1
|
Tummala H, Walne A, Buccafusca R, Alnajar J, Szabo A, Robinson P, McConkie-Rosell A, Wilson M, Crowley S, Kinsler V, Ewins AM, Madapura PM, Patel M, Pontikos N, Codd V, Vulliamy T, Dokal I. Germline thymidylate synthase deficiency impacts nucleotide metabolism and causes dyskeratosis congenita. Am J Hum Genet 2022; 109:1472-1483. [PMID: 35931051 PMCID: PMC9388389 DOI: 10.1016/j.ajhg.2022.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
Dyskeratosis congenita (DC) is an inherited bone-marrow-failure disorder characterized by a triad of mucocutaneous features that include abnormal skin pigmentation, nail dystrophy, and oral leucoplakia. Despite the identification of several genetic variants that cause DC, a significant proportion of probands remain without a molecular diagnosis. In a cohort of eight independent DC-affected families, we have identified a remarkable series of heterozygous germline variants in the gene encoding thymidylate synthase (TYMS). Although the inheritance appeared to be autosomal recessive, one parent in each family had a wild-type TYMS coding sequence. Targeted genomic sequencing identified a specific haplotype and rare variants in the naturally occurring TYMS antisense regulator ENOSF1 (enolase super family 1) inherited from the other parent. Lymphoblastoid cells from affected probands have severe TYMS deficiency, altered cellular deoxyribonucleotide triphosphate pools, and hypersensitivity to the TYMS-specific inhibitor 5-fluorouracil. These defects in the nucleotide metabolism pathway resulted in genotoxic stress, defective transcription, and abnormal telomere maintenance. Gene-rescue studies in cells from affected probands revealed that post-transcriptional epistatic silencing of TYMS is occurring via elevated ENOSF1. These cell and molecular abnormalities generated by the combination of germline digenic variants at the TYMS-ENOSF1 locus represent a unique pathogenetic pathway for DC causation in these affected individuals, whereas the parents who are carriers of either of these variants in a singular fashion remain unaffected.
Collapse
Affiliation(s)
- Hemanth Tummala
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK.
| | - Amanda Walne
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Roberto Buccafusca
- School of Physical and Chemical Sciences, Queen Mary University of London, Mile End, London E1 4NS, UK
| | - Jenna Alnajar
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Anita Szabo
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, 11-43 Bath St, London EC1V 9EL, UK
| | - Peter Robinson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr., Farmington, CT 06032, USA
| | | | - Meredith Wilson
- Department of Clinical Genetics, The Children's Hospital at Westmead, Sydney, Australia
| | - Suzanne Crowley
- Department of Paediatrics, St George's Healthcare NHS Trust, London, UK
| | - Veronica Kinsler
- Department of Paediatric Dermatology, Great Ormond Street Hospital, The Francis Crick Institute, London, UK
| | - Anna-Maria Ewins
- Haematology/Oncology Department, Royal Hospital for Sick Children, Glasgow, UK
| | - Pradeepa M Madapura
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Manthan Patel
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Nikolas Pontikos
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, 11-43 Bath St, London EC1V 9EL, UK
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Tom Vulliamy
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Inderjeet Dokal
- Genomics and Child Health, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK; Barts Health NHS Trust, London, UK
| |
Collapse
|
2
|
Grumetti L, Lombardi R, Iannelli F, Pucci B, Avallone A, Di Gennaro E, Budillon A. Epigenetic Approaches to Overcome Fluoropyrimidines Resistance in Solid Tumors. Cancers (Basel) 2022; 14:cancers14030695. [PMID: 35158962 PMCID: PMC8833539 DOI: 10.3390/cancers14030695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Fluoropyrimidines represent the backbone of many combination chemotherapy regimens for the treatment of solid cancers but are still associated with toxicity and mechanisms of resistance. In this review, we focused on the epigenetic modifiers histone deacetylase inhibitors (HDACis) and on their ability to regulate specific genes and proteins involved in the fluoropyrimidine metabolism and resistance mechanisms. We presented emerging preclinical and clinical studies, highlighting the mechanisms by which HDACis can prevent/overcome the resistance and/or enhance the therapeutic efficacy of fluoropyrimidines, potentially reducing their toxicity, and ultimately improving the overall survival of cancer patients. Abstract Although fluoropyrimidines were introduced as anticancer agents over 60 years ago, they are still the backbone of many combination chemotherapy regimens for the treatment of solid cancers. Like other chemotherapeutic agents, the therapeutic efficacy of fluoropyrimidines can be affected by drug resistance and severe toxicities; thus, novel therapeutic approaches are required to potentiate their efficacy and overcome drug resistance. In the last 20 years, the deregulation of epigenetic mechanisms has been shown to contribute to cancer hallmarks. Histone modifications play an important role in directing the transcriptional machinery and therefore represent interesting druggable targets. In this review, we focused on histone deacetylase inhibitors (HDACis) that can increase antitumor efficacy and overcome resistance to fluoropyrimidines by targeting specific genes or proteins. Our preclinical data showed a strong synergistic interaction between HDACi and fluoropyrimidines in different cancer models, but the clinical studies did not seem to confirm these observations. Most likely, the introduction of increasingly complex preclinical models, both in vitro and in vivo, cannot recapitulate human complexity; however, our analysis of clinical studies revealed that most of them were designed without a mechanistic approach and, importantly, without careful patient selection.
Collapse
Affiliation(s)
- Laura Grumetti
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
| | - Rita Lombardi
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
| | - Federica Iannelli
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
| | - Biagio Pucci
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
| | - Antonio Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori di Napoli IRCCS “Fondazione Pascale”, 80131 Naples, Italy;
| | - Elena Di Gennaro
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
- Correspondence: (E.D.G.); (A.B.); Tel.: +39-081-590-3342 (E.D.G.); +39-081-590-3292 (A.B.)
| | - Alfredo Budillon
- Experimetnal Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy; (L.G.); (R.L.); (F.I.); (B.P.)
- Correspondence: (E.D.G.); (A.B.); Tel.: +39-081-590-3342 (E.D.G.); +39-081-590-3292 (A.B.)
| |
Collapse
|
3
|
Schaerer D, Froehlich TK, Hamzic S, Offer SM, Diasio RB, Joerger M, Amstutz U, Largiadèr CR. A Novel Nomenclature for Repeat Motifs in the Thymidylate Synthase Enhancer Region and Its Relevance for Pharmacogenetic Studies. J Pers Med 2020; 10:jpm10040181. [PMID: 33086767 PMCID: PMC7712088 DOI: 10.3390/jpm10040181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
Inhibition of thymidylate synthase (TS) is the primary mode of action for 5-fluorouracil (5FU) chemotherapy. TS expression is modulated by a variable number of tandem repeats in the TS enhancer region (TSER) located upstream of the TS gene (TYMS). Variability in the TSER has been suggested to contribute to 5FU-induced adverse events. However, the precise genetic associations remain largely undefined due to high polymorphism and ambiguity in defining genotypes. To assess toxicity associations, we sequenced the TSER in 629 cancer patients treated with 5FU. Of the 13 alleles identified, few could be unambiguously named using current TSER-nomenclature. We devised a concise and unambiguous systematic naming approach for TSER-alleles that encompasses all known variants. After applying this comprehensive naming system to our data, we demonstrated that the number of upstream stimulatory factor (USF1-)binding sites in the TSER was significantly associated with gastrointestinal toxicity in 5FU treatment.
