1
|
Jasielski P, Zawlik I, Bogaczyk A, Potocka N, Paszek S, Maźniak M, Witkoś A, Korzystka A, Kmieć A, Kluz T. The Promotive and Inhibitory Role of Long Non-Coding RNAs in Endometrial Cancer Course-A Review. Cancers (Basel) 2024; 16:2125. [PMID: 38893244 PMCID: PMC11171405 DOI: 10.3390/cancers16112125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Endometrial cancer is one of the most common malignant tumours in women. The development of this tumour is associated with several genetic disorders, many of which are still unknown. One type of RNA molecules currently being intensively studied in many types of cancer are long non-coding RNAs (lncRNAs). LncRNA-coding genes occupy a large fraction of the human genome. LncRNAs regulate many aspects of cell development, metabolism, and other physiological processes. Diverse types of lncRNA can function as a tumour suppressor or an oncogene that can alter migration, invasion, cell proliferation, apoptosis, and immune system response. Recent studies suggest that selected lncRNAs are important in an endometrial cancer course. Our article describes over 70 lncRNAs involved in the development of endometrial cancer, which were studied via in vivo and in vitro research. It was proved that lncRNAs could both promote and inhibit the development of endometrial cancer. In the future, lncRNAs may become an important therapeutic target. The aim of this study is to review the role of lncRNAs in the development of carcinoma of uterine body.
Collapse
Affiliation(s)
- Patryk Jasielski
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Anna Bogaczyk
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Sylwia Paszek
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Michał Maźniak
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Aleksandra Witkoś
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Adrianna Korzystka
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Aleksandra Kmieć
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| |
Collapse
|
2
|
Identification of Five m6A-Related lncRNA Genes as Prognostic Markers for Endometrial Cancer Based on TCGA Database. J Immunol Res 2022; 2022:2547029. [PMID: 35571565 PMCID: PMC9095403 DOI: 10.1155/2022/2547029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Background. Due to difficulties involved in its early diagnosis and adequate prognostication, uterine corpus endometrial carcinoma (UCEC) is one of the most serious threats to human health, with the five-year survival rate being as low as roughly 60%. The discovery of specific biomarkers that serve as prognosticators of UCEC is of great significance. The role of N6-methyladenosine- (m6A-) related long noncoding RNAs (lncRNAs) in the pathogenesis of UCEC remains undefined. In this study, we explored the expression profiles of m6A-related lncRNAs of patients with UCEC and identified novel prognostic markers for UCEC. Methods. Gene expression and clinical data were extracted from The Cancer Genome Atlas. Coexpression analysis was performed to identify m6A-related lncRNAs, which were entered into univariate Cox regression models for evaluating the prognosis of UCEC. Clusters of UCEC patients and enrichment pathways were identified using consistent data clustering and gene set enrichment analysis (GSEA). A risk score model was established, and Kaplan–Meier analysis was conducted for investigating overall survival (OS) across two patient groups (high risk and low risk). Lastly, the relationship between the risk score and the cell content of 22 types of immune cells, clusters, age, programmed cell death 1 ligand-1 (PD-L1) expression level, immune score, and pathological grade was analyzed. Results. We identified a total of 2084 lncRNAs associated with m6A, of which 32 lncRNAs were prognostically relevant. Two clusters (clusters 1 and 2) of patients with UCEC were defined; patients in cluster 1 were found to have significantly higher pathological grades and shorter overall survival time compared to those in cluster 2. GSEA showed that “MITOTIC SPINDLE and other pathways” were more enriched in cluster 1. Five major lncRNAs associated with m6A were screened out, and risk score modeling was used for UCEC prognosis prediction. High risk scores were associated with a shorter OS. The risk score was also verified as an independent prognostic indicator for UCEC and was related to immune cell infiltration levels. Finally, we observed a higher pathological grade and greater levels of PD-L1 in the high-risk group than in the low-risk group of patients. Conclusions. m6A-related lncRNAs play an important role in UCEC progression. The risk-based model constructed from the five key m6A-related lncRNAs was implicated in immune cell infiltration and can potentially be an accurate prognosticator for UCEC.
Collapse
|
3
|
Bieńkiewicz J, Romanowicz H, Szymańska B, Domańska-Senderowska D, Wilczyński M, Stepowicz A, Malinowski A, Smolarz B. Analysis of lncRNA sequences: FAM3D-AS1, LINC01230, LINC01315 and LINC01468 in endometrial cancer. BMC Cancer 2022; 22:343. [PMID: 35351056 PMCID: PMC8966281 DOI: 10.1186/s12885-022-09426-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background The analysis of long non-coding RNA (lncRNA) in endometrial cancer is a novel field of science. Although numerous lncRNA sequences have been identified until today, their correlation with endometrial cancer is still undetermined. The aim of this study was to analyze the expression of four lncRNA sequences: FAM3D-AS1, LINC01230, LINC01315 and LINC01468 and to investigate their significance in endometrial cancer. Methods LncRNA sequences were investigated in paraffin blocks (tumor tissue and non-malignant endometrial tissue in archival postoperative specimens) in endometrial cancer patients (Cases, n = 120) and in cancer-free controls (n = 80) using real-time PCR assay. Results This study revealed a lower expression of LINC01468 in endometrial cancer patients than in controls. Both LINC01468 and FAM3D-AS1 were positively correlated with Body Mass Index (BMI) in cancer-free controls. Conclusions LncRNA LINC01468 may be a protective factor in development of endometrial cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09426-2.
