1
|
Chen A, Li S, Gui J, Zhou H, Zhu L, Mi Y. Mechanisms of tropomyosin 3 in the development of malignant tumors. Heliyon 2024; 10:e35723. [PMID: 39170461 PMCID: PMC11336884 DOI: 10.1016/j.heliyon.2024.e35723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Tropomyosin (TPM) is an important regulatory protein that binds to actin in fine myofilaments, playing a crucial role in the regulation of muscle contraction. TPM3, as one of four tropomyosin genes, is notably prevalent in eukaryotic cells. Traditionally, abnormal gene expression of TPM3 has been exclusively associated with myopathy. However, recent years have witnessed a surge in studies highlighting the close correlation between abnormal expression of TPM3 and the onset, progression, metastasis, and prognosis of various malignant tumors. In light of this, investigating the mechanisms underlying the pathogenetic role of TPM3 holds significant promise for early diagnosis and more effective treatment strategies. This article aims to provide an insightful review of the structural characteristics of TPM3 and its intricate role in the occurrence and development of malignant tumors.
Collapse
Affiliation(s)
- Anjie Chen
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Sixin Li
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Jiandong Gui
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Hangsheng Zhou
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| |
Collapse
|
2
|
Luedersen J, Stadt UZ, Richter J, Oschlies I, Klapper W, Rosenwald A, Kalinova M, Simonitsch-Klupp I, Siebert R, Zimmermann M, Qi M, Nakel J, Scheinemann K, Knörr F, Attarbaschi A, Kabickova E, Woessmann W, Damm-Welk C. Variant ALK-fusion positive anaplastic large cell lymphoma (ALCL): A population-based paediatric study of the NHL-BFM study group. Br J Haematol 2024; 204:1894-1898. [PMID: 38279625 DOI: 10.1111/bjh.19308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Frequency, distribution and prognostic meaning of ALK-partner genes other than NPM1 in ALK-positive anaplastic large-cell lymphoma (ALCL) are unknown. Forty-nine of 316 ALCL diagnosed in the NHL-BFM study group showed no nuclear ALK expression suggestive of a variant ALK-partner; 41 were analysed by genomic capture high-throughput sequencing or specific RT-PCRs. NPM1::ALK was detected in 13 cases. Among the 28 patients with a non-NPM1::ALK-fusion partner, ATIC (n = 8; 29%) and TPM3 (n = 9; 32%) were the most common. Five of eight patients with ATIC::ALK-positive ALCL relapsed, none of nine with TPM3::ALK. Variant ALK-partners are rare and potentially associated with different prognoses.
Collapse
Affiliation(s)
- Jette Luedersen
- Paediatric Haematology and Oncology and NHL-BFM Study Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Zur Stadt
- Paediatric Haematology and Oncology and CoALL Study Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Richter
- Department of Pathology, Haematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ilske Oschlies
- Department of Pathology, Haematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Wolfram Klapper
- Department of Pathology, Haematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Rosenwald
- Department of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Marketa Kalinova
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University Prague and University Hospital in Motol, Prague, Czech Republic
- Department of Pathology, 3rd Faculty of Medicine, Charles University Prague and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | | | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Centre, Ulm, Germany
| | - Martin Zimmermann
- Department of Paediatric Haematology and Oncology, Hannover Medical School, and NHL-BFM Study Centre, Hannover, Germany
| | - Minyue Qi
- Bioinformatics Core, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | - Katrin Scheinemann
- Division of Paediatric Haematology/Oncology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Faculty of Health Science and Medicine, University of Lucerne, Lucerne, Switzerland
- Department of Paediatrics, McMaster Children's Hospital and McMaster University, Hamilton, Ontario, Canada
| | - Fabian Knörr
- Paediatric Haematology and Oncology and NHL-BFM Study Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Centre HaTriCS4, University Medical Centre Hamburg- Eppendorf, Hamburg, Germany
| | - Andishe Attarbaschi
- Department of Paediatric Haematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Edita Kabickova
- Department of Pediatric Hematology and Oncology, Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Wilhelm Woessmann
- Paediatric Haematology and Oncology and NHL-BFM Study Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Damm-Welk
- Paediatric Haematology and Oncology and NHL-BFM Study Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Zhu Y, Liu N, Guo W, Pu X, Guo H, Gan W, Li D. ALK rearrangement in TFE3-positive renal cell carcinoma: Alternative diagnostic option to exclude Xp11.2 translocation carcinoma. Pathol Res Pract 2020; 216:153286. [PMID: 33197836 DOI: 10.1016/j.prp.2020.153286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
Abstract
Anaplastic lymphoma kinase (ALK)-rearranged renal cell carcinoma (RCC) is a rare subtype of RCC with gene fusion involving ALK at 2p23. It was first included in the renal tumor classification system by WorldHealth organization (WHO) as a distinct emerging/provisional renal entity in 2016. To date, only a few cases of ALK-RCC have been reported. Here, we report an exceptional case of ALK-RCC in a 15-year-old girl and review the literature. The patient presented with gross hematuria and a tumor measured 7 cm × 6 cm was found in the left kidney by imaging examination. Then a laparoscopic radical nephrectomy combined with local lymph node dissection was performed. The pathologic stage of the tumor was pT1bN1Mx and postoperative pathology showed that the tumor corresponded to WHO/ISUP grade 3-4. Immunohistochemistry (IHC) demonstrated moderate nuclear expression of TFE3 protein. Interestingly, ALK gene rearrangement rather than TFE3 gene rearrangement was observed by fluorescence in situ hybridization (FISH). Now the girl is still alive without evidence of recurrence for 10 months follow-up. In conclusion, the positive expression of nuclear TFE3 in immunohistochemistry may be deceptive, the detection of ALK could be a diagnostic option if TFE3 was negative in FISH study. Large-scale and long-term studies are still needed to explore the biological behavior and molecular characteristic of ALK-RCC.
Collapse
Affiliation(s)
- Yiqi Zhu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Ning Liu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wei Guo
- Department of Urology, Drum Tower Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China; Department of Urology, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Xiaohong Pu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Weidong Gan
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Clinical, Histologic, and Molecular Characteristics of Anaplastic Lymphoma Kinase-positive Primary Cutaneous Anaplastic Large Cell Lymphoma. Am J Surg Pathol 2020; 44:776-781. [PMID: 32412717 DOI: 10.1097/pas.0000000000001449] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unlike systemic anaplastic large cell lymphoma, the vast majority of primary cutaneous anaplastic large cell lymphomas (C-ALCL) do not carry translocations involving the ALK gene and do not express ALK. Expression of ALK protein therefore strongly suggests secondary cutaneous involvement of a systemic anaplastic large cell lymphoma. Recent studies described a small subgroup of ALK-positive C-ALCL, but information on frequency, prognosis, and translocation partners is virtually lacking. A total of 6/309 (2%) C-ALCL patients included in the Dutch registry for cutaneous lymphomas between 1993 and 2019 showed immunohistochemical ALK expression. Clinical and histopathologic characteristics, immunophenotype and disease course were evaluated. Underlying ALK translocations were analyzed with anchored multiplex polymerase chain reaction-based targeted next-generation sequencing. Median age at diagnosis was 39 years (range: 16 to 53 y). All patients presented with a solitary lesion. Treatment with radiotherapy (n=5) or anthracycline-based chemotherapy (n=1) resulted in complete responses in all 6 patients. Three patients developed a relapse, of whom 2 extracutaneous. After a median follow-up of 41 months, 5 patients were alive without disease and 1 patient died of lymphoma. Immunohistochemically, 3 cases (50%) showed combined nuclear and cytoplasmic ALK expression with underlying NPM1-ALK fusions, while 3 cases (50%) showed solely cytoplasmic ALK expression with variant ALK fusion partners (TRAF1, ATIC, TPM3). ALK-positive C-ALCL is extremely uncommon, has a comparable favorable prognosis to ALK-negative C-ALCL, and should be treated in the same way with radiotherapy as first-line treatment.
Collapse
|
5
|
Wang Y, Gorlova OY, Gorlov IP, Zhu M, Dai J, Albanes D, Lam S, Tardon A, Chen C, Goodman GE, Bojesen SE, Landi MT, Johansson M, Risch A, Wichmann HE, Bickeboller H, Christiani DC, Rennert G, Arnold SM, Brennan P, Field JK, Shete S, Le Marchand L, Melander O, Brunnstrom H, Liu G, Hung RJ, Andrew AS, Kiemeney LA, Zienolddiny S, Grankvist K, Johansson M, Caporaso NE, Woll PJ, Lazarus P, Schabath MB, Aldrich MC, Stevens VL, Ma H, Jin G, Hu Z, Amos CI, Shen H. Association Analysis of Driver Gene-Related Genetic Variants Identified Novel Lung Cancer Susceptibility Loci with 20,871 Lung Cancer Cases and 15,971 Controls. Cancer Epidemiol Biomarkers Prev 2020; 29:1423-1429. [PMID: 32277007 PMCID: PMC8120681 DOI: 10.1158/1055-9965.epi-19-1085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/10/2019] [Accepted: 04/07/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND A substantial proportion of cancer driver genes (CDG) are also cancer predisposition genes. However, the associations between genetic variants in lung CDGs and the susceptibility to lung cancer have rarely been investigated. METHODS We selected expression-related single-nucleotide polymorphisms (eSNP) and nonsynonymous variants of lung CDGs, and tested their associations with lung cancer risk in two large-scale genome-wide association studies (20,871 cases and 15,971 controls of European descent). Conditional and joint association analysis was performed to identify independent risk variants. The associations of independent risk variants with somatic alterations in lung CDGs or recurrently altered pathways were investigated using data from The Cancer Genome Atlas (TCGA) project. RESULTS We identified seven independent SNPs in five lung CDGs that were consistently associated with lung cancer risk in discovery (P < 0.001) and validation (P < 0.05) stages. Among these loci, rs78062588 in TPM3 (1q21.3) was a new lung cancer susceptibility locus (OR = 0.86, P = 1.65 × 10-6). Subgroup analysis by histologic types further identified nine lung CDGs. Analysis of somatic alterations found that in lung adenocarcinomas, rs78062588[C] allele (TPM3 in 1q21.3) was associated with elevated somatic copy number of TPM3 (OR = 1.16, P = 0.02). In lung adenocarcinomas, rs1611182 (HLA-A in 6p22.1) was associated with truncation mutations of the transcriptional misregulation in cancer pathway (OR = 0.66, P = 1.76 × 10-3). CONCLUSIONS Genetic variants can regulate functions of lung CDGs and influence lung cancer susceptibility. IMPACT Our findings might help unravel biological mechanisms underlying lung cancer susceptibility.
