/01/2011] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Overexpression of syndecan-1 (CD138) in breast carcinoma correlates with a poor prognosis and an aggressive phenotype. The objective of this study was to evaluate the potential of targeting CD138 by immuno-PET imaging and radioimmunotherapy (RIT) using the antihuman syndecan-1 B-B4 mAb radiolabeled with either 124I or 131I in nude mice engrafted with the triple-negative MDA-MB-468 breast cancer cell line. METHOD The immunoreactivity of 125I-B-B4 (80%) was determined, and the affinity of 125I-B-B4 and the expression of CD138 on MDA-MB-468 was measured in vitro by Scatchard analysis. CD138 expression on established tumors was confirmed by immunohistochemistry. A biodistribution study was performed in mice with subcutaneous MDA-MB-468 and 125I-B-B4 at 4, 24, 48, 72, and 96 h after injection and compared with an isotype-matched control. Tumor uptake of B-B4 was evaluated in vivo by immuno-PET imaging using the 124I-B-B4 mAb. The maximum tolerated dose (MTD) was determined from mice treated with 131I-B-B4 and the RIT efficacy evaluated. RESULTS 125I-B-B4 affinity was in the nanomolar range (Kd = 4.39 ± 1.10 nM). CD138 expression on MDA-MB-468 cells was quite low (Bmax = 1.19 × 104 ± 9.27 × 102 epitopes/cell) but all expressed CD138 in vivo as determined by immunohistochemistry. The tumor uptake of 125I-B-B4 peaked at 14% injected dose (ID) per gram at 24 h and was higher than that of the isotype-matched control mAb (5% ID per gram at 24 h). Immuno-PET performed with 124I-B-B4 on tumor-bearing mice confirmed the specificity of B-B4 uptake and its retention within the tumor. The MTD was reached at 22.2 MBq. All mice treated with RIT (n = 8) as a single treatment at the MTD experienced a partial (n = 3) or complete (n = 5) response, with three of them remaining tumor-free 95 days after treatment. CONCLUSION These results demonstrate that RIT with 131I-B-B4 could be considered for the treatment of metastatic triple-negative breast cancer that cannot benefit from hormone therapy or anti-Her2/neu immunotherapy. Immuno-PET for visualizing CD138-expressing tumors with 124I-B-B4 reinforces the interest of this mAb for diagnosis and quantitative imaging.
Collapse
Affiliation(s)
- Caroline Rousseau
- Centre de Recherche en Cancérologie de Nantes-Angers, Université de Nantes, Inserm, U892, Nantes, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lendorf ME, Manon-Jensen T, Kronqvist P, Multhaupt HAB, Couchman JR. Syndecan-1 and syndecan-4 are independent indicators in breast carcinoma. J Histochem Cytochem 2011; 59:615-29. [PMID: 21430259 DOI: 10.1369/0022155411405057] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Syndecan proteoglycans may be key regulators of tumor invasion and metastasis because this four-member family of transmembrane receptors regulates cell adhesion, proliferation, and differentiation. Their expression can also serve as prognostic markers. In breast carcinomas, syndecan-1 overexpression correlates with poor prognosis and aggressive phenotype. Syndecan-4 is expressed in most breast carcinoma cell lines, but its role in malignancy is unclear. A possible relationship between syndecan-1 and syndecan-4 expression and established prognostic factors in breast carcinomas was examined. Duplicate samples of 114 benign and malignant breast disease cases were stained for the two syndecans. Clinicopathological information was available for all cases. Syndecan-1 was detected in 72.8% of cases, with significant association between its expression and histological tumor type (p<0.05) and high grade tumors (p<0.05). Syndecan-4 was expressed in 66.7% of cases; expression correlated significantly with positive estrogen (p<0.01) and progesterone (p<0.01) receptor status. Independent expression of the two syndecans was noted from an analysis of single and double positive cases. There was a statistical relationship between syndecan-1 presence in high-grade tumors and absence of syndecan-4, whereas syndecan-4 presence in cases positive for estrogen and progesterone receptor associated with syndecan-1 absence. These syndecans may, therefore, have distinct roles in regulating breast carcinoma cell behavior.