Collapse
Affiliation(s)
- Jan Bieńkiewicz
- Department of Operative Gynecology, Endoscopy and Gynecologic Oncology, Polish Mother's Memorial Hospital - Research Institute, 281/289, Rzgowska Street, 93-338, Lodz, Poland.
| | - Hanna Romanowicz
- Department of Clinical Pathology, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland
| | - Bożena Szymańska
- Research Laboratory CoreLab, Medical University of Lodz, Lodz, Poland
| | | | - Miłosz Wilczyński
- Department of Operative Gynecology, Endoscopy and Gynecologic Oncology, Polish Mother's Memorial Hospital - Research Institute, 281/289, Rzgowska Street, 93-338, Lodz, Poland
| | - Anna Stepowicz
- Department of Obstetrics, Perinatology and Gynecology, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland
| | - Andrzej Malinowski
- Department of Operative and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Beata Smolarz
- Department of Clinical Pathology, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland
| |
Collapse
|
4
|
Cavaliere AF, Perelli F, Zaami S, Piergentili R, Mattei A, Vizzielli G, Scambia G, Straface G, Restaino S, Signore F. Towards Personalized Medicine: Non-Coding RNAs and Endometrial Cancer. Healthcare (Basel) 2021; 9:965. [PMID: 34442102 PMCID: PMC8393611 DOI: 10.3390/healthcare9080965] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Endometrial cancer (EC) is the most frequent female cancer associated with excellent prognosis if diagnosed at an early stage. The risk factors on which clinical staging is based are constantly updated and genetic and epigenetic characteristics have recently been emerging as prognostic markers. The evidence shows that non-coding RNAs (ncRNAs) play a fundamental role in various biological processes associated with the pathogenesis of EC and many of them also have a prognosis prediction function, of remarkable importance in defining the therapeutic and surveillance path of EC patients. Personalized medicine focuses on the continuous updating of risk factors that are identifiable early during the EC staging to tailor treatments to patients. This review aims to show a summary of the current classification systems and to encourage the integration of various risk factors, introducing the prognostic role of non-coding RNAs, to avoid aggressive therapies where not necessary and to treat and strictly monitor subjects at greater risk of relapse.
Collapse
Affiliation(s)
- Anna Franca Cavaliere
- Azienda USL Toscana Centro, Gynecology and Obstetric Department, Santo Stefano Hospital, 59100 Prato, Italy;
| | - Federica Perelli
- Azienda USL Toscana Centro, Gynecology and Obstetric Department, Santa Maria Annunziata Hospital, 50012 Florence, Italy;
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Roma, Italy;
| | - Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Alberto Mattei
- Azienda USL Toscana Centro, Gynecology and Obstetric Department, Santa Maria Annunziata Hospital, 50012 Florence, Italy;
| | - Giuseppe Vizzielli
- Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.V.); (G.S.)
- Obstetrics, Gynecology and Pediatrics Department, Udine University Hospital, DAME, 33100 Udine, Italy;
| | - Giovanni Scambia
- Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.V.); (G.S.)
| | - Gianluca Straface
- Division of Perinatal Medicine, Policlinico Abano Terme, 35031 Abano Terme, Italy;
| | - Stefano Restaino
- Obstetrics, Gynecology and Pediatrics Department, Udine University Hospital, DAME, 33100 Udine, Italy;
| | - Fabrizio Signore
- Obstetrics and Gynecology Department, USL Roma2, Sant’Eugenio Hospital, 00144 Rome, Italy;
| |
Collapse
|
5
|
Piergentili R, Zaami S, Cavaliere AF, Signore F, Scambia G, Mattei A, Marinelli E, Gulia C, Perelli F. Non-Coding RNAs as Prognostic Markers for Endometrial Cancer. Int J Mol Sci 2021; 22:3151. [PMID: 33808791 PMCID: PMC8003471 DOI: 10.3390/ijms22063151] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Endometrial cancer (EC) has been classified over the years, for prognostic and therapeutic purposes. In recent years, classification systems have been emerging not only based on EC clinical and pathological characteristics but also on its genetic and epigenetic features. Noncoding RNAs (ncRNAs) are emerging as promising markers in several cancer types, including EC, for which their prognostic value is currently under investigation and will likely integrate the present prognostic tools based on protein coding genes. This review aims to underline the importance of the genetic and epigenetic events in the EC tumorigenesis, by expounding upon the prognostic role of ncRNAs.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, “Sapienza” University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Anna Franca Cavaliere
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santo Stefano Hospital, 59100 Prato, Italy;
| | - Fabrizio Signore
- Obstetrics and Gynecology Department, USL Roma2, Sant’Eugenio Hospital, 00144 Rome, Italy;
| | - Giovanni Scambia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Gynecologic Oncology Unit, 00168 Rome, Italy;
- Universita’ Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Alberto Mattei
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (A.M.); (F.P.)
| | - Enrico Marinelli
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy;
| | - Caterina Gulia
- Department of Urology, Misericordia Hospital, 58100 Grosseto, Italy;
| | - Federica Perelli
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (A.M.); (F.P.)