Collapse
Affiliation(s)
- Yuzhuo Wang
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Olga Y Gorlova
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, Texas
| | - Ivan P Gorlov
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, Texas
| | - Meng Zhu
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Adonina Tardon
- Department of Public Health IUOPA, University of Oviedo, ISPA and CIBERESP, Oviedo, Spain
| | - Chu Chen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Gary E Goodman
- Public Health Sciences Division, Swedish Cancer Institute, Seattle, Washington
| | - Stig E Bojesen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mattias Johansson
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Angela Risch
- University of Salzburg, Department of Biosciences, Allergy-Cancer-BioNano Research Centre, Salzburg, Austria
- Division of Epigenomics and Cancer Risk Factors, DKFZ-German Cancer Research Center, Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Heunz-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig Maximilians University, Munich, Bavaria, Germany
- Helmholtz Zentrum Munchen, German Research Center for Environmental Health (GmbH), Institute of Epidemiology, Neuherberg, Germany
- Institute of Medical Statistics and Epidemiology, Technical University Munich, Munich, Germany
| | - Heike Bickeboller
- Department of Genetic Epidemiology, University Medical Center Goettingen, Goettingen, Germany
| | - David C Christiani
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Gad Rennert
- Technion Faculty of Medicine, Carmel Medical Center, Haifa, Israel
| | - Susanne M Arnold
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - John K Field
- Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research Programme, The University of Liverpool Institute of Translational Medicine, Liverpool, United Kingdom
| | - Sanjay Shete
- Department of Epidemiology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawai'i Cancer Center, Honolulu, Hawai'i
| | - Olle Melander
- Clinical Sciences, Lund University, Lund, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | | | - Geoffrey Liu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Rayjean J Hung
- Prosseman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Angeline S Andrew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Lambertus A Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umea, Sweden
| | | | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Penella J Woll
- Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Melinda C Aldrich
- Department of Medicine (Division of Genetic Medicine), Vanderbilt University Medical Center, Nashville, Tennessee
| | - Victoria L Stevens
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Hongxia Ma
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Christopher I Amos
- Department of Medicine, Epidemiology Section, Institute for Clinical and Translational Research, Baylor Medical College, Houston, Texas.
| | - Hongbing Shen
- Department of Epidemiology, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Woo CG, Yun SJ, Son SM, Lim YH, Lee OJ. Characteristics of Renal Cell Carcinoma Harboring TPM3-ALK Fusion. Yonsei Med J 2020; 61:262-266. [PMID: 32102128 PMCID: PMC7044692 DOI: 10.3349/ymj.2020.61.3.262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
The World Health Organization 2016 edition assigned anaplastic lymphoma kinase (ALK) rearrangement-associated renal cell carcinoma (ALK-RCC) as an emerging renal tumor entity. Identifying ALK-RCC is important because ALK inhibitors have been shown to be effective in treatment. Here, we report the case of a 14-year-old young man with ALK-RCC. Computed tomography revealed a well-demarcated 5.3-cm enhancing mass at the upper pole of the left kidney. There was no further history or symptoms of the sickle-cell trait. The patient underwent left radical nephrectomy. Pathologically, the mass was diagnosed as an unclassified RCC. Targeted next-generation sequencing identified a TPM3-ALK fusion gene. The present report and literature review demonstrate that TPM3-ALK RCC may be associated with distinct clinicopathological features. Microscopically, the tumors showed diffuse growth and tubulocystic changes with inflammatory cell infiltration. Tumor cells were dis-cohesive and epithelioid with abundant eosinophilic cytoplasm and cytoplasmic vacuoles. If morphological features and TFE3 expression are present in adolescent and young patients, molecular tests for ALK translocation should be performed. This awareness is critically important, because ALK rearrangement confers sensitivity to ALK inhibitors.
Collapse
Affiliation(s)
- Chang Gok Woo
- Department of Pathology, Chungbuk National University Hospital, Cheongju, Korea
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Seok Jung Yun
- Department of Urology, Chungbuk National University Hospital, Cheongju, Korea
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Seung Myoung Son
- Department of Pathology, Chungbuk National University Hospital, Cheongju, Korea
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Young Hyun Lim
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Ok Jun Lee
- Department of Pathology, Chungbuk National University Hospital, Cheongju, Korea
- Department of Pathology, Chungbuk National University College of Medicine, Cheongju, Korea.
| |
Collapse
|
7
|
Yao B, Qu S, Hu R, Gao W, Jin S, Ju J, Zhao Q. Delivery of platelet TPM3 mRNA into breast cancer cells via microvesicles enhances metastasis. FEBS Open Bio 2019; 9:2159-2169. [PMID: 31705785 PMCID: PMC6886296 DOI: 10.1002/2211-5463.12759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/03/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Platelets are implicated in the pathophysiology of breast and other cancers through their role in exchanging biomolecules with tumor cells in the tumor microenvironment. Such exchange results in tumor‐educated platelets with altered RNA expression profiles. Multiple lines of evidence indicate that platelet RNA profiles may be suitable as diagnostic biomarkers for cancer‐related biological processes. In this study, we characterized the gene expression signatures of platelets in breast cancer (BC) by high‐throughput sequencing and quantitative real‐time RT‐PCR. Our results indicate that the expression of TPM3 (tropomyosin 3) mRNA is significantly elevated in platelets from patients with BC compared with age‐matched healthy control subjects. Furthermore, up‐regulation of TPM3 mRNA in platelets was found to be significantly correlated with metastasis in patients with BC. Finally, we report that platelet TPM3 mRNA is delivered into BC cells through microvesicles and leads to enhanced migrative phenotype of BC cells. In summary, our findings suggest that the transfer of platelet TPM3 mRNA into cancer cells via microvesicles promotes cancer cell migration, and thus platelet‐derived TPM3 mRNA may be a suitable biomarker for early diagnosis of metastatic BC. Platelets are implicated in the pathophysiology of breast and other cancers through their role in exchanging biomolecules with tumor cells in the tumor microenvironment. In this study, we found that platelet TPM3 (tropomyosin 3) mRNA can be delivered into cancer cells via microvesicles to promote cancer cell migration. Platelet‐derived TPM3 mRNA may be a suitable biomarker for early diagnosis of metastatic breast cancer.![]()
Collapse
Affiliation(s)
- Bing Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Shuang Qu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Ruifeng Hu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Shidai Jin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, China
| | - Junyi Ju
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, China
| |
Collapse
|
8
|
Yang J, Dong L, Du H, Li XB, Liang YX, Liu GR. ALK-TPM3 rearrangement in adult renal cell carcinoma: a case report and literature review. Diagn Pathol 2019; 14:112. [PMID: 31627758 PMCID: PMC6798478 DOI: 10.1186/s13000-019-0879-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Translocation-associated renal cell carcinoma involving ALK (ALK-tRCC) is a rare subtype of adult renal cell carcinoma (RCC) reported in recent years. It was recognized as a group of emerging /provisional RCC in the latest World Health Organization's classification (2016). CASE PRESENTATION A new Chinese case of ALK-tRCC was reported. The patient was a 58-year-old man with a tumor in kidney. The tumor was composed of sheets of large cells with abundant eosinophilic cytoplasm and indistinct cell borders but conspicuous intracytoplasmic vacuoles. The nuclei were enlarged with a nucleolar of grade 4. Immunohistochemically, tumor cells were diffusely positive for PAX8, keratin (AE1/AE3), epithelial membrane antigen (EMA) and CK7. Fluorescent in situ hybridization (FISH) showed a rearrangement of ALK in tumor cells. CONCLUSION ALK-tRCC is a rare subtype of adult RCC. Its diagnosis is very difficult because the histological spectrum is very wide. We suggested that RCCs should be screened for ALK expression by immunohistochemistry (IHC) for the patient might benefit from ALK inhibitors therapy.