Collapse
Affiliation(s)
- Dominic Schaerer
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (D.S.); (T.K.F.); (S.H.); (U.A.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Tanja K. Froehlich
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (D.S.); (T.K.F.); (S.H.); (U.A.)
| | - Seid Hamzic
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (D.S.); (T.K.F.); (S.H.); (U.A.)
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Steven M. Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (S.M.O.); (R.B.D.)
| | - Robert B. Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA; (S.M.O.); (R.B.D.)
| | - Markus Joerger
- Department of Medical Oncology, Cantonal Hospital St. Gallen, 9007 St. Gallen, Switzerland;
| | - Ursula Amstutz
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (D.S.); (T.K.F.); (S.H.); (U.A.)
| | - Carlo R. Largiadèr
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (D.S.); (T.K.F.); (S.H.); (U.A.)
- Correspondence: ; Tel.: +41-31-632-9545
| |
Collapse
|
4
|
Ntavatzikos A, Spathis A, Patapis P, Machairas N, Vourli G, Peros G, Papadopoulos I, Panayiotides I, Koumarianou A. TYMS/KRAS/BRAF molecular profiling predicts survival following adjuvant chemotherapy in colorectal cancer. World J Gastrointest Oncol 2019; 11:551-566. [PMID: 31367274 PMCID: PMC6657223 DOI: 10.4251/wjgo.v11.i7.551] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/30/2019] [Accepted: 06/12/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Patients with stage II-III colorectal cancer (CRC) treated with adjuvant chemotherapy, gain a 25% survival benefit. In the context of personalized medicine, there is a need to identify patients with CRC who may benefit from adjuvant chemotherapy. Molecular profiling could guide treatment decisions in these patients. Thymidylate synthase (TYMS) gene polymorphisms, KRAS and BRAF could be included in the molecular profile under consideration.
AIM To investigate the association of TYMS gene polymorphisms, KRAS and BRAF mutations with survival of CRC patients treated with chemotherapy.
METHODS A retrospective study studied formalin-fixed paraffin-embedded tissues (FFPEs) of consecutive patients treated with adjuvant chemotherapy during January/2005-January/2007. FFPEs were analysed with PCR for the detection of TYMS polymorphisms, mutated KRAS (mKRAS) and BRAF (mBRAF). Patients were classified into three groups (high, medium and low risk) according to 5’UTR TYMS polymorphisms Similarly, based on 3’UTR polymorphism ins/loss of heterozygosity (LOH) patients were allocated into two groups (high and low risk of relapse, respectively). Cox regression models examined the associated 5-year survival outcomes.
RESULTS One hundred and thirty patients with early stage CRC (stage I-II: 55 patients; stage III 75 patients; colon: 70 patients; rectal: 60 patients) were treated with surgery and chemotherapy. The 5-year disease free survival and overall survival rate was 61.6% and 73.9% respectively. 5’UTR polymorphisms of intermediate TYMS polymorphisms (2RG/3RG, 2RG/LOH, 3RC/LOH) were associated with lower risk for relapse [hazard ratio (HR) 0.320, P = 0.02 and HR 0.343, P = 0.013 respectively] and death (HR 0.368, P = 0.031 and HR 0.394, P = 0.029 respectively). The 3’UTR polymorphism ins/LOH was independently associated with increased risk for disease recurrence (P = 0.001) and death (P = 0.005). mBRAF (3.8% of patients) was associated with increased risk of death (HR 4.500, P = 0.022) whereas mKRAS (39% of patients) not.
CONCLUSION Prospective validating studies are required to confirm whether 2RG/3RG, 2RG/LOH, 3RC/LOH, absence of ins/LOH and wild type BRAF may indicate patients at lower risk of relapse following adjuvant chemotherapy.
Collapse
Affiliation(s)
- Anastasios Ntavatzikos
- Hematology-Oncology Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Athens 12462, Greece
| | - Aris Spathis
- Department of Cytopathology, National and Kapodistrian University of Athens, Medical School, “ATTIKON” University Hospital, Athens 12462, Greece
| | - Paul Patapis
- 3rd Department of Surgery, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Athens 12462, Greece
| | - Nikolaos Machairas
- 3rd Department of Surgery, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Athens 12462, Greece
| | - Georgia Vourli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - George Peros
- Department of Surgery, Medical School, National and Kapodistrian University of Athens, Evgenideio Therapeutirio S.A., “I AGIA TRIAS”, Athens 11528, Greece
| | - Iordanis Papadopoulos
- Department of Surgery, Medical School, National and Kapodistrian University of Athens, Evgenideio Therapeutirio S.A., “I AGIA TRIAS”, Athens 11528, Greece
| | - Ioannis Panayiotides
- 2nd Department of Pathology, University of Athens, Medical School, “ATTIKON” University Hospital, Athens 12462, Greece
| | - Anna Koumarianou
- Hematology-Oncology Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Athens 12462, Greece
| |
Collapse
|
5
|
Feng W, Guo X, Huang H, Xu C, Li Y, Guo S, Zhao Z, Li Q, Lu D, Jin L, Wang J, Jiang G, Wu J. Polymorphism rs3819102 in thymidylate synthase and environmental factors: effects on lung cancer in Chinese population. Curr Probl Cancer 2018; 43:66-74. [PMID: 30180988 DOI: 10.1016/j.currproblcancer.2018.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/16/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Lung cancer is the leading cause of cancer death worldwide, and the predominant risk factor for its development is smoking. Thymidylate synthase (TYMS) is a key enzyme in DNA synthesis that catalyzes the conversion of deoxyuridine monophosphate to dTMP. Rs931794, a single nucleotide polymorphism located in the TYMS gene, was suggested to be associated with cancer risk. METHODS To analyze the interaction between rs3819102 and environmental factors on the risk of lung cancer in a Chinese population, single nucleotide polymorphismscan was used to genotype this polymorphism in 974 lung cancer cases and 1005 control subjects. RESULTS The frequencies of TT, CT, and CC genotypes of TYMS rs3819102 were 61.8%, 32.9%, and 5.3% in controls, and 53.8%, 38.4%, and 7.8% in cases, respectively. Compared with the TT genotype, the CT (odds ratio [OR], 1.380; 95% confidence interval [CI], 1.131-1.683), and CC (OR, 1.786; 95% CI, 1.213-2.644) genotypes were associated with an increased risk of lung cancer after adjustment for age, gender, smoking status, and family history. The C allele of rs3819102 is the risk allele for lung carcinogenesis in a dominant model (OR, 1.435; 95% CI, 1.188-1.735). In a stratified analysis, the risk effects of both the CT and CC genotypes of rs3819102 were more evident in subgroups of smokers and people without a family history of cancer. CONCLUSION The rs3819102 polymorphism in TYMS might increase susceptibility to environmental factors and contribute to the risk of lung cancer. The C allele is a risk allele in lung carcinogenesis.