Collapse
Affiliation(s)
- Maria E Lendorf
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
46
|
Ledezma R, Cifuentes F, Gallegos I, Fullá J, Ossandon E, Castellon EA, Contreras HR. Altered expression patterns of syndecan-1 and -2 predict biochemical recurrence in prostate cancer. Asian J Androl 2011; 13:476-80. [PMID: 21317913 DOI: 10.1038/aja.2010.143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The clinical features of prostate cancer do not provide an accurate determination of patients undergoing biochemical relapse and are therefore not suitable as indicators of prognosis for recurrence. New molecular markers are needed for proper pre-treatment risk stratification of patients. Our aim was to assess the value of altered expression of syndecan-1 and -2 as a marker for predicting biochemical relapse in patients with clinically localized prostate cancer treated by radical prostatectomy. The expression of syndecan-1 and -2 was examined by immunohistochemical staining in a series of 60 paraffin-embedded tissue samples from patients with localized prostate cancer. Ten specimens from patients with benign prostatic hyperplasia were used as non-malignant controls. Semiquantitative analysis was performed to evaluate the staining patterns. To investigate the prognostic value, Kaplan-Meier survival curves were performed and compared by a log-rank test. In benign samples, syndecan-1 was expressed in basal and secretory epithelial cells with basolateral membrane localisation, whereas syndecan-2 was expressed preferentially in basal cells. In prostate cancer samples, the expression patterns of both syndecans shifted to granular-cytoplasmic localisation. Survival analysis showed a significant difference (P < 0.05) between normal and altered expression of syndecan-1 and -2 in free prostate-specific antigen recurrence survival curves. These data suggest that the expression of syndecan-1 and -2 can be used as a prognostic marker for patients with clinically localized prostate cancer, improving the prostate-specific antigen recurrence risk stratification.
Collapse
Affiliation(s)
- Rodrigo Ledezma
- Laboratory of Molecular and Cellular Andrology, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 70005, Chile
| | | | | | | | | | | | | |
Collapse
|
47
|
Hallberg G, Andersson E, Naessén T, Ordeberg GE. The expression of syndecan-1, syndecan-4 and decorin in healthy human breast tissue during the menstrual cycle. Reprod Biol Endocrinol 2010; 8:35. [PMID: 20398359 PMCID: PMC2864278 DOI: 10.1186/1477-7827-8-35] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 04/16/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In order to unravel the interactions between the epithelium and the extra cellular matrix (ECM) in breast tissue progressing to cancer, it is necessary to understand the relevant interactions in healthy tissue under normal physiologic settings. Proteoglycans in the ECM play an important role in the signaling between the different tissue compartments. The proteoglycan decorin is abundant in the breast stroma. Decreased expression in breast cancer tissue is a sign of a poor tumor prognosis. The heparane sulphate proteoglycans syndecan-1 and syndecan-4 promote the integration of cellular adhesion and proliferation. The aim of this study was to investigate the gene expression and location of decorin, syndecan-1 and syndecan-4 in the healthy breast during the menstrual cycle. METHODS Tissue from healthy women undergoing breast reduction plastic surgery was examined using immunohistochemistry (n = 38) and Real-Time RT-PCR (n = 20). Both parous and nulliparous women were eligible and the mean age of the women was 34(+/- 10 years) with regular menstrual cycles (28 +/- 7 days). None of the women had used hormonal treatment the last three months. The women were randomized to needle biopsy two months before the operation in the follicular or luteal menstrual phase and for another biopsy at the operation in the opposite phase. Serum samples were obtained to characterize the menstrual phase. The Wilcoxon signed rank test and Mann Whitney test were used for statistical analyses. RESULTS By real time-RT-PCR the gene signal for all three proteoglycans; decorin (p = 0.02) and syndecan-1 (p = 0.03) and syndecan-4 (p = 0.02) was significantly lower among parous women in the luteal phase than in the follicular phase. Immunohistochemistry confirmed the identification of the proteins but no significant difference between menstrual phases was observed. Serum samples verified the menstrual phase. CONCLUSIONS Our study shows, for the first time in the healthy breast, a significantly lower expression of the genes for the three proteoglycans, decorin, syndecan-1 and syndecan-4 in the luteal phase during the menstrual cycle. These changes were registered under normal physiologic conditions. Since ECM molecules appear to be involved in tumor progression, these findings in the normal breast could constitute a base for further studies in women receiving hormonal therapy or those with breast cancer.
Collapse
Affiliation(s)
- Gunilla Hallberg
- Department of Women's and Children's Health, Uppsala University, S-751 85 Uppsala, Sweden
| | - Eva Andersson
- Department of Women's and Children's Health, Karolinska Institute, Solna S-171 76 Stockholm, Sweden
| | - Tord Naessén
- Department of Women's and Children's Health, Uppsala University, S-751 85 Uppsala, Sweden
| | - Gunvor Ekman Ordeberg
- Department of Women's and Children's Health, Karolinska Institute, Solna S-171 76 Stockholm, Sweden
| |
Collapse
|
48
|
Bologna-Molina R, González-González R, Mosqueda-Taylor A, Molina-Frechero N, Damián-Matsumura P, Dominguez-Malagón H. Expression of syndecan-1 in papillary carcinoma of the thyroid with extracapsular invasion. Arch Med Res 2010; 41:33-7. [PMID: 20430252 DOI: 10.1016/j.arcmed.2009.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 10/23/2009] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Syndecan-1 (SDC-1) is a member of the family of transmembrane heparan sulfate proteoglycans, which are involved in cell-cell adhesion and the interaction of cells with the extracellular matrix. Evidence suggests that loss of SDC-1 expression in several benign and malignant epithelial neoplasms is an unfavorable prognostic indicator, but its expression profile in thyroid gland neoplasms remains to be elucidated. The aim of this study was to evaluate SDC-1 expression in papillary carcinomas of the thyroid (PCT) that were both larger and smaller (papillary microcarcinoma) than 10mm, with or without extracapsular extension (PCT-E and PCT-NE). METHODS The expression of SDC-1 was studied in 62 cases of PCT-E and PCT-NE using a tissue microarrays technique (TMA). SDC-1 positivity was predominantly observed in the cytoplasm of neoplastic epithelial cells and in the stroma of PCT. RESULTS SDC-1 is expressed in both neoplastic epithelial cells and the stroma. It is more frequently expressed in PCT-E than PCT-NE (p=0.002) and the stromal expression of SDC-1 is more intense in PCT-E that are >10 mm (p=0.026). CONCLUSIONS The epithelial and stromal expression of SDC-1 observed in this series of PCT suggests that the expression of this protein may be related to extracapsular invasion.