Collapse
Affiliation(s)
- Jing Yang
- Department of pathology, Guangzhou first people's hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China.
| | - Lei Dong
- Department of pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hong Du
- Department of pathology, Guangzhou first people's hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Xiu-Bo Li
- Department of pathology, Guangzhou first people's hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Yan-Xiao Liang
- Department of pathology, Guangzhou first people's hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Guo-Rong Liu
- Department of pathology, Guangzhou first people's hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| |
Collapse
|
9
|
Xu BS, Chen HY, Que Y, Xiao W, Zeng MS, Zhang X. ALKATI interacts with c-Myc and promotes cancer stem cell-like properties in sarcoma. Oncogene 2019; 39:151-163. [DOI: 10.1038/s41388-019-0973-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/11/2019] [Accepted: 05/16/2019] [Indexed: 12/30/2022]
|
10
|
Sharma GG, Mota I, Mologni L, Patrucco E, Gambacorti-Passerini C, Chiarle R. Tumor Resistance against ALK Targeted Therapy-Where It Comes From and Where It Goes. Cancers (Basel) 2018; 10:E62. [PMID: 29495603 PMCID: PMC5876637 DOI: 10.3390/cancers10030062] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a validated molecular target in several ALK-rearranged malignancies, particularly in non-small-cell lung cancer (NSCLC), which has generated considerable interest and effort in developing ALK tyrosine kinase inhibitors (TKI). Crizotinib was the first ALK inhibitor to receive FDA approval for ALK-positive NSCLC patients treatment. However, the clinical benefit observed in targeting ALK in NSCLC is almost universally limited by the emergence of drug resistance with a median of occurrence of approximately 10 months after the initiation of therapy. Thus, to overcome crizotinib resistance, second/third-generation ALK inhibitors have been developed and received, or are close to receiving, FDA approval. However, even when treated with these new inhibitors tumors became resistant, both in vitro and in clinical settings. The elucidation of the diverse mechanisms through which resistance to ALK TKI emerges, has informed the design of novel therapeutic strategies to improve patients disease outcome. This review summarizes the currently available knowledge regarding ALK physiologic function/structure and neoplastic transforming role, as well as an update on ALK inhibitors and resistance mechanisms along with possible therapeutic strategies that may overcome the development of resistance.
Collapse
Affiliation(s)
- Geeta Geeta Sharma
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
| | - Ines Mota
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy.
| | - Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
- Galkem Srl, Monza 20900, Italy.
| | - Enrico Patrucco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy.
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
- Galkem Srl, Monza 20900, Italy.
- Hematology and Clinical Research Unit, San Gerardo Hospital, Monza 20900, Italy.
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10124, Italy.
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Tabbò F, Pizzi M, Kyriakides PW, Ruggeri B, Inghirami G. Oncogenic kinase fusions: an evolving arena with innovative clinical opportunities. Oncotarget 2018; 7:25064-86. [PMID: 26943776 PMCID: PMC5041889 DOI: 10.18632/oncotarget.7853] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/24/2016] [Indexed: 01/08/2023] Open
Abstract
Cancer biology relies on intrinsic and extrinsic deregulated pathways, involving a plethora of intra-cellular and extra-cellular components. Tyrosine kinases are frequently deregulated genes, whose aberrant expression is often caused by major cytogenetic events (e.g. chromosomal translocations). The resulting tyrosine kinase fusions (TKFs) prompt the activation of oncogenic pathways, determining the biological and clinical features of the associated tumors. First reported half a century ago, oncogenic TKFs are now found in a large series of hematologic and solid tumors. The molecular basis of TKFs has been thoroughly investigated and tailored therapies against recurrent TKFs have recently been developed. This review illustrates the biology of oncogenic TKFs and their role in solid as well as hematological malignancies. We also address the therapeutic implications of TKFs and the many open issues concerning their clinical impact.
Collapse
Affiliation(s)
- Fabrizio Tabbò
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Marco Pizzi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.,General Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Peter W Kyriakides
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Bruce Ruggeri
- Pre-Clinical Discovery Biology, Incyte Corporation, Wilmington, DE, USA
| | - Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.,Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
Bodokh Y, Ambrosetti D, Kubiniek V, Tibi B, Durand M, Amiel J, Pertuit M, Barlier A, Pedeutour F. ALK-TPM3 rearrangement in adult renal cell carcinoma: Report of a new case showing loss of chromosome 3 and literature review. Cancer Genet 2017; 221:31-37. [PMID: 29405994 DOI: 10.1016/j.cancergen.2017.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 11/08/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
Seven cases of translocation-associated renal cell carcinoma involving ALK (ALK-tRCC) were referenced in the last World Health Organization's classification (2016), in a group of emerging/provisional RCC. The first three cases were pediatric, medullary-based, associated with sickle-cell trait and showed a fusion of ALK with VCL. Thirteen cases have been further described. They displayed clinical, morphological and genomic heterogeneity. Most of them occurred in adults. None of the patients was affected by sickle-cell disease. We report a new case of ALK-tRCC in a 55-year-old woman. Genomic profile showed losses of chromosomes 3, 9 and 14, anomalies often observed in clear cell RCC. VHL mutation or morphological features suggesting a clear cell RCC were not detected. We identified an unbalanced rearrangement of ALK and TPM3. Review of the literature identified similar features in our case and previously published cases: heterogeneous solid architecture, eosinophilic cells, mucinous cytoplasmic elements, rhabdoid cells and intracytoplasmic lumina. These elements may constitute the basis of a pathological definition of ALK-tRCC. Their observation in a RCC should lead to perform molecular detection of ALK rearrangement. This may have a crucial importance for metastatic patients treatment since ALK rearrangements confer sensitivity to tyrosine kinases inhibitors such as crizotinib.
Collapse
Affiliation(s)
- Yohan Bodokh
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France; Department of Urology, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Damien Ambrosetti
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France; Central Laboratory of Pathology, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Valérie Kubiniek
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France; Laboratory of Solid Tumor Genetics, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Branwel Tibi
- Department of Urology, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Matthieu Durand
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France; Department of Urology, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Jean Amiel
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France; Department of Urology, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Morgane Pertuit
- Aix Marseille Univ, APHM, INSERM, MMG, Conception, Laboratory of Molecular Biology, Marseille, France
| | - Anne Barlier
- Aix Marseille Univ, APHM, INSERM, MMG, Conception, Laboratory of Molecular Biology, Marseille, France; Laboratory of Molecular Biology, Hôpital la Conception, Aix Marseille Université, CNRS, CRN2M-UMR 7286, Marseille, France
| | - Florence Pedeutour
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France; Laboratory of Solid Tumor Genetics, University Hospital of Nice-Côte d'Azur University, Nice, France.
| |
Collapse
|
13
|
Takita J. The role of anaplastic lymphoma kinase in pediatric cancers. Cancer Sci 2017; 108:1913-1920. [PMID: 28756644 PMCID: PMC5623752 DOI: 10.1111/cas.13333] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 01/08/2023] Open
Abstract
The anaplastic lymphoma kinase (ALK) gene was initially identified as a fusion partner of the nucleophosmin gene in anaplastic large-cell lymphoma with t(2;5)(p23;q35) translocation, and then described with different genetic abnormalities in a number of tumors. Although ALK is known to be involved in the pathogenesis of neuroblastoma through activating mutations or gene amplification, its role in the pathogenesis of other pediatric cancers is still elusive. In addition to neuroblastoma, the high-grade amplification of ALK has been described in a subset of rhabdomyosarcoma cases. Normal ALK protein expression is restricted to the nervous systems of adult mammals, but the aberrant expression of ALK has been observed in a variety of pediatric cancers, including glioma and Ewing sarcoma. The discovery of oncogenic activation of ALK in neuroblastoma suggests that this cancer could be potentially treated with an ALK inhibitor, as could other cancers, such as non-small-cell lung cancer and anaplastic large-cell lymphoma. However, cellular responses to mutant ALK are complex when compared to rearranged ALK, and treatment remains a challenge. This review focuses on the biology of ALK in pediatric cancers and possible therapeutic strategies for ALK-associated tumors.
Collapse
Affiliation(s)
- Junko Takita
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Nelson KN, Peiris MN, Meyer AN, Siari A, Donoghue DJ. Receptor Tyrosine Kinases: Translocation Partners in Hematopoietic Disorders. Trends Mol Med 2016; 23:59-79. [PMID: 27988109 DOI: 10.1016/j.molmed.2016.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 02/07/2023]
Abstract
Receptor tyrosine kinases (RTKs) activate various signaling pathways and regulate cellular proliferation, survival, migration, and angiogenesis. Malignant neoplasms often circumvent or subjugate these pathways by promoting RTK overactivation through mutation or chromosomal translocation. RTK translocations create a fusion protein containing a dimerizing partner fused to an RTK kinase domain, resulting in constitutive kinase domain activation, altered RTK cellular localization, upregulation of downstream signaling, and novel pathway activation. While RTK translocations in hematological malignancies are relatively rare, clinical evidence suggests that patients with these genetic abnormalities benefit from RTK-targeted inhibitors. Here, we present a timely review of an exciting field by examining RTK chromosomal translocations in hematological cancers, such as Anaplastic Lymphoma Kinase (ALK), Fibroblast Growth Factor Receptor (FGFR), Platelet-Derived Growth Factor Receptor (PDGFR), REarranged during Transfection (RET), Colony Stimulating Factor 1 Receptor (CSF1R), and Neurotrophic Tyrosine Kinase Receptor Type 3 (NTRK3) fusions, and discuss current therapeutic options.