Collapse
Affiliation(s)
- Wei Feng
- College of Basic Medical Sciences, Navy Military Medical University, Shanghai, China
| | - Xianling Guo
- Department of Medical Oncology, 10th People's Hospital, Tongji University, Shanghai, China
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China
| | - Chang Xu
- College of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yutao Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Shicheng Guo
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China; Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Zhenghong Zhao
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Qiang Li
- Department of Respiratory Medicine, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China; Fudan-Taizhou Institute of Health Sciences, Taizhou, Jiangsu, China
| | - Gengxi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China.
| | - Junjie Wu
- Department of Respiratory and Critical Care Medicine, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Ntavatzikos A, Spathis A, Patapis P, Machairas N, Peros G, Konstantoudakis S, Leventakou D, Panayiotides IG, Karakitsos P, Koumarianou A. Integrating TYMS, KRAS and BRAF testing in patients with metastatic colorectal cancer. World J Gastroenterol 2017; 23:5913-5924. [PMID: 28932083 PMCID: PMC5583576 DOI: 10.3748/wjg.v23.i32.5913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the impact of thymidylate synthase (TYMS), KRAS and BRAF in the survival of metastatic colorectal cancer (mCRC) patients treated with chemotherapy.
METHODS Clinical data were collected retrospectively from records of consecutive patients with mCRC treated with fluoropyrimidine-based chemotherapy from 1/2005 to 1/2007. Formalin-fixed paraffin-embedded tissues were retrieved for analysis. TYMS genotypes were identified with restriction fragment analysis PCR, while KRAS and BRAF mutation status was evaluated using real-time PCR assays. TYMS gene polymorphisms of each of the 3’ untranslated region (UTR) and 5’UTR were classified into three groups according to the probability they have for high, medium and low TYMS expression (and similar levels of risk) based on evidence from previous studies. Univariate and multivariate survival analyses were performed.
RESULTS The analysis recovered 89 patients with mCRC (46.1% de novo metastatic disease and 53.9% relapsed). Of these, 46 patients (51.7%) had colon cancer and 43 (48.3%) rectal cancer as primary. All patients were treated with fluoropyrimidine-based chemotherapy (5FU or capecitabine) as single-agent or in combination with irinotecan or/and oxaliplatin or/and bevacizumab. With a median follow-up time of 14.8 mo (range 0-119.8), 85 patients (95.5%) experienced disease progression, and 63 deaths (70.8%) were recorded. The 3-year and 5-year OS rate was 25.4% and 7.7% while the 3-year progression-free survival rate was 7.1%. Multivariate analysis of TYMS polymorphisms, KRAS and BRAF with clinicopathological parameters indicated that TYMS 3’UTR polymorphisms are associated with risk for disease progression and death (P < 0.05 and P < 0.03 respectively). When compared to tumors without any del allele (genotypes ins/ins and ins/loss of heterozygosity (LOH) linked with high TYMS expression) tumors with del/del genotype (low expression group) and tumors with ins/del or del/LOH (intermediate expression group) have lower risk for disease progression (HR = 0.432, 95%CI: 0.198-0.946, P < 0.04 and HR = 0.513, 95%CI: 0.287-0.919, P < 0.03 respectively) and death (HR = 0.366, 95%CI: 0.162-0.827, P < 0.02 and HR = 0.559, 95%CI: 0.309-1.113, P < 0.06 respectively). Additionally, KRAS mutation was associated independently with the risk of disease progression (HR = 1.600, 95%CI: 1.011-2.531, P < 0.05). The addition of irinotecan in 1st line chemotherapy was associated independently with lower risk for disease progression and death (HR = 0.600, 95%CI: 0.372-0.969, P < 0.04 and HR = 0.352, 95%CI: 0.164-0.757, P < 0.01 respectively).
CONCLUSION The TYMS genotypes ins/ins and ins/LOH associate with worst prognosis in mCRC patients under fluoropyrimidine-based chemotherapy. Large prospective studies are needed for validation of our findings.