| |
Collapse
|
6
|
Xu Z, Zhang L, Yu Q, Zhang Y, Yan L, Chen ZJ. The estrogen-regulated lncRNA H19/miR-216a-5p axis alters stromal cell invasion and migration via ACTA2 in endometriosis. Mol Hum Reprod 2020; 25:550-561. [PMID: 31323679 DOI: 10.1093/molehr/gaz040] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/27/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Fibrotic tissue may contribute to the origin of some endometriosis-related symptoms, such as chronic pelvic pain and infertility. Alterations in the H19/miR-216a-5p/ACTA2 pathway may mediate the regulation of eutopic endometrial stromal cell (euESC) invasion and migration and may represent a potential mechanism underlying fibrous tissue formation or fibrosis in women with endometriosis. In this study, we aimed to determine the expression of H19 and ACTA2 in endometrial tissues of women with endometriosis. Two groups of 23 infertile women with endometriosis and 23 matched infertile women without endometriosis were investigated. Primary cultured cells of endometrial tissues were analyzed using RT-PCR and western blotting (WB) to determine expression of H19 and ACTA2. 5-Ethyl-2'-deoxyuridine, CCK8 and Transwell assays were used to study the functions of H19 and ACTA2. Human embryonic kidney 293 cells were used for luciferase assays to study miR-216a-5p binding sites with H19 and ACTA2. We found that H19 and ACTA2 levels were significantly higher in endometriosis euESCs than in control euESCs (P < 0.05) and were positively correlated in endometriosis euESCs. Luciferase assays indicated that H19 regulates ACTA2 expression via competition for inhibitory miR-216a-5p binding sites. Our results indicate that alterations in the estrogen/H19/miR-216a-5p/ACTA2 pathway regulated endometriosis euESC invasion and migration. Downregulation of H19 or ACTA2 inhibited endometriosis euESC invasion and migration; however, estrogen promoted endometriosis euESC invasion and migration via H19. The main limitation of our study was that experiments were conducted in vitro and further in vivo studies are required in the future. However, our study showed that primary cultured cells represented endometriosis cells more clearly than cell lines.
Collapse
Affiliation(s)
- Zhen Xu
- School of Medicine, Shandong University, 44 Wenhua West Road, Jinan, China.,Reproductive Hospital Affiliated to Shandong University, 157 Jingliu Road, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, 157 Jingliu Road, Jinan, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, 157 Jingliu Road, Jinan, China
| | - Liping Zhang
- School of Medicine, Shandong University, 44 Wenhua West Road, Jinan, China.,Reproductive Hospital Affiliated to Shandong University, 157 Jingliu Road, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, 157 Jingliu Road, Jinan, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, 157 Jingliu Road, Jinan, China
| | - Qian Yu
- School of Medicine, Shandong University, 44 Wenhua West Road, Jinan, China.,Reproductive Hospital Affiliated to Shandong University, 157 Jingliu Road, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, 157 Jingliu Road, Jinan, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, 157 Jingliu Road, Jinan, China
| | - Yanan Zhang
- School of Medicine, Shandong University, 44 Wenhua West Road, Jinan, China.,Reproductive Hospital Affiliated to Shandong University, 157 Jingliu Road, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, 157 Jingliu Road, Jinan, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, 157 Jingliu Road, Jinan, China
| | - Lei Yan
- School of Medicine, Shandong University, 44 Wenhua West Road, Jinan, China.,Reproductive Hospital Affiliated to Shandong University, 157 Jingliu Road, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, 157 Jingliu Road, Jinan, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, 157 Jingliu Road, Jinan, China
| | - Zi-Jiang Chen
- School of Medicine, Shandong University, 44 Wenhua West Road, Jinan, China.,Reproductive Hospital Affiliated to Shandong University, 157 Jingliu Road, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, 157 Jingliu Road, Jinan, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, 157 Jingliu Road, Jinan, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, 845 Lingshan Road, Shanghai, China
| |
Collapse
|
7
|
Mesa AM, Mao J, Nanjappa MK, Medrano TI, Tevosian S, Yu F, Kinkade J, Lyu Z, Liu Y, Joshi T, Wang D, Rosenfeld CS, Cooke PS. Mice lacking uterine enhancer of zeste homolog 2 have transcriptomic changes associated with uterine epithelial proliferation. Physiol Genomics 2020; 52:81-95. [PMID: 31841397 PMCID: PMC7052568 DOI: 10.1152/physiolgenomics.00098.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 01/16/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone methyltransferase that suppresses gene expression. Previously, we developed a conditional null model where EZH2 is knocked out in uterus. Deletion of uterine EZH2 increased proliferation of luminal and glandular epithelial cells. Herein, we used RNA-Seq in wild-type (WT) and EZH2 conditional knockout (Ezh2cKO) uteri to obtain mechanistic insights into the gene expression changes that underpin the pathogenesis observed in these mice. Ovariectomized adult Ezh2cKO mice were treated with vehicle (V) or 17β-estradiol (E2; 1 ng/g). Uteri were collected at postnatal day (PND) 75 for RNA-Seq or immunostaining for epithelial proliferation. Weighted gene coexpression network analysis was used to link uterine gene expression patterns and epithelial proliferation. In V-treated mice, 88 transcripts were differentially expressed (DEG) in Ezh2cKO mice, and Bmp5, Crabp2, Lgr5, and Sprr2f were upregulated. E2 treatment resulted in 40 DEG with Krt5, Krt15, Olig3, Crabp1, and Serpinb7 upregulated in Ezh2cKO compared with control mice. Transcript analysis relative to proliferation rates revealed two module eigengenes correlated with epithelial proliferation in WT V vs. Ezh2cKO V and WT E2 vs. Ezh2cKO E2 mice, with a positive relationship in the former and inverse in the latter. Notably, the ESR1, Wnt, and Hippo signaling pathways were among those functionally enriched in Ezh2cKO females. Current results reveal unique gene expression patterns in Ezh2cKO uterus and provide insight into how loss of this critical epigenetic regulator assumingly contributes to uterine abnormalities.