Collapse
Affiliation(s)
- Katelyn N Nelson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Malalage N Peiris
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Asma Siari
- Université Joseph Fourier Grenoble, Grenoble, France
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA; Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
15
|
Vaysse C, Philippe C, Martineau Y, Quelen C, Hieblot C, Renaud C, Nicaise Y, Desquesnes A, Pannese M, Filleron T, Escourrou G, Lawson M, Rintoul RC, Delisle MB, Pyronnet S, Brousset P, Prats H, Touriol C. Key contribution of eIF4H-mediated translational control in tumor promotion. Oncotarget 2016; 6:39924-40. [PMID: 26498689 PMCID: PMC4741870 DOI: 10.18632/oncotarget.5442] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/03/2015] [Indexed: 02/06/2023] Open
Abstract
Dysregulated expression of translation initiation factors has been associated with carcinogenesis, but underlying mechanisms remains to be fully understood. Here we show that eIF4H (eukaryotic translation initiation factor 4H), an activator of the RNA helicase eIF4A, is overexpressed in lung carcinomas and predictive of response to chemotherapy. In lung cancer cells, depletion of eIF4H enhances sensitization to chemotherapy, decreases cell migration and inhibits tumor growth in vivo, in association with reduced translation of mRNA encoding cell-proliferation (c-Myc, cyclin D1) angiogenic (FGF-2) and anti-apoptotic factors (CIAP-1, BCL-xL). Conversely, each isoform of eIF4H acts as an oncogene in NIH3T3 cells by stimulating transformation, invasion, tumor growth and resistance to drug-induced apoptosis together with increased translation of IRES-containing or structured 5′UTR mRNAs. These results demonstrate that eIF4H plays a crucial role in translational control and can promote cellular transformation by preferentially regulating the translation of potent growth and survival factor mRNAs, indicating that eIF4H is a promising new molecular target for cancer therapy.
Collapse
Affiliation(s)
- Charlotte Vaysse
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France
| | - Céline Philippe
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France
| | - Yvan Martineau
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France
| | - Cathy Quelen
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France
| | - Corinne Hieblot
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France
| | - Claire Renaud
- Department of Thoracic Surgery, Rangueil-Larrey Hospital, Toulouse, France
| | - Yvan Nicaise
- Department of Pathology, CHU Rangueil, Toulouse, France
| | | | | | - Thomas Filleron
- Clinical Trial Office, Cellule Biostatistique Institut Universitaire du Cancer Toulouse, Toulouse, France
| | - Ghislaine Escourrou
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Department of Pathology, CHU Rangueil, Toulouse, France
| | - Malcolm Lawson
- Department of Respiratory Medicine, Broomfield Hospital, Chelmsford, Essex, UK
| | - Robert C Rintoul
- Department of Thoracic Oncology, Papworth Hospital, Cambridge, UK
| | - Marie Bernadette Delisle
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Department of Pathology, CHU Rangueil, Toulouse, France
| | - Stéphane Pyronnet
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France
| | - Pierre Brousset
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France.,Department of Pathology, Institut Universitaire du Cancer, Toulouse, France
| | - Hervé Prats
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France
| | - Christian Touriol
- INSERM U1037, CRCT, Cancer Research Center of Toulouse, Toulouse, France.,Toulouse University, Paul Sabatier, Toulouse, France
| |
Collapse
|
16
|
Baillon L, Pierron F, Oses J, Pannetier P, Normandeau E, Couture P, Labadie P, Budzinski H, Lambert P, Bernatchez L, Baudrimont M. Detecting the exposure to Cd and PCBs by means of a non-invasive transcriptomic approach in laboratory and wild contaminated European eels (Anguilla anguilla). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5431-5441. [PMID: 26566612 DOI: 10.1007/s11356-015-5754-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Detecting and separating specific effects of contaminants in a multi-stress field context remain a major challenge in ecotoxicology. In this context, the aim of this study was to assess the usefulness of a non-invasive transcriptomic method, by means of a complementary DNA (cDNA) microarray comprising 1000 candidate genes, on caudal fin clips. Fin gene transcription patterns of European eels (Anguilla anguilla) exposed in the laboratory to cadmium (Cd) or a polychloro-biphenyl (PCBs) mixture but also of wild eels from three sampling sites with differing contamination levels were compared to test whether fin clips may be used to detect and discriminate the exposure to these contaminants. Also, transcriptomic profiles from the liver and caudal fin of eels experimentally exposed to Cd were compared to assess the detection sensitivity of the fin transcriptomic response. A similar number of genes were differentially transcribed in the fin and liver in response to Cd exposure, highlighting the detection sensitivity of fin clips. Moreover, distinct fin transcription profiles were observed in response to Cd or PCB exposure. Finally, the transcription profiles of eels from the most contaminated site clustered with those from laboratory-exposed fish. This study thus highlights the applicability and usefulness of performing gene transcription assays on non-invasive tissue sampling in order to detect the in situ exposure to Cd and PCBs in fish.
Collapse
Affiliation(s)
- Lucie Baillon
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France
- CNRS, EPOC, UMR 5805, F-33400, Talence, France
| | - Fabien Pierron
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France.
- CNRS, EPOC, UMR 5805, F-33400, Talence, France.
| | - Jennifer Oses
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France
- CNRS, EPOC, UMR 5805, F-33400, Talence, France
| | - Pauline Pannetier
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Eric Normandeau
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Patrice Couture
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Pierre Labadie
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France
- CNRS, EPOC, UMR 5805, F-33400, Talence, France
| | - Hélène Budzinski
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France
- CNRS, EPOC, UMR 5805, F-33400, Talence, France
| | - Patrick Lambert
- Irtsea, UR EABX, 50 avenue de Verdun-Gazinet, 33612, Cestas, France
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Magalie Baudrimont
- Univ. Bordeaux, UMR EPOC CNRS 5805, F-33400, Talence, France
- CNRS, EPOC, UMR 5805, F-33400, Talence, France
| |
Collapse
|
17
|
Cajaiba MM, Jennings LJ, Rohan SM, Perez-Atayde AR, Marino-Enriquez A, Fletcher JA, Geller JI, Leuer KMC, Bridge JA, Perlman EJ. ALK-rearranged renal cell carcinomas in children. Genes Chromosomes Cancer 2016; 55:442-51. [DOI: 10.1002/gcc.22346] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 12/19/2022] Open
Affiliation(s)
- Mariana M. Cajaiba
- Department of Pathology and Laboratory Medicine; Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine; Chicago IL
| | - Lawrence J. Jennings
- Department of Pathology and Laboratory Medicine; Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine; Chicago IL
| | - Stephen M. Rohan
- Department of Pathology; Colorado Pathology Consultants and Saint Joseph Hospital; Denver CO
| | | | | | - Jonathan A. Fletcher
- Department of Pathology; Brigham Women's Hospital and Harvard Medical School; Boston MA
| | - James I. Geller
- Division of Pediatric Oncology; Cincinnati Children's Hospital Medical Center, University of Cincinnati; Cincinnati Ohio
| | - Katrin M. C. Leuer
- Department of Pathology and Laboratory Medicine; Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine; Chicago IL
| | - Julia A. Bridge
- Department of Pathology and Microbiology; University of Nebraska Medical Center; Omaha NE
| | - Elizabeth J. Perlman
- Department of Pathology and Laboratory Medicine; Ann & Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine; Chicago IL
| |
Collapse
|
18
|
Serraille A, Barazzutti H, Greillier L, Barlesi F. Localisation secondaire atypique au « sein » des cancers bronchiques. Rev Mal Respir 2015; 32:953-5. [DOI: 10.1016/j.rmr.2015.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/25/2015] [Indexed: 11/26/2022]
|
19
|
Label-free quantitative mass spectrometry reveals a panel of differentially expressed proteins in colorectal cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:365068. [PMID: 25699276 PMCID: PMC4324820 DOI: 10.1155/2015/365068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022]
Abstract
To identify potential biomarkers involved in CRC, a shotgun proteomic method was applied to identify soluble proteins in three CRCs and matched normal mucosal tissues using high-performance liquid chromatography and mass spectrometry. Label-free protein profiling of three CRCs and matched normal mucosal tissues were then conducted to quantify and compare proteins. Results showed that 67 of the 784 identified proteins were linked to CRC (28 upregulated and 39 downregulated). Gene Ontology and DAVID databases were searched to identify the location and function of differential proteins that were related to the biological processes of binding, cell structure, signal transduction, cell adhesion, and so on. Among the differentially expressed proteins, tropomyosin-3 (TPM3), endoplasmic reticulum resident protein 29 (ERp29), 18 kDa cationic antimicrobial protein (CAMP), and heat shock 70 kDa protein 8 (HSPA8) were verified to be upregulated in CRC tissue and seven cell lines through western blot analysis. Furthermore, the upregulation of TPM3, ERp29, CAMP, and HSPA8 was validated in 69 CRCs byimmunohistochemistry (IHC) analysis. Combination of TPM3, ERp29, CAMP, and HSPA8 can identify CRC from matched normal mucosal achieving an accuracy of 73.2% using IHC score. These results suggest that TPM3, ERp29, CAMP, and HSPA8 are great potential IHC diagnostic biomarkers for CRC.