Collapse
Affiliation(s)
- Ronell Bologna-Molina
- Instituto de Investigación en Odontología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico.
| | | | | | | | | | | |
Collapse
|
49
|
Marzioni D, Lorenzi T, Mazzucchelli R, Capparuccia L, Morroni M, Fiorini R, Bracalenti C, Catalano A, David G, Castellucci M, Muzzonigro G, Montironi R. Expression of basic fibroblast growth factor, its receptors and syndecans in bladder cancer. Int J Immunopathol Pharmacol 2009; 22:627-38. [PMID: 19822079 DOI: 10.1177/039463200902200308] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) is a heparin-binding cationic protein involved in a variety of pathological conditions including angiogenesis and solid tumour growth. The basic fibroblast growth factor receptor (FGFR) family comprises at least 4 high affinity tyrosine kinase receptors that require syndecans for their function. Mounting evidence indicates that syndecans, that bind both bFGF and their FGFRs, will act as stimulators, whereas syndecans that only bind bFGF will act as inhibitors of signaling by sequestering the growth factor. Recent findings have highlighted the importance of syndecans in urological cancers. The aim of this study is to investigate the expression of bFGF, its receptors (R1 and R2) and syndecans (1-4) in invasive urothelial carcinoma and normal-looking urothelium by Western blotting, RT-PCR, and immunohistochemistry analyses. Interestingly, bFGF, FGFR1 and FGFR2 protein levels statistically increased in bladder cancer tissues. mRNA of FGFR1 and syndecans (1-4), showed a statistically significant increase while an mRNA increase in the other molecules analysed was not significant. bFGF, its receptors and syndecan immunostaining were mainly present in the urothelium both in normal-looking tissues and urothelial neoplastic cells. In conclusion, our data report that the bFGF, FGFR and syndecan expressions are altered in bladder tumours.
Collapse
Affiliation(s)
- D Marzioni
- Department of Molecular Pathology and Innovative Therapies, Marche Polytechnic University, School of Medicine, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Contreras HR, Ledezma RA, Vergara J, Cifuentes F, Barra C, Cabello P, Gallegos I, Morales B, Huidobro C, Castellón EA. The expression of syndecan-1 and -2 is associated with Gleason score and epithelial-mesenchymal transition markers, E-cadherin and beta-catenin, in prostate cancer. Urol Oncol 2009; 28:534-40. [PMID: 19450993 DOI: 10.1016/j.urolonc.2009.03.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 12/25/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is considered a key step in tumor progression, where the invasive cancer cells change from epithelial to mesenchymal phenotype. During this process, a decrease or loss in adhesion molecules expression and an increase in migration molecules expression are observed. The aim of this work was to determine the expression and cellular distribution of syndecan-1 and -2 (migration molecules) and E-cadherin and beta-catenin (adhesion molecules) in different stages of prostate cancer progression. A quantitative immunohistochemical study of these molecules was carried out in tissue samples from benign prostatic hyperplasia and prostate carcinoma, with low and high Gleason score, obtained from biopsies archives of the Clinic Hospital of the University of Chile and Dipreca Hospital. Polyclonal specific antibodies and amplification system of estreptavidin-biotin peroxidase and diaminobenzidine were used. Syndecan-1 was uniformly expressed in basolateral membranes of normal epithelium, changing to a granular cytoplasmatic expression pattern in carcinomas. Syndecan-2 was observed mainly in a cytoplasmatic granular pattern, with high immunostaining intensity in areas of low Gleason score. E-cadherin was detected in basolateral membrane of normal epithelia showing decreased expression in high Gleason score samples. beta-Catenin was found in cell membranes of normal epithelia changing its distribution toward the nucleus and cytoplasm in carcinoma samples. We concluded that changes in expression and cell distribution of E-cadherin and beta-catenin correlated with the progression degree of prostate adenocarcinoma, suggesting a role of these molecules as markers of progression and prognosis. Furthermore, changes in the pattern expression of syndecan-1 and -2 indicate that both molecules may be involved in the EMT and tumor progression of prostate cancer.
Collapse
Affiliation(s)
- Hector R Contreras
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | |
Collapse
|