Collapse
Affiliation(s)
- Ana M Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
- Grupo de Investigación en Génetica, Mejoramiento y Modelación Animal-GaMMA, Universidad de Antioquia, Medellín, Colombia
| | - Jiude Mao
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
- Biomedical Sciences, University of Missouri, Columbia, Missouri
| | | | - Theresa I Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Sergei Tevosian
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Missouri
| | - Jessica Kinkade
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
- Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Zhen Lyu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri
| | - Yang Liu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
- Informatics Institute, University of Missouri, Columbia; Missouri
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri
- Informatics Institute, University of Missouri, Columbia; Missouri
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, Missouri
| | - Duolin Wang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri
| | - Cheryl S Rosenfeld
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
- Biomedical Sciences, University of Missouri, Columbia, Missouri
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Missouri
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| |
Collapse
|
8
|
Cui Z, Liu JX, Gao YL, Zhu R, Yuan SS. LncRNA-Disease Associations Prediction Using Bipartite Local Model With Nearest Profile-Based Association Inferring. IEEE J Biomed Health Inform 2019; 24:1519-1527. [PMID: 31478878 DOI: 10.1109/jbhi.2019.2937827] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is much evidence that long non-coding RNA (lncRNA) is associated with many diseases. However, it is time-consuming and expensive to identify meaningful lncRNA-disease associations (LDAs) through medical or biological experiments. Therefore, investigating how to identify more meaningful LDAs is necessary, and at the same time it is conducive to the prevention, diagnosis and treatment of complex diseases. Considering the limitations of some current prediction models, a novel model based on bipartite local model with nearest profile-based association inferring, BLM-NPAI, is developed for predicting LDAs. This model predicts novel LDAs from the lncRNA side and the disease side, respectively. More importantly, for some lncRNAs and diseases without any association, the model can also be predicted by their nearest neighbors. Leave-one-out cross validation (LOOCV) and 5-fold cross validation are implemented for BLM-NPAI to evaluate the performance of this model. Our model is superior to current advanced methods in most cases. In addition, to verify the validity and reliability of BLM-NPAI, three disease cases and three lncRNA cases are analyzed to further evaluate BLM-NPAI. Finally, these predicted novel LDAs are confirmed by using the LncRNA-disease database.
Collapse
|
9
|
A Novel Probability Model for LncRNA⁻Disease Association Prediction Based on the Naïve Bayesian Classifier. Genes (Basel) 2018; 9:genes9070345. [PMID: 29986541 PMCID: PMC6071012 DOI: 10.3390/genes9070345] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/24/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
Abstract
An increasing number of studies have indicated that long-non-coding RNAs (lncRNAs) play crucial roles in biological processes, complex disease diagnoses, prognoses, and treatments. However, experimentally validated associations between lncRNAs and diseases are still very limited. Recently, computational models have been developed to discover potential associations between lncRNAs and diseases by integrating multiple heterogeneous biological data; this has become a hot topic in biological research. In this article, we constructed a global tripartite network by integrating a variety of biological information including miRNA–disease, miRNA–lncRNA, and lncRNA–disease associations and interactions. Then, we constructed a global quadruple network by appending gene–lncRNA interaction, gene–disease association, and gene–miRNA interaction networks to the global tripartite network. Subsequently, based on these two global networks, a novel approach was proposed based on the naïve Bayesian classifier to predict potential lncRNA–disease associations (NBCLDA). Comparing with the state-of-the-art methods, our new method does not entirely rely on known lncRNA–disease associations, and can achieve a reliable performance with effective area under ROC curve (AUCs)in leave-one-out cross validation. Moreover, in order to further estimate the performance of NBCLDA, case studies of colorectal cancer, prostate cancer, and glioma were implemented in this paper, and the simulation results demonstrated that NBCLDA can be an excellent tool for biomedical research in the future.
Collapse
|
10
|
Li BL, Wan XP. The role of lncRNAs in the development of endometrial carcinoma. Oncol Lett 2018; 16:3424-3429. [PMID: 30127944 DOI: 10.3892/ol.2018.9065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/03/2017] [Indexed: 01/23/2023] Open
Abstract
Endometrial carcinoma (EC) is one of the most common types of gynecological cancer. Long noncoding RNAs (lncRNAs) are associated with the carcinogenesis and progression of EC. In the following review, the emerging role of lncRNAs in EC initiation and progression is considered. The profile of lncRNAs is becoming higher as the contribution of lncRNAs to carcinogenesis through diverse mechanisms is being increasingly recognized, including in EC. A number of lncRNA-profiling studies have identified aberrantly expressed lncRNAs in EC tissue, and the regulatory network associated with these lncRNAs may be critical in EC progression. Additionally, certain lncRNAs may have diagnostic and/or prognostic significance. The potential function of lncRNAs as prospective therapeutic and prognostic targets in EC will be evaluated.