Collapse
|
20
|
|
21
|
Detection of ALK rearrangement by immunohistochemistry in lung adenocarcinoma and the identification of a novel EML4-ALK variant. J Thorac Oncol 2014; 8:883-91. [PMID: 23625156 DOI: 10.1097/jto.0b013e3182904e22] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase (EML4-ALK) fusion gene has been identified as a potent oncogenic driver in non-small-cell lung cancer, in particular adenocarcinoma (ADC). It defines a unique subgroup of lung ADC, which may be responsive to ALK inhibitors. Detection of ALK rearrangement by fluorescence in situ hybridization (FISH) or reverse transcriptase polymerase chain reaction (RT-PCR) is considered to be the standard procedure, but each with its own limitation. We evaluated the practical usefulness of immunohistochemistry (IHC) to detect ALK expression as a reliable detection method of ALK rearrangement in lung ADC. METHODS We tested 373 lung ADCs for ALK rearrangement by IHC and FISH. Multiplex RT-PCR was performed to confirm the fusion variants. RESULTS Twenty-two of 373 lung ACs (5.9%) were positive for ALK immunoreactivity. ALK-positive tumor cells demonstrated strong and diffused granular staining in the cytoplasm. All the ALK IHC-positive cases were confirmed to harbor ALK rearrangement, either by FISH, or RT-PCR. Two cases with positive ALK protein expression, but negative for breakapart FISH signal were shown to harbor EML4-ALK variant 1 by RT-PCR. None of the ALK IHC-negative cases were FISH-positive. In addition, we identified a novel EML4-ALK fusion variant (E3:ins53A20), and its potent transformation potential has been confirmed by in vivo tumorigenicity assay. CONCLUSION IHC can effectively detect ALK rearrangement in lung cancer. It might provide a reliable and cost-effective diagnostic approach in routine pathologic laboratories for the identification of suitable candidates for ALK-targeted therapy.
Collapse
|
22
|
ALK: Anaplastic lymphoma kinase. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
23
|
ALK gene amplification is associated with poor prognosis in colorectal carcinoma. Br J Cancer 2013; 109:2735-43. [PMID: 24129244 PMCID: PMC3833224 DOI: 10.1038/bjc.2013.641] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/14/2013] [Accepted: 09/23/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recently, the anaplastic lymphoma kinase (ALK) has been found to be altered in several solid and haematological tumours. ALK gene copy number changes and mutations in colorectal cancers (CRCs) are not well characterised. We aimed to study the prevalence of ALK copy number changes, translocations, gene mutations and protein expression in 770 CRC patients, and correlate these findings with molecular and clinico-pathological data. METHODS ALK gene copy number variations and ALK expression were evaluated by fluorescence in situ hybridisation (FISH) and immunohistochemistry, respectively. RESULTS Translocations of the ALK gene were not observed; 3.4% (26 out of 756) of the CRC patients tested had an increase in ALK gene copy number either amplification or gain. Interestingly, increased ALK gene copy number alteration was associated with poor prognosis (P=0.0135) and was an independent prognostic marker in multivariate Cox proportional hazards model. The study reveals a significant impact of ALK gene copy number alterations on the outcome of patients with CRC. CONCLUSION The findings of our study highlight a potential role of targeting ALK in advanced CRCs by using ALK FISH and ALK IHC as a screening tool to detect ALK alterations. Based on these findings, a potential role of ALK inhibitor as a therapeutic agent in a subset of CRC merits further investigation.
Collapse
|
24
|
ALK as a paradigm of oncogenic promiscuity: different mechanisms of activation and different fusion partners drive tumors of different lineages. Cancer Genet 2013; 206:357-73. [PMID: 24091028 DOI: 10.1016/j.cancergen.2013.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/20/2013] [Accepted: 07/22/2013] [Indexed: 12/23/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase protein implicated in a variety of hematological malignancies and solid tumors. Since the identification of the ALK gene in 1994 as the target of the t(2;5) chromosomal translocation in anaplastic large cell lymphoma, ALK has been proven a remarkably promiscuous oncogene. ALK contributes to the development of a notable assortment of tumor types from different lineages, including hematolymphoid, mesenchymal, epithelial and neural tumors, through a variety of genetic mechanisms: gene fusions, activating point mutations, and gene amplification. Recent developments led to significant diagnostic and therapeutic advances, including efficient diagnostic tests and ALK-targeting agents readily available in the clinical setting. This review addresses some therapeutic considerations of ALK-targeted agents and the biologic implications of ALK oncogenic promiscuity, but the main points discussed are: 1) the variety of mechanisms that result in activation of the ALK oncogene, with emphasis on the promiscuous partnerships demonstrated in chromosomal rearrangements; 2) the diversity of tumor types of different lineages in which ALK has been implicated as a pathogenic driver; and 3) the different diagnostic tests available to identify ALK-driven tumors, and their respective indications.
Collapse
|
25
|
Martinelli E, Troiani T, D'Aiuto E, Morgillo F, Vitagliano D, Capasso A, Costantino S, Ciuffreda LP, Merolla F, Vecchione L, De Vriendt V, Tejpar S, Nappi A, Sforza V, Martini G, Berrino L, De Palma R, Ciardiello F. Antitumor activity of pimasertib, a selective MEK 1/2 inhibitor, in combination with PI3K/mTOR inhibitors or with multi-targeted kinase inhibitors in pimasertib-resistant human lung and colorectal cancer cells. Int J Cancer 2013; 133:2089-101. [PMID: 23629727 DOI: 10.1002/ijc.28236] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/05/2013] [Indexed: 01/09/2023]
Abstract
The RAS/RAF/MEK/MAPK and the PTEN/PI3K/AKT/mTOR pathways are key regulators of proliferation and survival in human cancer cells. Selective inhibitors of different transducer molecules in these pathways have been developed as molecular targeted anti-cancer therapies. The in vitro and in vivo anti-tumor activity of pimasertib, a selective MEK 1/2 inhibitor, alone or in combination with a PI3K inhibitor (PI3Ki), a mTOR inhibitor (everolimus), or with multi-targeted kinase inhibitors (sorafenib and regorafenib), that block also BRAF and CRAF, were tested in a panel of eight human lung and colon cancer cell lines. Following pimasertib treatment, cancer cell lines were classified as pimasertib-sensitive (IC50 for cell growth inhibition of 0.001 µM) or pimasertib-resistant. Evaluation of basal gene expression profiles by microarrays identified several genes that were up-regulated in pimasertib-resistant cancer cells and that were involved in both RAS/RAF/MEK/MAPK and PTEN/PI3K/AKT/mTOR pathways. Therefore, a series of combination experiments with pimasertib and either PI3Ki, everolimus, sorafenib or regorafenib were conducted, demonstrating a synergistic effect in cell growth inhibition and induction of apoptosis with sustained blockade in MAPK- and AKT-dependent signaling pathways in pimasertib-resistant human colon carcinoma (HCT15) and lung adenocarcinoma (H1975) cells. Finally, in nude mice bearing established HCT15 and H1975 subcutaneous tumor xenografts, the combined treatment with pimasertib and BEZ235 (a dual PI3K/mTOR inhibitor) or with sorafenib caused significant tumor growth delays and increase in mice survival as compared to single agent treatment. These results suggest that dual blockade of MAPK and PI3K pathways could overcome intrinsic resistance to MEK inhibition.
Collapse
Affiliation(s)
- Erika Martinelli
- Oncologia Medica, Dipartimento Medico- Chirurgico di Internistica Clinica e Sperimentale, F. Magrassi e A. Lanzara, Seconda Universitá degli Studi di Napoli, Via S. Pansini 5, 80131, Napoli, Italia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhou Y, Zhu J, Zhang Y, Jiang J, Jia M. An inflammatory myofibroblastic tumour of the breast with ALK overexpression. BMJ Case Rep 2013; 2013:bcr-07-2011-4474. [PMID: 23386486 DOI: 10.1136/bcr-07-2011-4474] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inflammatory myofibroblastic tumours (IMTs), also known as inflammatory pseudotumours, include a diverse group of lesions characterised by inflammatory cell infiltration and variable fibrotic responses. Their occurrence in the breast is unusual. We present a case of an IMT of the breast in a 46-year-old woman who complained of a breast mass with palpable axillary lymph node. The initial clinical diagnosis was breast cancer, and the patient underwent a conservative excision with apparently negative margins and an axillary lymph node excisional biopsy. A histopathological examination showed the presence of myofibroblastic spindle cells with mixed inflammatory infiltrates, and the pathological diagnosis was IMT. Significantly, the case we present here is unique in showing anaplastic lymphoma kinase 1 (ALK1) overexpression and ALK1 gene amplification in IMT of the breast. Therefore, our case suggests that ALK1 gene amplification in IMT of the breast has important diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Yan Zhou
- Southwest Hospital affiliated to Third Military Medical University, Chongqing, China.
| | | | | | | | | |
Collapse
|
27
|
Kruczynski A, Delsol G, Laurent C, Brousset P, Lamant L. Anaplastic lymphoma kinase as a therapeutic target. Expert Opin Ther Targets 2012; 16:1127-38. [PMID: 22998583 DOI: 10.1517/14728222.2012.719498] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Anaplastic lymphoma kinase (ALK), a tyrosine kinase receptor, has been initially identified through its involvement in chromosomal translocations associated with anaplastic large cell lymphoma. However, recent evidence that aberrant ALK activity is also involved in an expanding number of tumor types, such as other lymphomas, inflammatory myofibroblastic tumor, neuroblastomas and some carcinomas, including non-small cell lung carcinomas, is boosting research progress in ALK-targeted therapies. AREAS COVERED The first aim of this review is to describe current understandings about the ALK tyrosine kinase and its implication in the oncogenesis of human cancers as a fusion protein or through mutations. The second goal is to discuss its interest as a therapeutic target and to provide a review of the literature regarding ALK inhibitors. Mechanisms of acquired resistance are also reviewed. EXPERT OPINION Several ALK inhibitors have recently been developed, offering new treatment options in tumors driven by abnormal ALK signaling. However, as observed with other tyrosine kinase inhibitors, resistance has emerged in patients treated with these agents. The complexity of mechanisms of acquired resistance recently described suggests that other therapeutic options, including combination of ALK and other kinases targeted drugs, will be required in the future.