Collapse
Affiliation(s)
- Anastasios Ntavatzikos
- Hematology-Oncology Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, 12462 Athens, Greece
| | - Aris Spathis
- Department of Cytopathology, National and Kapodistrian University of Athens, Medical School, “ATTIKON” University Hospital, 12462 Athens, Greece
| | - Paul Patapis
- 3rd Department of Surgery, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, 12462 Athens, Greece
| | - Nikolaos Machairas
- 3rd Department of Surgery, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, 12462 Athens, Greece
| | - George Peros
- Department of Surgery, Medical School, National and Kapodistrian University of Athens, Evgenideio Therapeutirio S.A., “I AGIA TRIAS”, 11528 Athens, Greece
| | - Stefanos Konstantoudakis
- 2nd Department of Pathology, University of Athens, Medical School, “ATTIKON” University Hospital, 12462 Athens, Greece
| | - Danai Leventakou
- Department of Cytopathology, National and Kapodistrian University of Athens, Medical School, “ATTIKON” University Hospital, 12462 Athens, Greece
| | - Ioannis G Panayiotides
- 2nd Department of Pathology, University of Athens, Medical School, “ATTIKON” University Hospital, 12462 Athens, Greece
| | - Petros Karakitsos
- Department of Cytopathology, National and Kapodistrian University of Athens, Medical School, “ATTIKON” University Hospital, 12462 Athens, Greece
| | - Anna Koumarianou
- Hematology-Oncology Unit, 4th Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, 12462 Athens, Greece
| |
Collapse
|
7
|
Meng X, Wang G, Guan R, Jia X, Gao W, Wu J, Yu J, Liu P, Yu Y, Sun W, Dong H, Fu S. Predicting chemosensitivity to gemcitabine and cisplatin based on gene polymorphisms and mRNA expression in non-small-cell lung cancer cells. Pharmacogenomics 2015; 16:23-34. [DOI: 10.2217/pgs.14.159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: We used a panel of 17 non-small-cell lung cancer cell lines to investigate whether the presence of polymorphisms in the RRM1, ERCC1, ABCB1 and MTHFR genes and alterations in their mRNA expression can affect the in vitro chemosensitivity to cisplatin and gemcitabine. Materials & methods: Polymorphisms in these genes were evaluated by direct sequencing. mRNA expression levels were assessed by realtime PCR. In vitro chemosensitivity to cisplatin and gemcitabine was expressed as IC50 values, using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Results: There was a significant, positive correlation between RRM1 mRNA expression and IC50 values for gemcitabine (r = 0.6533, p = 0.0045), and there was a significant, negative correlation between ABCB1 mRNA expression and IC50 values for cisplatin (r = -0.5459, p = 0.0287). When examining the association between the polymorphisms and IC50, we found that only the MTHFR 1298A>C polymorphism showed a tendency to be more chemosensitive to gemcitabine (p = 0.0440). Conclusion: These in vitro results suggest that mRNA expression levels of the RRM1 and ABCB1 genes may be useful indicators of chemosensitivity to gemcitabine and cisplatin, respectively. The MTHFR 1298A>C polymorphism was associated with gemcitabine chemosensitivity, which require further functional analysis with co-expressed genes and should be explored in prospective clinical studies to determine its potential clinical application as a predictive biomarker. Original submitted 11 February 2014; Revision submitted 3 November 2014
Collapse
Affiliation(s)
- Xiangning Meng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Geng Wang
- Department of Anatomy, Harbin Medical University, Harbin 150081, China
| | - Rongwei Guan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Xueyuan Jia
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Wei Gao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Jie Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Jingcui Yu
- The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Peng Liu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Yang Yu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Wenjing Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Haiying Dong
- Department of Internal Medicine-Oncology, Zhejiang Province People's Hospital, Hangzhou 310014, China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Medical Genetics (Harbin Medical University), Heilongjiang Higher Education Institutions, Harbin 150081, China
| |
Collapse
|
8
|
Bécouarn Y, Cany L, Pulido M, Beyssac R, Texereau P, Le Morvan V, Béchade D, Brunet R, Aitouferoukh S, Lalet C, Mathoulin-Pélissier S, Fonck M, Robert J. FOLFIRI® and bevacizumab in first-line treatment for colorectal cancer patients: safety, efficacy and genetic polymorphisms. BMC Res Notes 2014; 7:260. [PMID: 24758527 PMCID: PMC4022139 DOI: 10.1186/1756-0500-7-260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Over 50% of colorectal cancer (CRC) patients develop metastases. The aim of this study was to evaluate efficacy and tolerance of first-line FOLFIRI® + bevacizumab (B) treatment for metastatic CRC, and to assess genetic polymorphisms as potential markers. METHODS Adult patients with histologically-proven, non-resectable metastatic CRC and ECOG ≤ 2 were included. 14-day cycles consisted of bevacizumab (5 mg/kg), irinotecan (180 mg/m2), bolus FU (400 mg/m2) and leucovorin (400 mg/m2), followed by 46-hour FU infusions (2400 mg/m2). Primary endpoint was response rate according to RECIST criteria. Secondary endpoints were overall (OS) and progression-free (PFS) survivals, response duration, and toxicity. Associations between clinical data, UGT1A1, thymidylate synthase, VEGFA polymorphisms and PFS, OS and toxicity were analyzed. RESULTS Sixty-two patients were enrolled (median age 68y). 59/62 patients were eligible and evaluable for response at 6 months: 28 showed partial response (47.5%; 95% CI; 34.3-60.9), 20 stable disease (33.9%) and 11 progression (18.6%). Grade 3/4 toxicities were as follows: neutropenia 16.1%; diarrhea 11.3%; nausea-vomiting 1.6%. Median response duration was 9.5 months (range 2.7-20); median PFS 10.3 months (range 8.8-11.7); and median OS 25.7 months (range 20.2-29.7). 11/59 initially unresectable patients were resectable after treatment. VEGFA polymorphism (rs25648) was associated with better OS (HR: 3.61; 95% CI: 1.57-8.30). CONCLUSIONS FOLFIRI® + bevacizumab is active with good response rate, long median OS, and a good safety profile. A VEGFA polymorphism might have a prognostic value in this malignancy. TRIAL REGISTRATION Clinicaltrials.gov: NCT00467142 (registration date: April 25, 2007).
Collapse
Affiliation(s)
- Yves Bécouarn
- Department of Digestive Oncology, Institut Bergonié, Comprehensive Cancer Centre, 229 cours de l'Argonne, F-33000 Bordeaux, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jung M, Lee CH, Park HS, Lee JH, Kang YA, Kim SK, Chang J, Kim DJ, Rha SY, Kim JH, Cho BC. Pharmacogenomic assessment of outcomes of pemetrexed-treated patients with adenocarcinoma of the lung. Yonsei Med J 2013; 54:854-64. [PMID: 23709418 PMCID: PMC3663241 DOI: 10.3349/ymj.2013.54.4.854] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The main objective of this study was to evaluate the association between polymorphisms of the target genes of pemetrexed and clinical outcomes in non-small cell lung cancer (NSCLC) patients treated with pemetrexed. MATERIALS AND METHODS We assessed polymorphisms at 8 sites in 4 genes [thymidylate synthase (TS), dihydrofolate reductase (DHFR; 1610, 680, 317, intron 1), methylenetetrahydrofolate reductase (MTHFR; 677, 1298), glycinamide ribonucleotide formyl transferase (GARFT; 2255)] associated with pemetrexed metabolism using polymerase chain reaction, gene scanning, and restriction fragment length polymorphism analysis in 90 patients with adenocarcinoma of the lung. RESULTS Survival was significantly longer with pemetrexed in patients with TS 3RGCC/3RGCC or 3RGGC/3RGGC compared with the other groups (PFS; 5.2 months vs. 3.7 months, p=0.03: OS; 31.8 months vs. 18.5 months, p=0.001). Patients with DHFR 680CC experienced fatigue more frequently (50% vs. 8.6%, p=0.008). Polymorphisms of MTHFR and GARFT were not significantly associated with clinical outcomes of pemetrexed. CONCLUSION The TS genotype was associated with survival and one DHFR polymorphism was associated with fatigue in NSCLC patients treated with pemetrexed. Further large prospective studies are required to identify other biomarkers that affect patients being treated with pemetrexed for adenocarcinoma of the lung.