Collapse
Affiliation(s)
- Bi-Lan Li
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| | - Xiao-Ping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| |
Collapse
|
11
|
Chen X, Yan CC, Zhang X, You ZH. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 2017; 18:558-576. [PMID: 27345524 PMCID: PMC5862301 DOI: 10.1093/bib/bbw060] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Indexed: 02/07/2023] Open
Abstract
LncRNAs have attracted lots of attentions from researchers worldwide in recent decades. With the rapid advances in both experimental technology and computational prediction algorithm, thousands of lncRNA have been identified in eukaryotic organisms ranging from nematodes to humans in the past few years. More and more research evidences have indicated that lncRNAs are involved in almost the whole life cycle of cells through different mechanisms and play important roles in many critical biological processes. Therefore, it is not surprising that the mutations and dysregulations of lncRNAs would contribute to the development of various human complex diseases. In this review, we first made a brief introduction about the functions of lncRNAs, five important lncRNA-related diseases, five critical disease-related lncRNAs and some important publicly available lncRNA-related databases about sequence, expression, function, etc. Nowadays, only a limited number of lncRNAs have been experimentally reported to be related to human diseases. Therefore, analyzing available lncRNA–disease associations and predicting potential human lncRNA–disease associations have become important tasks of bioinformatics, which would benefit human complex diseases mechanism understanding at lncRNA level, disease biomarker detection and disease diagnosis, treatment, prognosis and prevention. Furthermore, we introduced some state-of-the-art computational models, which could be effectively used to identify disease-related lncRNAs on a large scale and select the most promising disease-related lncRNAs for experimental validation. We also analyzed the limitations of these models and discussed the future directions of developing computational models for lncRNA research.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China
- Corresponding authors. Xing Chen, School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China. E-mail: ; Zhu-Hong You, School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China. E-mail:
| | | | - Xu Zhang
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, China
- Corresponding authors. Xing Chen, School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China. E-mail: ; Zhu-Hong You, School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China. E-mail:
| | - Zhu-Hong You
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
12
|
Chen BJ, Byrne FL, Takenaka K, Modesitt SC, Olzomer EM, Mills JD, Farrell R, Hoehn KL, Janitz M. Transcriptome landscape of long intergenic non-coding RNAs in endometrial cancer. Gynecol Oncol 2017; 147:654-662. [DOI: 10.1016/j.ygyno.2017.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/07/2017] [Accepted: 10/03/2017] [Indexed: 12/27/2022]
|
13
|
Wang Q, Wang N, Cai R, Zhao F, Xiong Y, Li X, Wang A, Lin P, Jin Y. Genome-wide analysis and functional prediction of long non-coding RNAs in mouse uterus during the implantation window. Oncotarget 2017; 8:84360-84372. [PMID: 29137430 PMCID: PMC5663602 DOI: 10.18632/oncotarget.21031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/06/2017] [Indexed: 12/17/2022] Open
Abstract
Establishment of the receptive uterus is a crucial step for embryo implantation. In this study, the expression profiles and characterization of long non-coding RNAs (lncRNAs) in pregnant mouse uteri on day 4, day 5 at implantation sites and inter-implantation sites were conducted using RNA-seq. A total of 7,764 putative lncRNA transcripts were identified, including 6,179 known lncRNA transcripts and 1,585 novel lncRNA transcripts. Bioinformatics analysis of the cis and trans lncRNA targets showed that the differentially expressed lncRNAs were mainly involved in tissue remodelling, immune response and metabolism-related processes, indicating that lncRNAs could be involved in the regulation of embryo implantation. We also discovered that differentially expressed lncRNAs might regulate multiple signalling pathways that play an important role in the regulation of embryo implantation. In addition, nine known lncRNAs and four novel lncRNAs were randomly selected and validated by qRT-PCR. The expression of Tug1, Neat1, Gas5, Malat1, H19 and Rmst were significantly regulated in the mouse uterus during the implantation window. Our results are the first to systematically identify lncRNAs in the mouse uterus and provide a catalogue of lncRNAs for further understanding their functions in pregnant mouse uteri during the implantation window.
Collapse
Affiliation(s)
- Qi Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Nan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Cai
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fan Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongjie Xiong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
14
|
Zhao L, Li Z, Chen W, Zhai W, Pan J, Pang H, Li X. H19 promotes endometrial cancer progression by modulating epithelial-mesenchymal transition. Oncol Lett 2016; 13:363-369. [PMID: 28123568 DOI: 10.3892/ol.2016.5389] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/07/2016] [Indexed: 12/21/2022] Open
Abstract
Endometrial cancer is one of the most common types of gynecological malignancy worldwide. Novel biomarkers and therapeutic targets are imperative for improving patients' survival. Previous studies have suggested the long non-coding RNA H19 as a potential cancer biomarker. To investigate the role of H19 in endometrial cancer, the present study examined the expression pattern of H19 in endometrial cancer tissues by quantitative polymerase chain reaction, and characterized its function in the endometrial cancer cell line via knocking down its expression with small interfering RNAs. It was found that H19 level was significantly higher in tumor tissues than in paratumoral tissues. Knockdown of H19 did not affect the growth rate of HEC-1-B endometrial cancer cells, but significantly suppressed in vitro migration and invasion of HEC-1-B cells. Furthermore, H19 downregulation decreased Snail level and increased E-cadherin expression without affecting vimentin level, indicating partial reversion of epithelial-mesenchymal transition (EMT). The present findings suggested that H19 contributed to the aggressiveness of endometrial cancer by modulating EMT process.