Collapse
Affiliation(s)
- Anna Kruczynski
- Centre de Recherche en Oncologie Expérimentale, Institut de Recherche Pierre Fabre, Toulouse, Cedex 4, France
| | | | | | | | | |
Collapse
|
28
|
Medves S, Demoulin JB. Tyrosine kinase gene fusions in cancer: translating mechanisms into targeted therapies. J Cell Mol Med 2012; 16:237-48. [PMID: 21854543 PMCID: PMC3823288 DOI: 10.1111/j.1582-4934.2011.01415.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tyrosine kinase fusion genes represent an important class of oncogenes associated with leukaemia and solid tumours. They are produced by translocations and other chromosomal rearrangements of a subset of tyrosine kinase genes, including ABL, PDGFRA, PDGFRB, FGFR1, SYK, RET, JAK2 and ALK. Based on recent findings, this review discusses the common mechanisms of activation of these fusion genes. Enforced oligomerization and inactivation of inhibitory domains are the two key processes that switch on the kinase domain. Activated tyrosine kinase fusions then signal via an array of transduction cascades, which are largely shared. In addition, the fusion partner provides a scaffold for the recruitment of proteins that contribute to signalling, protein stability, cellular localization and oligomerization. The expression level of the fusion protein is another critical parameter. Its transcription is controlled by the partner gene promoter, while translation may be regulated by miRNA. Several mechanisms also prevent the degradation of the oncoprotein by proteasomes and lysosomes, leading to its accumulation in cells. The selective inhibition of the tyrosine kinase activity by adenosine-5'-triphosphate competitors, such as imatinib, is a major therapeutic success. Imatinib induces remission in leukaemia patients that are positive for BCR-ABL or PDGFR fusions. Recently, crizotinib produced promising results in a subtype of lung cancers with ALK fusion. However, resistance was reported in both cases, partially due to mutations. To tackle this problem, additional levels of therapeutic interventions are suggested by the complex mechanisms of fusion tyrosine kinase activation. New approaches include allosteric inhibition and interfering with oligomerization or chaperones.
Collapse
Affiliation(s)
- Sandrine Medves
- De Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
29
|
Shin S, Kim J, Yoon SO, Kim YR, Lee KA. ALK-positive anaplastic large cell lymphoma with TPM3-ALK translocation. Leuk Res 2012; 36:e143-5. [PMID: 22591683 DOI: 10.1016/j.leukres.2012.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 03/30/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
30
|
Lamant L, McCarthy K, d'Amore E, Klapper W, Nakagawa A, Fraga M, Maldyk J, Simonitsch-Klupp I, Oschlies I, Delsol G, Mauguen A, Brugières L, Le Deley MC. Prognostic Impact of Morphologic and Phenotypic Features of Childhood ALK-Positive Anaplastic Large-Cell Lymphoma: Results of the ALCL99 Study. J Clin Oncol 2011; 29:4669-76. [DOI: 10.1200/jco.2011.36.5411] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose The prognostic value of pathologic characteristics of childhood ALK-positive anaplastic large-cell lymphomas (ALCL), such as histologic subtypes, immunophenotype, and presence of the t(2;5) translocation or its variants, was assessed. Patients and Methods All 375 patients with systemic ALK-positive ALCL included in an international trial launched by the European Intergroup for Childhood Non-Hodgkin's Lymphoma were reviewed by an international panel of pathologists based on conventional hematoxylin and eosin–stained and immunostained sections and classified according to the 2001 WHO classification. Results A small-cell (SC) or lymphohistiocytic (LH) component was observed in 114 (32%) of 361 patients, whereas ALCL of common type was diagnosed in 235 (65%) of 361 patients. Regarding the histologic subtyping of patients within the two categories of ALCL (with v without SC/LH component), the concordance between the national and international reviews was quite good, with a κ index equal to 0.67 (95% CI, 0.57 to 0.75). The presence of an SC/LH component was significantly associated with a high risk of failure (hazard ratio [HR], 2.0; 95% CI, 1.3 to 3.0; P = .002) in the multivariate analysis controlling for clinical characteristics, as well as the perivascular pattern (HR, 1.7; 95% CI, 1.1 to 2.7; P = .01), whereas CD3 positivity was significantly associated with a high risk of failure only in univariate analysis. Conclusion Our study, which to our knowledge includes the largest series of childhood systemic ALK-positive ALCL so far, demonstrates the adverse prognostic value of SC and/or LH morphologic features. Combining these histologic characteristics with other biologic or clinical factors might have a high potential for future risk stratification and treatment.
Collapse
Affiliation(s)
- Laurence Lamant
- Laurence Lamant and Georges Delsol, Cancer Research Center of Toulouse, L'Institut National de la Santé et de la Recherche Médicale U1037; Université Paul-Sabatier; and Centre Hospitalier Universitaire Purpan, Toulouse; Audrey Mauguen, Laurence Brugières, and Marie-Cécile Le Deley, Institut Gustave-Roussy, Villejuif; Marie-Cécile Le Deley, University Paris-Sud, Le Kremlin-Bicêtre, France; Keith McCarthy, Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham, Gloucestershire,
| | - Keith McCarthy
- Laurence Lamant and Georges Delsol, Cancer Research Center of Toulouse, L'Institut National de la Santé et de la Recherche Médicale U1037; Université Paul-Sabatier; and Centre Hospitalier Universitaire Purpan, Toulouse; Audrey Mauguen, Laurence Brugières, and Marie-Cécile Le Deley, Institut Gustave-Roussy, Villejuif; Marie-Cécile Le Deley, University Paris-Sud, Le Kremlin-Bicêtre, France; Keith McCarthy, Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham, Gloucestershire,
| | - Emanuele d'Amore
- Laurence Lamant and Georges Delsol, Cancer Research Center of Toulouse, L'Institut National de la Santé et de la Recherche Médicale U1037; Université Paul-Sabatier; and Centre Hospitalier Universitaire Purpan, Toulouse; Audrey Mauguen, Laurence Brugières, and Marie-Cécile Le Deley, Institut Gustave-Roussy, Villejuif; Marie-Cécile Le Deley, University Paris-Sud, Le Kremlin-Bicêtre, France; Keith McCarthy, Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham, Gloucestershire,
| | - Wolfram Klapper
- Laurence Lamant and Georges Delsol, Cancer Research Center of Toulouse, L'Institut National de la Santé et de la Recherche Médicale U1037; Université Paul-Sabatier; and Centre Hospitalier Universitaire Purpan, Toulouse; Audrey Mauguen, Laurence Brugières, and Marie-Cécile Le Deley, Institut Gustave-Roussy, Villejuif; Marie-Cécile Le Deley, University Paris-Sud, Le Kremlin-Bicêtre, France; Keith McCarthy, Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham, Gloucestershire,
| | - Atsuko Nakagawa
- Laurence Lamant and Georges Delsol, Cancer Research Center of Toulouse, L'Institut National de la Santé et de la Recherche Médicale U1037; Université Paul-Sabatier; and Centre Hospitalier Universitaire Purpan, Toulouse; Audrey Mauguen, Laurence Brugières, and Marie-Cécile Le Deley, Institut Gustave-Roussy, Villejuif; Marie-Cécile Le Deley, University Paris-Sud, Le Kremlin-Bicêtre, France; Keith McCarthy, Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham, Gloucestershire,
| | - Maximo Fraga
- Laurence Lamant and Georges Delsol, Cancer Research Center of Toulouse, L'Institut National de la Santé et de la Recherche Médicale U1037; Université Paul-Sabatier; and Centre Hospitalier Universitaire Purpan, Toulouse; Audrey Mauguen, Laurence Brugières, and Marie-Cécile Le Deley, Institut Gustave-Roussy, Villejuif; Marie-Cécile Le Deley, University Paris-Sud, Le Kremlin-Bicêtre, France; Keith McCarthy, Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham, Gloucestershire,
| | - Jadwiga Maldyk
- Laurence Lamant and Georges Delsol, Cancer Research Center of Toulouse, L'Institut National de la Santé et de la Recherche Médicale U1037; Université Paul-Sabatier; and Centre Hospitalier Universitaire Purpan, Toulouse; Audrey Mauguen, Laurence Brugières, and Marie-Cécile Le Deley, Institut Gustave-Roussy, Villejuif; Marie-Cécile Le Deley, University Paris-Sud, Le Kremlin-Bicêtre, France; Keith McCarthy, Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham, Gloucestershire,
| | - Ingrid Simonitsch-Klupp
- Laurence Lamant and Georges Delsol, Cancer Research Center of Toulouse, L'Institut National de la Santé et de la Recherche Médicale U1037; Université Paul-Sabatier; and Centre Hospitalier Universitaire Purpan, Toulouse; Audrey Mauguen, Laurence Brugières, and Marie-Cécile Le Deley, Institut Gustave-Roussy, Villejuif; Marie-Cécile Le Deley, University Paris-Sud, Le Kremlin-Bicêtre, France; Keith McCarthy, Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham, Gloucestershire,
| | - Ilske Oschlies
- Laurence Lamant and Georges Delsol, Cancer Research Center of Toulouse, L'Institut National de la Santé et de la Recherche Médicale U1037; Université Paul-Sabatier; and Centre Hospitalier Universitaire Purpan, Toulouse; Audrey Mauguen, Laurence Brugières, and Marie-Cécile Le Deley, Institut Gustave-Roussy, Villejuif; Marie-Cécile Le Deley, University Paris-Sud, Le Kremlin-Bicêtre, France; Keith McCarthy, Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham, Gloucestershire,