Collapse
Affiliation(s)
- Minkyu Jung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Chul Ho Lee
- Department of Clinical Genetics, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Soon Park
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyun Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ae Kang
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Se Kyu Kim
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Chang
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dae Joon Kim
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Hang Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Bardhan K, Liu K. Epigenetics and colorectal cancer pathogenesis. Cancers (Basel) 2013; 5:676-713. [PMID: 24216997 PMCID: PMC3730326 DOI: 10.3390/cancers5020676] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) develops through a multistage process that results from the progressive accumulation of genetic mutations, and frequently as a result of mutations in the Wnt signaling pathway. However, it has become evident over the past two decades that epigenetic alterations of the chromatin, particularly the chromatin components in the promoter regions of tumor suppressors and oncogenes, play key roles in CRC pathogenesis. Epigenetic regulation is organized at multiple levels, involving primarily DNA methylation and selective histone modifications in cancer cells. Assessment of the CRC epigenome has revealed that virtually all CRCs have aberrantly methylated genes and that the average CRC methylome has thousands of abnormally methylated genes. Although relatively less is known about the patterns of specific histone modifications in CRC, selective histone modifications and resultant chromatin conformation have been shown to act, in concert with DNA methylation, to regulate gene expression to mediate CRC pathogenesis. Moreover, it is now clear that not only DNA methylation but also histone modifications are reversible processes. The increased understanding of epigenetic regulation of gene expression in the context of CRC pathogenesis has led to development of epigenetic biomarkers for CRC diagnosis and epigenetic drugs for CRC therapy.
Collapse
Affiliation(s)
- Kankana Bardhan
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, and Cancer Center, Georgia Regents University, Augusta, GA 30912, USA.
| | | |
Collapse
|
11
|
Thymidylate synthase expression and prognosis in colorectal cancer: a meta-analysis of colorectal cancer survival data. Int J Biol Markers 2012; 27:e203-11. [PMID: 23015402 DOI: 10.5301/jbm.2012.9584] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND Although many studies have investigated the prognostic effect of thymidylate synthase (TS) in colorectal cancer, no consensus has been reached. The aim of this meta-analysis was to obtain a more precise estimate of the prognostic significance of TS expression in localized cancers treated by curative resection and adjuvant chemotherapy. MATERIALS AND METHOD Seventeen eligible studies reporting survival in 2,893 patients stratified by TS expression were pooled using a fixed- or random-effects model. The main outcome measure was hazard ratio (HR). RESULTS The overall HR for overall survival was 1.01 (95% CI 0.74-1.39, p=0.947), with an I2 of 64.4%. The total HR for disease-free survival was 1.36 (95% CI 0.97-1.89, p=0.072), with an I2 of 75.8%. In the TS protein-tested subgroup, the total HR for disease-free survival was 1.72 (95% CI 1.02-2.89, p=0.042), with an I2 of 81.3%. CONCLUSION Our meta-analysis showed that, in the adjuvant setting, TS expression does not predict a poorer disease-free survival or a worse overall survival. Therefore, we believe that it is inappropriate to regard TS expression as a prognostic factor for patients with stage II and stage III colorectal cancer treated by surgery and adjuvant chemotherapy.
Collapse
|
12
|
Georgitsi M, Zukic B, Pavlovic S, Patrinos GP. Transcriptional regulation and pharmacogenomics. Pharmacogenomics 2012; 12:655-73. [PMID: 21619428 DOI: 10.2217/pgs.10.215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Interindividual variable drug response is correlated with sequence alterations in genes encoding drug-metabolizing enzymes and transporters, affecting drug absorption, distribution, metabolism and excretion. This variable drug response may have an impact on disease therapeutic outcomes, tolerance to adverse drug reactions and even survival. Sequence alterations may occur not only within the coding region of a gene, but in its regulatory elements too, affecting gene transcription and gene-expression levels. Here, we provide a compilation of the current knowledge of pharmacogenomics related to transcription, with a focus on the effect of SNPs and short tandem repeats residing in cis-regulatory elements of 11 genes encoding for drug-metabolizing enzymes and drug transporters. In addition, we comment on two genes encoding enzymes that are drug targets themselves. Finally, we briefly discuss the currently available methodologies for clinically assessing pharmacogenomic profiles, which could potentially in the future facilitate drug treatment-individualization via the identification of molecular signatures in specific patient groups.
Collapse
Affiliation(s)
- Marianthi Georgitsi
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Rion, Patras, Greece
| | | | | | | |
Collapse
|
13
|
Dahan L, Ciccolini J, Evrard A, Mbatchi L, Tibbitts J, Ries P, Norguet E, Mercier C, Iliadis A, Ouafik L, Lacarelle B, Seitz JF. Sudden Death Related to Toxicity in a Patient on Capecitabine and Irinotecan Plus Bevacizumab Intake: Pharmacogenetic Implications. J Clin Oncol 2012; 30:e41-4. [DOI: 10.1200/jco.2011.37.9289] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Laetitia Dahan
- La Timone University Hospital of Marseille, Aix-Marseille Univ, CRO2 UMR 911, Marseille, France
| | - Joseph Ciccolini
- Hôpital Nord; La Timone University Hospital of Marseille; Aix-Marseille Univ, CRO2 UMR 911, Marseille, France
| | | | | | | | - Pauline Ries
- La Timone University Hospital of Marseille, Marseille, France
| | | | | | | | - L'Houcine Ouafik
- Nord University Hospital of Marseille; Aix-Marseille Univ, CRO2 UMR 911, Marseille, France
| | - Bruno Lacarelle
- La Timone University Hospital of Marseille, Aix-Marseille Univ, CRO2 UMR 911, Marseille, France
| | - Jean-Francois Seitz
- La Timone University Hospital of Marseille, Aix-Marseille Univ, CRO2 UMR 911, Marseille, France
| |
Collapse
|
14
|
Meng X, Wang G, Liu P, Hou J, Jin Y, Yu Y, Bai J, Chen F, Sun W, Fu S. ATP-binding cassette B1 gene polymorphisms, mRNA expression and chemosensitivity to paclitaxel in non-small cell lung cancer cells. Respirology 2012; 16:1228-34. [PMID: 21883677 DOI: 10.1111/j.1440-1843.2011.02050.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND OBJECTIVE The adenosine triphosphate (ATP)-binding cassette, sub-family B, member 1 (ABCB1) gene encodes P-glycoprotein (Pgp), which plays an important role in drug disposition by limiting intracellular uptake of paclitaxel. ABCB1 gene polymorphisms may alter the expression and function of Pgp, thereby influencing the response to chemotherapy. A panel of 17 non-small cell lung cancer (NSCLC) cell lines was used to investigate whether alterations in the ABCB1 gene or its mRNA expression correlated with in vitro chemosensitivity to paclitaxel. METHODS Polymorphisms in the ABCB1 gene were evaluated by direct sequencing. mRNA expression levels were assessed by quantitative real-time reverse transcription PCR. In vitro chemosensitivity to paclitaxel was expressed as half-maximal inhibitory concentration values, using a tetrazolium (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)-based colorimetric assay. RESULTS The variant allele frequencies for four ABCB1 gene polymorphisms were 14.71% for 2677G>T/A, 32.35% for 2734T>C, 23.53% for 3396C>T and 76.47% for 3435C>T. There was a significant positive correlation between ABCB1 mRNA expression and half-maximal inhibitory concentration values for paclitaxel (r=0.5322, P=0.0279). None of the four ABCB1 gene polymorphisms were associated with paclitaxel chemosensitivity or ABCB1 mRNA expression in the 17 cell lines. CONCLUSIONS These in vitro results suggest that high ABCB1 mRNA expression may be a predictive biomarker for poor chemosensitivity to paclitaxel. The panel of NSCLC cell lines may provide clues and indications for establishing clinically useful relationships between a given polymorphism or level of gene expression and chemosensitivity to an anti-cancer agent.