Collapse
Affiliation(s)
- Le Zhao
- Center for Translational Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhen Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Chen
- Center for Laboratory Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wen Zhai
- Center for Laboratory Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jingjing Pan
- Center for Laboratory Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huan Pang
- Center for Laboratory Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
15
|
Jiang Y, Malouf GG, Zhang J, Zheng X, Chen Y, Thompson EJ, Weinstein JN, Yuan Y, Spano JP, Broaddus R, Tannir NM, Khayat D, Lu KH, Su X. Long non-coding RNA profiling links subgroup classification of endometrioid endometrial carcinomas with trithorax and polycomb complex aberrations. Oncotarget 2016; 6:39865-76. [PMID: 26431491 PMCID: PMC4741866 DOI: 10.18632/oncotarget.5399] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/29/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Integrative analysis of endometrioid endometrial carcinoma (EEC) using multiple platforms has distinguished four molecular subgroups. However, the landscape of expressed long non-coding RNAs (lncRNA) and their role in charting EEC subgroups and determining clinical aggressiveness remain largely unknown. RESULTS Using stringent criteria, we identified 1,931 expressed lncRNAs and predicted potential drivers through integrative analysis. Unsupervised clustering of lncRNA expression revealed three robust categories: basal-like, luminal-like and CTNNB1-enriched subgroups. Basal-like subgroup was enriched for aggressive tumors with higher pathological grade (p < 0.0001), TNM stage (p = 0.01), and somatic mutations in trithorax-group genes (MLL, MLL2 and MLL3); and it overexpressed polycomb genes EZH2 and CBX2. In contrast to the luminal-like subgroup, progesterone (PGR) and estrogen receptor (ESR1) genes were highly down-regulated in the EEC basal-like subgroup. Consistent with its enrichment for CTNNB1 mutations (69%), lncRNA profile of the CTNNB1-enriched EEC subgroup was highly similar to that of the CTNNB1-enriched liver cancer subgroup. MATERIALS AND METHODS We performed integrative analysis of lncRNAs in EEC using The Cancer Genome Atlas (TCGA) molecular RNAseq profiles of 191 primary tumors for which genomic data were also available. We established lncRNA subgroup classification, correlated it with chromatin modifying gene expression, and described correlations between our lncRNA classification and clinico-genomic tumor features. CONCLUSIONS Our results reveal the utility of systematic characterization of clinically annotated EEC in three clinically relevant subgroups. They also highlight the convergence of aberrations in polycomb- and trithorax-group genes in aggressive basal EEC subtypes, providing a rationale for further investigation of epigenetic therapy in this setting.
Collapse
Affiliation(s)
- Yunyun Jiang
- Department of Gynecologic Oncology and Reproductive Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel G Malouf
- Department of Medical Oncology, Groupe Hospitalier Pitié-Salpêtrière, University Pierre and Marie Curie (Paris VI), Institut Universitaire de Cancérologie, AP-HP, Paris, France
| | - Jianping Zhang
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yunxin Chen
- Department of Genitourinary Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Erika J Thompson
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ying Yuan
- Department of Biostatistics, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jean-Philippe Spano
- Department of Medical Oncology, Groupe Hospitalier Pitié-Salpêtrière, University Pierre and Marie Curie (Paris VI), Institut Universitaire de Cancérologie, AP-HP, Paris, France
| | - Russell Broaddus
- Department of Pathology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - David Khayat
- Department of Medical Oncology, Groupe Hospitalier Pitié-Salpêtrière, University Pierre and Marie Curie (Paris VI), Institut Universitaire de Cancérologie, AP-HP, Paris, France
| | - Karen H Lu
- Department of Gynecologic Oncology and Reproductive Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Expanding the p53 regulatory network: LncRNAs take up the challenge. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015. [PMID: 26196323 DOI: 10.1016/j.bbagrm.2015.07.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are rapidly emerging as important regulators of gene expression in a wide variety of physiological and pathological cellular processes. In particular, a number of studies revealed that some lncRNAs participate in the p53 pathway, the unquestioned protagonist of tumor suppressor response. Indeed, several lncRNAs are not only part of the large pool of genes coordinated by p53 transcription factor, but are also required by p53 to fine-tune its response and to fully accomplish its tumor suppressor program. In this review we will discuss the current and fast growing knowledge about the contribution of lncRNAs to the complexity of the p53 network, the different mechanisms by which they affect gene regulation in this context, and their involvement in cancer. The incipient impact of lncRNAs in the p53 biological response may encourage the development of therapies and diagnostic methods focused on these noncoding molecules. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
|
17
|
Serviss JT, Johnsson P, Grandér D. An emerging role for long non-coding RNAs in cancer metastasis. Front Genet 2014; 5:234. [PMID: 25101115 PMCID: PMC4103511 DOI: 10.3389/fgene.2014.00234] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 07/01/2014] [Indexed: 12/23/2022] Open
Abstract
Metastasis is a multistep process beginning with the dissemination of tumor cells from a primary site and leading to secondary tumor development in an anatomically distant location. Although significant progress has been made in understanding the molecular characteristics of metastasis, many questions remain regarding the intracellular mechanisms governing transition through the various metastatic stages. Long non-coding RNAs (lncRNAs) are capable of modulating both transcriptional and post-transcriptional regulation, and thus, coordinating a wide array of diverse cellular processes. Current evidence indicates that lncRNAs may also play a crucial role in the metastatic process through regulation of metastatic signaling cascades as well as interaction with specific metastatic factors. Here we summarize a subset of lncRNAs with proposed roles in metastasis and, when applicable, highlight the mechanism by which they function.