| | - Georges Delsol
- Laurence Lamant and Georges Delsol, Cancer Research Center of Toulouse, L'Institut National de la Santé et de la Recherche Médicale U1037; Université Paul-Sabatier; and Centre Hospitalier Universitaire Purpan, Toulouse; Audrey Mauguen, Laurence Brugières, and Marie-Cécile Le Deley, Institut Gustave-Roussy, Villejuif; Marie-Cécile Le Deley, University Paris-Sud, Le Kremlin-Bicêtre, France; Keith McCarthy, Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham, Gloucestershire,
| | - Audrey Mauguen
- Laurence Lamant and Georges Delsol, Cancer Research Center of Toulouse, L'Institut National de la Santé et de la Recherche Médicale U1037; Université Paul-Sabatier; and Centre Hospitalier Universitaire Purpan, Toulouse; Audrey Mauguen, Laurence Brugières, and Marie-Cécile Le Deley, Institut Gustave-Roussy, Villejuif; Marie-Cécile Le Deley, University Paris-Sud, Le Kremlin-Bicêtre, France; Keith McCarthy, Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham, Gloucestershire,
| | - Laurence Brugières
- Laurence Lamant and Georges Delsol, Cancer Research Center of Toulouse, L'Institut National de la Santé et de la Recherche Médicale U1037; Université Paul-Sabatier; and Centre Hospitalier Universitaire Purpan, Toulouse; Audrey Mauguen, Laurence Brugières, and Marie-Cécile Le Deley, Institut Gustave-Roussy, Villejuif; Marie-Cécile Le Deley, University Paris-Sud, Le Kremlin-Bicêtre, France; Keith McCarthy, Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham, Gloucestershire,
| | - Marie-Cécile Le Deley
- Laurence Lamant and Georges Delsol, Cancer Research Center of Toulouse, L'Institut National de la Santé et de la Recherche Médicale U1037; Université Paul-Sabatier; and Centre Hospitalier Universitaire Purpan, Toulouse; Audrey Mauguen, Laurence Brugières, and Marie-Cécile Le Deley, Institut Gustave-Roussy, Villejuif; Marie-Cécile Le Deley, University Paris-Sud, Le Kremlin-Bicêtre, France; Keith McCarthy, Gloucestershire Hospitals National Health Service Foundation Trust, Cheltenham, Gloucestershire,
| |
Collapse
|
31
|
Grande E, Bolós MV, Arriola E. Targeting oncogenic ALK: a promising strategy for cancer treatment. Mol Cancer Ther 2011; 10:569-79. [PMID: 21474455 DOI: 10.1158/1535-7163.mct-10-0615] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, the anaplastic lymphoma kinase (ALK) has been found to be altered in several solid and hematologic tumors. Novel drugs targeting this tyrosine kinase receptor are under development, and early clinical trials are showing promising activity in non-small cell lung cancer patients with ALK+ tumors. Here, we review the structure and function of the ALK receptor, the mechanisms associated with its deregulation in cancer, methods for ALK detection in tumor samples, its potential as a new marker for candidate patient selection for tailored therapy, and novel drugs under development that target ALK.
Collapse
Affiliation(s)
- Enrique Grande
- Gastrointestinal and Early Drug Development Unit, Servicio de Oncología Médica, Hospital Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034, Madrid, Spain.
| | | | | |
Collapse
|
32
|
Dejean E, Renalier MH, Foisseau M, Agirre X, Joseph N, de Paiva GR, Al Saati T, Soulier J, Desjobert C, Lamant L, Prósper F, Felsher DW, Cavaillé J, Prats H, Delsol G, Giuriato S, Meggetto F. Hypoxia-microRNA-16 downregulation induces VEGF expression in anaplastic lymphoma kinase (ALK)-positive anaplastic large-cell lymphomas. Leukemia 2011; 25:1882-90. [PMID: 21778999 DOI: 10.1038/leu.2011.168] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The anaplastic lymphoma kinase (ALK), tyrosine kinase oncogene is implicated in a wide variety of cancers. In this study we used conditional onco-ALK (NPM-ALK and TPM3-ALK) mouse MEF cell lines (ALK+ fibroblasts) and transgenic models (ALK+ B-lymphoma) to investigate the involvement and regulation of angiogenesis in ALK tumor development. First, we observed that ALK expression leads to downregulation of miR-16 and increased Vascular Endothelial Growth Factor (VEGF) levels. Second, we found that modification of miR-16 levels in TPM3-ALK MEF cells greatly affected VEGF levels. Third, we demonstrated that miR-16 directly interacts with VEGF mRNA at the 3'-untranslated region and that the regulation of VEGF by miR-16 occurs at the translational level. Fourth, we showed that expression of both the ALK oncogene and hypoxia-induced factor 1α (HIF1α) is a prerequisite for miR-16 downregulation. Fifth, in vivo, miR-16 gain resulted in reduced angiogenesis and tumor growth. Finally, we highlighted an inverse correlation between the levels of miR-16 and VEGF in human NPM-ALK+ Anaplastic Large Cell Lymphomas (ALCL). Altogether, our results demonstrate, for the first time, the involvement of angiogenesis in ALK+ ALCL and strongly suggest an important role for hypoxia-miR-16 in regulating VEGF translation.
Collapse
Affiliation(s)
- E Dejean
- Centre de Recherches en Cancérologie de Toulouse, INSERM-UMR 1037-Université Toulouse III Paul Sabatier, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mariño-Enríquez A, Ou WB, Weldon CB, Fletcher JA, Pérez-Atayde AR. ALK rearrangement in sickle cell trait-associated renal medullary carcinoma. Genes Chromosomes Cancer 2010; 50:146-53. [PMID: 21213368 DOI: 10.1002/gcc.20839] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/25/2010] [Indexed: 01/18/2023] Open
Abstract
Renal Medullary Carcinoma (RMC) is an aggressive malignancy that affects young black individuals with sickle cell trait. No effective treatment is available, resulting in an ominous clinical course, with overall survival averaging less than four months. We report rearrangement of the ALK receptor tyrosine kinase in a pediatric case of RMC harboring a t(2;10)(p23;q22) translocation. Mass spectrometry-based proteomic evaluation identified a novel ALK oncoprotein in which the cytoskeletal protein vinculin (VCL) was fused to the ALK kinase domain. The resulting VCL-ALK fusion does not contain known self-association domains, but includes the talin binding domains of vinculin. We demonstrate coprecipitation of strongly tyrosine phosphorylated talins with the VCL-ALK oncoprotein, suggesting that ALK oncogenic crossphosphorylation is mediated by interactions between neighboring VCL-ALK proteins on a talin scaffold. This report widens the spectrum of ALK-related tumors and ALK fusion partners, and provides a rationale for treating RMC with targeted ALK inhibitors.
Collapse
Affiliation(s)
- Adrián Mariño-Enríquez
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, MA, USA
| | | | | | | | | |
Collapse
|
34
|
Ardini E, Magnaghi P, Orsini P, Galvani A, Menichincheri M. Anaplastic Lymphoma Kinase: Role in specific tumours, and development of small molecule inhibitors for cancer therapy. Cancer Lett 2010; 299:81-94. [DOI: 10.1016/j.canlet.2010.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/27/2010] [Accepted: 09/01/2010] [Indexed: 12/20/2022]
|
35
|
Zhang X, Zhang S, Yang X, Yang J, Zhou Q, Yin L, An S, Lin J, Chen S, Xie Z, Zhu M, Zhang X, Wu YL. Fusion of EML4 and ALK is associated with development of lung adenocarcinomas lacking EGFR and KRAS mutations and is correlated with ALK expression. Mol Cancer 2010; 9:188. [PMID: 20624322 PMCID: PMC2908583 DOI: 10.1186/1476-4598-9-188] [Citation(s) in RCA: 246] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 07/13/2010] [Indexed: 12/24/2022] Open
Abstract
Background The anaplastic lymphoma kinase (ALK) gene is frequently involved in translocations that lead to gene fusions in a variety of human malignancies, including lymphoma and lung cancer. Fusion partners of ALK include NPM, EML4, TPM3, ATIC, TFG, CARS, and CLTC. Characterization of ALK fusion patterns and their resulting clinicopathological profiles could be of great benefit in better understanding the biology of lung cancer. Results RACE-coupled PCR sequencing was used to assess ALK fusions in a cohort of 103 non-small cell lung carcinoma (NSCLC) patients. Within this cohort, the EML4-ALK fusion gene was identified in 12 tumors (11.6%). Further analysis revealed that EML4-ALK was present at a frequency of 16.13% (10/62) in patients with adenocarcinomas, 19.23% (10/52) in never-smokers, and 42.80% (9/21) in patients with adenocarcinomas lacking EGFR and KRAS mutations. The EML4-ALK fusion was associated with non-smokers (P = 0.03), younger age of onset (P = 0.03), and adenocarcinomas without EGFR/KRAS mutations (P = 0.04). A trend towards improved survival was observed for patients with the EML4-ALK fusion, although it was not statistically significant (P = 0.20). Concurrent deletion in EGFR exon 19 and fusion of EML4-ALK was identified for the first time in a Chinese female patient with an adenocarcinoma. Analysis of ALK expression revealed that ALK mRNA levels were higher in tumors positive for the EML-ALK fusion than in negative tumors (normalized intensity of 21.99 vs. 0.45, respectively; P = 0.0018). However, expression of EML4 did not differ between the groups. Conclusions The EML4-ALK fusion gene was present at a high frequency in Chinese NSCLC patients, particularly in those with adenocarcinomas lacking EGFR/KRAS mutations. The EML4-ALK fusion appears to be tightly associated with ALK mRNA expression levels. RACE-coupled PCR sequencing is a highly sensitive method that could be used clinically for the identification of EML4-ALK-positive patients.