Collapse
Affiliation(s)
- Xiangning Meng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Epigenetics and chemoresistance in colorectal cancer: an opportunity for treatment tailoring and novel therapeutic strategies. Drug Resist Updat 2011; 14:280-96. [PMID: 21955833 DOI: 10.1016/j.drup.2011.08.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/09/2011] [Accepted: 08/13/2011] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is the second leading cause of cancer-related deaths in the world. Despite many therapeutic opportunities, prognosis remains dismal for patients with metastatic disease, and a significant portion of early-stage patients develop recurrence after chemotherapy. Epigenetic gene regulation is a major mechanism of cancer initiation and progression, through the inactivation of several tumor suppressor genes. Emerging evidence indicates that epigenetics may also play a key role in the development of chemoresistance. In the present review, we summarize epigenetic mechanisms triggering resistance to three commonly used agents in colorectal cancer: 5-fluorouracil, irinotecan and oxaliplatin. Those epigenetic biomarkers may help stratify colorectal cancer patients and develop a tailored therapeutic approach. In addition, epigenetic modifications are reversible through specific drugs: histone-deacetylase and DNA-methyl-transferase inhibitors. Preclinical studies suggest that these drugs may reverse chemoresistance in colorectal tumors. In conclusion, an epigenetic approach to colorectal cancer chemoresistance may pave the way to personalized treatment and to innovative therapeutic strategies.
Collapse
|
16
|
Vignoli M, Nobili S, Napoli C, Putignano AL, Morganti M, Papi L, Valanzano R, Cianchi F, Tonelli F, Mazzei T, Mini E, Genuardi M. Thymidylate synthase expression and genotype have no major impact on the clinical outcome of colorectal cancer patients treated with 5-fluorouracil. Pharmacol Res 2011; 64:242-8. [PMID: 21536130 DOI: 10.1016/j.phrs.2011.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/12/2011] [Accepted: 04/14/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND OBJECTIVES Thymidylate synthase (TS) expression levels appear to be related to response to 5-fluorouracil-(5-FU)-based chemotherapy in colorectal cancer (CRC) patients. Three polymorphisms have been proposed as modulators of TS expression: a tandemly repeated sequence (2R/3R) in the 5' UTR, a SNP (G>C) within the 3R allele and a 6bp deletion in the 3' UTR. To evaluate the influence of TS expression and polymorphisms on clinical outcome of 5-FU-treated patients we performed a comprehensive genetic analysis on 63 CRC patients. METHODS TS expression levels were analyzed in normal and tumor tissues. TS coding sequence and UTR polymorphisms were investigated on DNA from normal tissue. LOH analysis was performed to determine tumor genotype. RESULTS A difference in disease-free survival (DFS), although not statistically significant, was observed between high and low mRNA expression levels: patients with low levels showed longer DFS. The 2R2R genotype showed significantly lower expression than the 3R3R and 2R3R genotypes in normal tissue. No other TS polymorphism was associated with mRNA expression or clinical outcome. CONCLUSIONS The results obtained in this pilot study indicate that the number of 5' UTR repeats is the major genetic determinant of TS expression. The lack of association with other polymorphisms might be partially explained by the existence of linkage disequilibrium in the TS gene. Our data support the growing evidence that TS control may require multiple mechanisms acting in close coordination with one another and suggest that TS genotyping alone in tumor samples is not sufficient to accurately predict response to 5-FU.
Collapse
Affiliation(s)
- Marina Vignoli
- Fondazione Farmacogenomica Fiorgen, Sesto Fiorentino, Italy; Dipartimento di Fisiopatologia Clinica, Sezione di Genetica Medica, Università di Firenze, Firenze, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cytochrome P450 1B1 Gene Polymorphisms as Predictors of Anticancer Drug Activity: Studies with In vitro Models. Mol Cancer Ther 2010; 9:3315-21. [DOI: 10.1158/1535-7163.mct-10-0673] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Schwarzenbach H, Goekkurt E, Pantel K, Aust DE, Stoehlmacher J. Molecular analysis of the polymorphisms of thymidylate synthase on cell-free circulating DNA in blood of patients with advanced colorectal carcinoma. Int J Cancer 2010; 127:881-8. [PMID: 19998340 DOI: 10.1002/ijc.25096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As a key enzyme in folate metabolism, the thymidylate synthase (TS) is important for the synthesis of nucleotides. Its polymorphisms may affect the TS gene expression and the susceptibility for Fluoropyrimidine (FU)-based chemotherapies. In this study, we assessed the relationship between the TS genotypes and clinical outcome to 5-FU-based chemotherapy, and examined whether cell-free circulating DNA is applicable for these molecular analyses. We combined the variable number tandem repeat (VNTR) and single nucleotide (SNP) polymorphisms of the TS promoter and the deletion variants (1494del6) in the 3'UTR with the occurrence of loss of heterozygosity (LOH) at the microsatellite markers D18S59, D18S1140, and D18S976 mapped up- and downstream to the TS locus. Cell-free blood DNA, tumor tissues, and leukocytes of 51 patients with advanced colorectal cancer were used. Genotyping revealed linkage disequilibrium between TS promoter and 3'UTR (p = 0.03) in blood and leukocytes. Inverse associations of the response to therapy with the number of polymorphisms (p = 0.05) and the 494del6 polymorphism (p < 0.02) were detected on serum DNA. The quantification of serum DNA showed significant correlations with the 1494del6 variant (p = 0.006) in tumor tissues and the combined polymorphisms in leukocytes (p < 0.04). In contrast to the low LOH frequency in blood, LOH spanned more than one marker in the primary tumor of the majority of the patients suggesting the loss of the entire TS locus. Our data provide insight into the molecular diversity of the regulation of the TS gene expression. This is the first study that compares multi-variant TS genotypes in different clinical specimens.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
19
|