Collapse
Affiliation(s)
- Jason T Serviss
- Grander Lab, Department of Oncology and Pathology, Karolinska Institutet Stockholm, Sweden
| | - Per Johnsson
- Grander Lab, Department of Oncology and Pathology, Karolinska Institutet Stockholm, Sweden
| | - Dan Grandér
- Grander Lab, Department of Oncology and Pathology, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
18
|
Raouf A, Sun Y, Chatterjee S, Basak P. The biology of human breast epithelial progenitors. Semin Cell Dev Biol 2012; 23:606-12. [PMID: 22609813 DOI: 10.1016/j.semcdb.2012.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/28/2012] [Accepted: 04/25/2012] [Indexed: 12/21/2022]
Abstract
Current evidence suggests that similar to other tissues in the human body mammary epithelia cells are being maintained by the unique properties of stem cells, undifferentiated as well as lineage-restricted progenitors. Because of their longevity, proliferation and differentiation potentials these primitive breast epithelial cells are likely targets of transforming mutations that can cause them to act as cancer initiating cells. In this context, understanding the molecular mechanisms that regulate the normal functions of the human breast epithelial stem cells and progenitors and how alterations to these same mechanisms can confer a cancer stem cell phenotype on these rare cell populations is crucial to the development of new and more effective therapies again breast cancer. This review article will examine the current state of knowledge about the isolation and characterization of human breast epithelial progenitors and their relevance to breast cancer research.
Collapse
Affiliation(s)
- Afshin Raouf
- Department of Immunology, Faculty of Medicine, University of Manitoba and Manitoba Institute of Cell Biology, CancerCare Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
19
|
Ellatif SKA, Gutschner T, Diederichs S. Long Noncoding RNA Function and Expression in Cancer. REGULATORY RNAS 2012:197-226. [DOI: 10.1007/978-3-642-22517-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
20
|
Devor EJ, Hovey AM, Goodheart MJ, Ramachandran S, Leslie KK. microRNA expression profiling of endometrial endometrioid adenocarcinomas and serous adenocarcinomas reveals profiles containing shared, unique and differentiating groups of microRNAs. Oncol Rep 2011; 26:995-1002. [PMID: 21725615 DOI: 10.3892/or.2011.1372] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/23/2011] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRNAs) control a multitude of pathways in human cancers. Differential expression of miRNAs among different histological types of tumors within the same type of tissue offers insight into the mechanism of pathogenesis and may help to direct treatment to improve prognosis. We assessed expression of 667 miRNAs in endometrial endometrioid and serous adenocarcinomas using RNA extracted from benign endometrium as well as from primary endometrial tumors. Quantitative miRNA profiling of endometrial adenocarcinomas revealed four overlapping groups of significantly overexpressed and underexpressed miRNAs. The first group was composed of 20 miRNAs significantly dysregulated in both adenocarcinoma types compared with benign endometrium, two groups were composed of miRNAs significantly dysregulated in either endometrioid adenocarcinomas or in serous adenocarcinomas compared with benign endometrium, and the fourth group was composed of 17 miRNAs that significantly distinguished between endometrioid adenocarcinomas and serous adenocarcinomas themselves. Validation of the expression levels of the selected miRNAs was carried out in a second panel composed of ten endometrioid and five serous tumors. Experimentally validated mRNA targets of these dysregulated miRNAs were identified using published sources, whereas TargetScan was used to predict targets of miRNAs in the first and fourth profile groups. These validated and potential miRNA target lists were filtered using published lists of genes displaying significant overexpression or underexpression in endometrial cancers compared to benign endometrium. Our results revealed a number of dysregulated miRNAs that are commonly found in endometrial (and other) cancers as well as several dysregulated miRNAs not previously identified in endometrial cancers. Understanding these differences may permit the development of both prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Eric J Devor
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, 3234 MERF, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
21
|
Differential expression of H19 and vitamin D3 upregulated protein 1 as a mechanism of the modulatory effects of high virgin olive oil and high corn oil diets on experimental mammary tumours. Eur J Cancer Prev 2009; 18:153-61. [PMID: 19337063 DOI: 10.1097/cej.0b013e3283136308] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dietary lipids have a role in the aetiology of breast cancer. We have reported earlier that a high corn oil diet downregulates H19 and vitamin D3 upregulated protein 1 (VDUP1) messenger RNA (mRNA) expression in rat dimethylbenz (alpha) anthracene-induced mammary adenocarcinomas in comparison with the control low-fat diet, this effect being associated with a higher degree of tumour malignancy. This result was compatible with the stimulating effect of this diet. In this study we have investigated the influence of a high extra virgin olive diet on H19 and VDUP1 mRNA and/or protein expression. We have shown earlier that this high-fat diet confers to the tumours a more benign phenotype in accordance with its potential protective effect on mammary cancer. We have also analysed the effects on the mRNA and protein expression of insulin-like growth factor-2 , in close relation with H19, and the expression and activity of the thioredoxin protein, negatively regulated by VDUP1. mRNA and protein expression were analysed by chemiluminescent northern blot and western blot, respectively. Thioredoxin activity was determined by the insulin-reducing assay. The results showed that the high olive oil diet does not change the tumour expression of H19 and VDUP1. Moreover, tumours from the animals fed this diet displayed higher levels of the insulin-like growth factor-2 mRNAs, which are related to a higher rate of degradation or a lower traducibility. Finally, tumour expression and activity levels of thioredoxin-1 protein did not change irrespective of the diet. These results suggest that the differential effects of high olive oil and high corn oil diets on mammary cancer are exerted by means of a different, specific influence on gene expression.