Collapse
Affiliation(s)
- Xuchao Zhang
- Medical Research Center of Guangdong General Hospital, Guangdong Lung Cancer Institute, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Choi HS, Yim SH, Xu HD, Jung SH, Shin SH, Hu HJ, Jung CK, Choi JY, Chung YJ. Tropomyosin3 overexpression and a potential link to epithelial-mesenchymal transition in human hepatocellular carcinoma. BMC Cancer 2010; 10:122. [PMID: 20356415 PMCID: PMC3087315 DOI: 10.1186/1471-2407-10-122] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 04/01/2010] [Indexed: 12/14/2022] Open
Abstract
Background Since hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide, it is still important to understand hepatocarcinogenesis mechanisms and identify effective markers for tumor progression to improve prognosis. Amplification and overexpression of Tropomyosin3 (TPM3) are frequently observed in HCC, but its biological meanings have not been properly defined. In this study, we aimed to elucidate the roles of TPM3 and related molecular mechanisms. Methods TPM3-siRNA was transfected into 2 HCC cell lines, HepG2 and SNU-475, which had shown overexpression of TPM3. Knockdown of TPM3 was verified by real-time qRT-PCR and western blotting targeting TPM3. Migration and invasion potentials were examined using transwell membrane assays. Cell growth capacity was examined by colony formation and soft agar assays. Results Silencing TPM3 resulted in significant suppression of migration and invasion capacities in both HCC cell lines. To elucidate the mechanisms behind suppressed migration and invasiveness, we examined expression levels of Snail and E-cadherin known to be related to epithelial-mesenchymal transition (EMT) after TPM3 knockdown. In the TPM3 knockdown cells, E-cadherin expression was significantly upregulated and Snail downregulated compared with negative control. TPM3 knockdown also inhibited colony formation and anchorage independent growth of HCC cells. Conclusions Based on our findings, we formulate a hypothesis that overexpression of TPM3 activates Snail mediated EMT, which will repress E-cadherin expression and that it confers migration or invasion potentials to HCC cells during hepatocarcinogenesis. To our knowledge, this is the first evidence that TPM3 gets involved in migration and invasion of HCCs by modifying EMT pathway.
Collapse
Affiliation(s)
- Hye-Sun Choi
- Department of Microbiology, School of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Paradigm shifting advances in cancer can occur after discovering the key oncogenic drivers of the malignant process, understanding their detailed molecular mechanisms, and exploiting this transdisciplinary knowledge therapeutically. A variety of human malignancies have anaplastic lymphoma kinase (ALK) translocations, amplifications, or oncogenic mutations, including anaplastic large cell lymphoma, inflammatory myofibroblastic tumors, non-small cell lung cancer, and neuroblastoma. This finding has focused intense interest in inhibiting ALK signaling as an effective molecular therapy against diseases with ALK-driven pathways. Recent progress in the elucidation of the major canonical signaling pathways postulated to be activated by NPM-ALK signaling has provided insight into which pathways may present a rational therapeutic approach. The identification of the downstream effector pathways controlled by ALK should pave the way for the rational design of ALK-inhibition therapies for the treatment of a subset of human cancers that harbor ALK aberrations.
Collapse
Affiliation(s)
- Yael P Mossé
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | |
Collapse
|
38
|
Bohling SD, Jenson SD, Crockett DK, Schumacher JA, Elenitoba-Johnson KSJ, Lim MS. Analysis of gene expression profile of TPM3-ALK positive anaplastic large cell lymphoma reveals overlapping and unique patterns with that of NPM-ALK positive anaplastic large cell lymphoma. Leuk Res 2008; 32:383-93. [PMID: 17720243 DOI: 10.1016/j.leukres.2007.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 07/09/2007] [Accepted: 07/10/2007] [Indexed: 01/13/2023]
Abstract
Anaplastic large cell lymphoma (ALCL) comprises a group of non-Hodgkin lymphomas characterized by the expression of the CD30/Ki-1 antigen. A subset of ALCL is characterized by chromosomal translocations involving the anaplastic lymphoma kinase (ALK) gene on chromosome 2. While the most common translocation is the t(2;5)(p23;q35) involving the nucleophosmin (NPM) gene on chromosome 5, up to 12 other translocations partners of the ALK gene have been identified. One of these is the t(1;2)(q25;p23) which results in the formation of the chimeric protein TPM3-ALK. While several of the signaling pathways induced by NPM-ALK have been elucidated, those involved in ALCLs harboring TPM3-ALK are largely unknown. In order to investigate the expression profiles of ALCLs carrying the NPM-ALK and TPM3-ALK fusions, we carried out cDNA microarray analysis of two ALCL tissue samples, one expressing the NPM-ALK fusion protein and the other the TPM3-ALK fusion protein. RNA was extracted from snap-frozen tissues, labeled with fluorescent dyes and analyzed using cDNAs microarray containing approximately 9,200 genes and expressed sequence tags (ESTs). Quantitative fluorescence RT-PCR was performed to validate the cDNA microarray data on nine selected gene targets. Our results show a significant overlap of genes deregulated in the NPM-ALK and TPM-ALK positive lymphomas. These deregulated genes are involved in diverse cellular functions, such as cell cycle regulation, apoptosis, proliferation, and adhesion. Interestingly, a subset of the genes was distinct in their expression pattern in the two types of lymphomas. More importantly, many genes that were not previously associated with ALK positive lymphomas were identified. Our results demonstrate the overlapping and unique transcriptional patterns associated with the NPM-ALK and TPM3-ALK fusions in ALCL.
Collapse
Affiliation(s)
- Sandra D Bohling
- Department of Pathology, University of Washington Medical Center, Seattle, WA, United States
| | | | | | | | | | | |
Collapse
|
39
|
Bastide A, Karaa Z, Bornes S, Hieblot C, Lacazette E, Prats H, Touriol C. An upstream open reading frame within an IRES controls expression of a specific VEGF-A isoform. Nucleic Acids Res 2008; 36:2434-45. [PMID: 18304943 PMCID: PMC2367723 DOI: 10.1093/nar/gkn093] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) is a potent secreted mitogen critical for physiological and pathological angiogenesis. Regulation of VEGF-A occurs at multiple levels, including transcription, mRNA stabilization, splicing, translation and differential cellular localization of various isoforms. Recent advances in our understanding of the posttranscriptional regulation of VEGF-A are comprised of the identification of stabilizing mRNA-binding proteins and the discovery of two internal ribosomal entry sites (IRES) as well as two alternative initiation codons in the 5′UTR of the VEGF-A mRNA. We have previously reported that VEGF-A translation initiation at both the AUG and CUG codons is dependent on the exon content of the coding region. In this report, we show that the expression of different VEGF-A isoforms is regulated by a small upstream open reading frame (uORF) located within an internal ribosome entry site, which is translated through a cap-independent mechanism. This uORF acts as a cis-regulatory element that regulates negatively the expression of the VEGF 121 isoform. Our data provide a framework for understanding how VEGF-A mRNAs are translated, and how the production of the VEGF 121 isoform is secured under non-hypoxic environmental conditions.
Collapse
Affiliation(s)
- Amandine Bastide
- Institut National de la Santé et de la Recherche Médicale (INSERM), U858, CHU Rangueil, BP 84225, 31432 Toulouse cedex 4, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 2008; 8:11-23. [PMID: 18097461 DOI: 10.1038/nrc2291] [Citation(s) in RCA: 631] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tyrosine kinases are involved in the pathogenesis of most cancers. However, few tyrosine kinases have been shown to have a well-defined pathogenetic role in lymphomas. The anaplastic lymphoma kinase (ALK) is the oncogene of most anaplastic large cell lymphomas (ALCL), driving transformation through many molecular mechanisms. In this Review, we will analyse how translocations or deregulated expression of ALK contribute to oncogenesis and how recent genetic or pharmacological tools, aimed at neutralizing its activity, can represent the basis for the design of powerful combination therapies.
Collapse
Affiliation(s)
- Roberto Chiarle
- Center for Experimental Research and Medical Studies (CERMS), University of Torino, Via Santena 7, 10126, Italy.
| | | | | | | | | |
Collapse
|