Schwarzenbach H. Predictive diagnostics in colorectal cancer: impact of genetic polymorphisms on individual outcomes and treatment with fluoropyrimidine-based chemotherapy. EPMA J 2010. [PMID: 23199090 PMCID: PMC3405340 DOI: 10.1007/s13167-010-0022-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The 5-fluorouracil (5-FU)-based chemotherapy is a standard treatment for patients with colorectal cancer. However, a relevant number of patients suffer from severe toxic side effects, such as haemotoxicity, while lacking clinical response to adjuvant therapy. The inter-individual variations of drug toxicity and efficacy of the pyrimidine antagonist observed in clinical practice are mainly determined by genetic polymorphisms. The screening of genotypes, such as thymidylate synthase, dihydropyrimidine dehydrogenase, methylene tetrahydrofolate reductase, orotate phosphoribosyltransferase or glutathione S-transferase, could help identifying those patients with colorectal carcinoma who can actually benefit from a 5-FU-based therapy. The current chapter elucidates the roles of the polymorphisms in the enzymes involved in the 5-FU metabolic pathway as prognostic and predictive markers. It reports on the relationship between various genotypes in patients with colorectal carcinoma and their responsiveness to a 5-FU-based chemotherapy, and concludes with an outlook on possible future directions in treatment of colorectal cancer.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Institute of Tumour Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
20
|
Su D, Zhang W, Yang Y, Zhang H, Liu YQ, Bai G, Ma YX, Peng Y, Zhang SZ. c.822+126T>G/C: a novel triallelic polymorphism of the TSSK6 gene associated with spermatogenic impairment in a Chinese population. Asian J Androl 2009; 12:234-9. [PMID: 20037600 DOI: 10.1038/aja.2009.80] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TSSK6 is a member of the testis-specific serine/threonine kinase family. Male Tssk6 knockout mice are infertile owing to spermatogenic impairment, including sperm count reduction, a decrease in motile sperm number and motility rates, and an increase in the number of sperms with abnormal morphology. We investigated the possible association between variations of the TSSK6 gene and spermatogenic impairment in humans. Mutation screening of TSSK6 was carried out in 519 patients with azoospermia (n = 273) or severe oligozoospermia (n = 246) and in 359 controls with normozoospermia by denaturing high-performance liquid chromatography and DNA sequencing. The frequencies of alleles and genotypes of gene polymorphism were compared between patients and controls. A novel triallelic polymorphism in TSSK6, c.822+126T>G/C, was identified. The frequencies of genotype TT and allele T were increased dramatically in infertile patients compared with controls, whereas genotype TG, allele G and allele C frequencies were significantly higher in controls than in patients. Further study revealed that the allele C frequency of controls was remarkably higher than that of patients with oligospermia. Our findings, for the first time, suggested an association of c.822+126T>G/C in TSSK6 with spermatogenic impairment in humans in which allele T may be a risk factor for male infertility, while alleles C and G may decrease susceptibility to male infertility.
Collapse
Affiliation(s)
- Dan Su
- Department of Medical Genetics, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Faur N, Araud L, Laroche-Clary A, Kanno J, Toutain J, Yamori T, Robert J, Le Morvan V. The association between the T309G polymorphism of the MDM2 gene and sensitivity to anticancer drug is dependent on the p53 mutational status in cellular models. Br J Cancer 2009; 101:350-6. [PMID: 19513075 PMCID: PMC2720206 DOI: 10.1038/sj.bjc.6605096] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background: We investigated, in the panel of 60 human tumour cell lines of the National Cancer Institute (NCI-60), whether the R72P polymorphism of TP53 and the T309G polymorphism of MDM2 were associated to the in vitro cytotoxicity of anticancer agents, extracted from the NCI database. For validation, the same study was performed independently on a second panel of tumour cell lines, JFCR-45. Methods: Both SNPs were identified in cell DNA using PCR-RFLP techniques confirmed by direct sequencing and by pyrosequencing. For the analysis of the results, the mutational status of p53 was taken into account. Results: In the NCI-60 panel, the TP53 rare-allele frequency was 32% and the MDM2 rare-allele frequency 39%. The MDM2 alleles were distributed according to Hardy–Weinberg equilibrium whereas this was only found, for the TP53 alleles, in p53 non-mutated cell lines. Comparable results were obtained in the JFCR-45 validation set. The TP53 SNP had low impact on anticancer drug cytotoxicity in either panel. In contrast, the MDM2 gene polymorphism had a major impact on anticancer drug cytotoxicity, essentially in p53 non-mutated cell lines. Presence of the rare allele was associated to significantly higher MDM2 protein expression and to increased sensitivity to DNA-interfering drugs. In the JFCR-45 panel, a similar effect of the MDM2 gene polymorphism was observed, but was less dependent on the p53 mutational status. Conclusions: We hypothesised that cell lines harbouring the MDM2 G allele presented a lower availability of p53 for DNA repair, translating into higher sensitivity to DNA-damaging agents.
Collapse
Affiliation(s)
- N Faur
- Département de Parmacologie, INSERM U916, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Charasson V, Hillaire-Buys D, Solassol I, Laurand-Quancard A, Pinguet F, Le Morvan V, Robert J. Involvement of gene polymorphisms of the folate pathway enzymes in gene expression and anticancer drug sensitivity using the NCI-60 panel as a model. Eur J Cancer 2009; 45:2391-401. [PMID: 19501504 DOI: 10.1016/j.ejca.2009.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 12/27/2022]
Abstract
Folate, a vitamin of the B group involved in one-carbon group metabolism, plays an important role in DNA synthesis and methylation. Several polymorphisms in the genes involved in folate uptake and biotransformations have been shown to be associated to the risk of cancer and to anticancer drug response. We studied common polymorphisms in MTHFR (N(5,10)-methylene-tetrahydrofolate reductase), MTHFD1 (N(5,10)-methylene-tetrahydrofolate dehydrogenase), MTR (methionine synthetase) and SLC19A1 (reduced folate carrier) in the panel of 60 human tumour cell lines established by the NCI for anticancer drug screening and we tentatively associated these polymorphisms with gene expression and drug cytotoxicity as extracted from the public database of the Developmental Therapeutic Programme. We observed a consistent and highly significant association between the presence of the variant C allele of the A>C1298 polymorphism of MTHFR and the sensitivity to many anticancer drugs belonging to the classes of antifolates, antimetabolites, alkylating agents and, to a lesser extent, topoisomerase inhibitors. In contrast, the T variant allele of the C>T677 variation of MTHFR was rather associated to lower sensitivity of the cell lines towards anticancer drugs (alkylating agents, antifolates and antimetabolites) but with much lower effects than the A>C1298 variation. The polymorphisms of the other genes studied were not associated with differences in anticancer drug sensitivity, but the expression of the SLC19A1 gene was significantly correlated with the sensitivity to several drugs (antifolates, thiopurines, nitrosoureas, and DACH-platinum drugs). We concluded that the NCI-60 panel may constitute a good starting point for implementing clinical studies aimed at discovering and validating predictive genetic markers of drug efficacy and/or toxicity.