Collapse
|
22
|
Mimouni NK, Lyngso RB, Griffiths-Jones S, Hein J. An Analysis of Structural Influences on Selection in RNA Genes. Mol Biol Evol 2008; 26:209-16. [DOI: 10.1093/molbev/msn240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
23
|
A novel H19 antisense RNA overexpressed in breast cancer contributes to paternal IGF2 expression. Mol Cell Biol 2008; 28:6731-45. [PMID: 18794369 DOI: 10.1128/mcb.02103-07] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The H19/IGFf2 locus belongs to a large imprinted domain located on human chromosome 11p15.5 (homologue to mouse distal chromosome 7). The H19 gene is expressed from the maternal allele, while IGF2 is paternally expressed. Natural antisense transcripts and intergenic transcription have been involved in many aspects of eukaryotic gene expression, including genomic imprinting and RNA interference. However, apart from the identification of some IGF2 antisense transcripts, few data are available on that topic at the H19/IGF2 locus. We identify here a novel transcriptional activity at both the human and the mouse H19/IGF2 imprinted loci. This activity occurs antisense to the H19 gene and has the potential to produce a single 120-kb transcript that we called the 91H RNA. This nuclear and short-lived RNA is not imprinted in mouse but is expressed predominantly from the maternal allele in both mice and humans within the H19 gene region. Moreover, the transcript is stabilized in breast cancer cells and overexpressed in human breast tumors. Finally, knockdown experiments showed that, in humans, 91H, rather than affecting H19 expression, regulates IGF2 expression in trans.
Collapse
|
24
|
Zhu Y, Zhang W, Huo Z, Zhang Y, Xia Y, Li B, Kong X, Hu L. A novel locus for maternally inherited human gingival fibromatosis at chromosome 11p15. Hum Genet 2006; 121:113-23. [PMID: 17075716 DOI: 10.1007/s00439-006-0283-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Accepted: 10/11/2006] [Indexed: 12/22/2022]
Abstract
Human isolated gingival fibromatosis is an oral disorder characterized by a slowly progressive benign enlargement of gingival tissues. The most common genetic form, hereditary gingival fibromatosis (HGF), is usually transmitted as an autosomal dominant trait. We report here for the first time a newly identified maternally inherited gingival fibromatosis in two unrelated Chinese families and mapped this disease locus to human chromosome 11p15 with a maximum two point LOD score of 8.70 at D11S4046 (theta = 0) for family 1 and of 6.02 at D11S1318 for family 2. Haplotype analysis placed the critical region in the interval defined by D11S1984 and D11S1338. A cluster of maternally expressed genes is within this critical region. We screened individuals in these two families for mutations for all known maternally expressed genes within this region. None was found either within the coding sequence or at the intron-exon boundary of these genes. Neither did we detect any loss of imprinting in three informative imprinted genes including H19, KCNQ1 downstream neighbor (KCNQ1DN) and cyclin-dependent kinase inhibitor 1C (CDKN1C). However, gene expression profile analysis revealed reduced expression of hemoglobin beta (HBB), hemoglobin delta (HBD), hemoglobin gamma A (HBG1) and hemoglobin gamma G (HBG2) genes at disease locus in HGF patients. This study suggests that genome imprinting might affect the development of HGF.
Collapse
Affiliation(s)
- Yufei Zhu
- Health Science Institute, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Recent years have brought a dramatic change in our understanding of the role of ribonucleic acids (RNAs) within the cell. In addition to the already well-known classes of RNAs that take part in the transmission of genetic information from DNA to proteins, a new highly heterogeneous group of RNA molecules has emerged. The regulatory nonprotein-coding RNAs (npcRNAs) have been shown to be involved in modulation of gene expression on both the transcriptional and post-transcriptional level. They participate in mechanisms of chromatin modification, regulation of transcription factor activity, and influencing mRNA stability, processing, and translation. npcRNAs are key factors in genetic imprinting, dosage compensation of X-chromosome-linked genes, and many processes of differentiation and development.
Collapse
Affiliation(s)
- M Szymański
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12, 61-704 Poznan, Poland.
| | | |
Collapse
|
26
|
Zhu B, Huang X, Chen J, Lu Y, Chen Y, Zhao J. Methylation changes of H19 gene in sperms of X-irradiated mouse and maintenance in offspring. Biochem Biophys Res Commun 2005; 340:83-9. [PMID: 16359639 DOI: 10.1016/j.bbrc.2005.11.154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Accepted: 11/17/2005] [Indexed: 10/25/2022]
Abstract
The nature of imprinting is just differential methylation of imprinted genes. Unlike the non-imprinted genes, the methylation pattern of imprinted genes established during the period of gametogenesis remains unchangeable after fertilization and during embryo development. It implies that gametogenesis is the key stage for methylation pattern of imprinted genes. The imprinting interfered by exogenous factors during this stage could be inherited to offspring and cause genetic effect. Now many studies have proved that ionizing irradiation could disturb DNA methylation. Here we choose BALB/c mice as a research model and X-ray as interfering source to further clarify it. We discovered that the whole-body irradiation of X-ray to male BALB/c mice could influence the methylation pattern of H19 gene in sperms, which resulted in some cytosines of partial CpG islands in the imprinting control region could not transform to methylated cytosines. Furthermore, by copulating the interfered male mice with normal female, we analyzed the promoter methylation pattern of H19 in offspring fetal liver and compared the same to the pattern of male parent in sperms. We found that the majority of methylation changes in offspring liver were related to the ones in their parent sperms. Our data proved that the changes of the H19 gene methylation pattern interfered by X-ray irradiation could be transmitted and maintained in the first-generation offspring.
Collapse
Affiliation(s)
- Bin Zhu
- Division of Radiation Medicine, University of Suzhou, Suzhou 215123, PR China
| | | | | | | | | | | |
Collapse
|