Collapse
Affiliation(s)
- Virginie Charasson
- Laboratoire de Pharmacologie et Toxicologie Clinique, Hôpital Lapeyronie et Université de Montpellier 1, 34295 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Xu WH, Long JR, Zheng W, Ruan ZX, Cai Q, Cheng JR, Zhao GM, Xiang YB, Shu XO. Association of thymidylate synthase gene with endometrial cancer risk in a Chinese population. Cancer Epidemiol Biomarkers Prev 2009; 18:579-84. [PMID: 19190136 DOI: 10.1158/1055-9965.epi-08-0831] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We comprehensively evaluated genetic variants in the thymidylate synthase (TYMS) gene in association with endometrial cancer risk in a population-based case-control study of 1,199 incident endometrial cancer cases and 1,212 age frequency-matched population controls. Exposure information was obtained via in-person interview, and DNA samples (blood or buccal cell) were collected. Genotyping of 11 haplotype-tagging single nucleotide polymorphisms (SNP) for the TYMS gene plus the 5-kb flanking regions was done for 1,028 cases and 1,003 controls by using the Affymetrix MegAllele Targeted Genotyping System. Of 11 haplotype-tagging SNPs identified, 7 that are located in flanking regions of the TYMS gene are also in the ENOSF1 (rTS) gene. The SNP rs3819102, located in the 3'-flanking region of the TYMS gene and in an intron of the ENOSF1 gene, was associated with risk of endometrial cancer. The odds ratio (95% confidence interval) for the CC genotype was 1.5 (1.0-2.2) compared with the TT genotype. Haplotype TTG in block 2 of the TYMS gene, which includes SNPs rs10502289, rs2298583, and rs2298581 (located in introns of the ENOSF1 gene), was associated with a marginally significant decrease in risk of endometrial cancer under the dominant model (odds ratio, 0.8; 95% confidence interval, 0.6-1.0). This study suggests that genetic polymorphisms in the TYMS or ENOSF1 genes may play a role in the development of endometrial cancer among Chinese women.
Collapse
Affiliation(s)
- Wang-Hong Xu
- Department of Epidemiology, Cancer Institute of Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ravizza R, Molteni R, Gariboldi MB, Marras E, Perletti G, Monti E. Effect of HIF-1 modulation on the response of two- and three-dimensional cultures of human colon cancer cells to 5-fluorouracil. Eur J Cancer 2009; 45:890-8. [PMID: 19171477 DOI: 10.1016/j.ejca.2008.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 12/15/2008] [Accepted: 12/17/2008] [Indexed: 12/14/2022]
Abstract
Tumour hypoxia represents a major obstacle to the success of radiotherapy and chemotherapy. The discovery that the hypoxia-inducible factor 1 (HIF-1) is a master regulator of cellular response to low oxygen led to the concept that inhibiting HIF-1 activity may sensitise hypoxic cancer cells to radiation and cytotoxic drugs. In the present study we investigate the effects of HIF-1 modulation on the response of the human colon adenocarcinoma cell line HCT116 to 5-fluorouracil (5FU). Increasing HIF-1 activity, either by exposing cells to hypoxia or by forced expression of a degradation-resistant form of HIF-1alpha, results in poor cell response to 5FU; conversely, knockdown of HIF-1alpha by RNA interference prevents hypoxia-induced resistance to 5FU. PMX290, a thioredoxin-1 inhibitor, significantly inhibits HIF-1 activity and concomitantly sensitises hypoxic cells to 5FU. These results were confirmed in HCT116 cells grown as three-dimensional spheroids, a model that more closely reproduces the hypoxic environment of solid tumours.
Collapse
Affiliation(s)
- Raffaella Ravizza
- Department of Structural and Functional Biology, University of Insubria, Section of Pharmacology, Busto Arsizio, Varese, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Deng Y, Zhang W, Su D, Yang Y, Ma Y, Zhang H, Zhang S. Some Single Nucleotide Polymorphisms of MSY2 Gene Might Contribute to Susceptibility to Spermatogenic Impairment in Idiopathic Infertile Men. Urology 2008; 71:878-82. [DOI: 10.1016/j.urology.2007.12.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 11/25/2022]
|
26
|
Showalter SL, Showalter TN, Witkiewicz A, Havens R, Kennedy EP, Hucl T, Kern SE, Yeo CJ, Brody JR. Evaluating the drug-target relationship between thymidylate synthase expression and tumor response to 5-fluorouracil. Is it time to move forward? Cancer Biol Ther 2008; 7:986-94. [PMID: 18443433 DOI: 10.4161/cbt.7.7.6181] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Thymidylate synthase is a target of 5-fluoruracil, a pyrimidine analog used to treat gastrointestinal and other cancers. The 5-fluorouracil metabolite, fluoro-deoxyuridine monophosphate, forms a ternary complex with thymidylate synthase and 5,10-methylene tetrahydrofolate. The purpose of this study was to evaluate the time-honored connection between thymidylate synthase and 5-fluorouracil. From our literature search spanning reports from 1995 to 2007 published in journals having an impact factor greater than 2, we stratified the tumors within each article, according to low versus high thymidylate synthase expression. These groups were subdivided into responders, stable disease or disease progression. The relationship between thymidylate synthase expression and 5-fluorouracil response was analyzed for the overall group, as well as for subsets. Overall, the literature supported an approximately 2-fold inverse relationship between thymidylate synthase expression and response to 5-fluoruracil. We found no change in the trend for a relationship between thymidylate synthase and 5-fluorouracil when the literature was stratified by date of publication, impact factor of the journal in which the report was published, or substrate (mRNA versus protein) for measuring thymidylate synthase expression. Of note, there is no significant change in the trend when comparing 5-fluorouracil treatment alone or in combination with leucovorin. We found a decline of this trend when certain chemotherapeutics were used in combination with 5-fluorouracil. In sum, the connection between thymidylate synthase expression and patient response to 5-fluorouracil does not satisfy expectations for an effective drug-target relationship; and thus, studies of the thymidylate synthase tandem repeat status might only be clinically valuable in regards to patient toxicity. Thus, we question the reliability of thymidylate synthase expression as a clinical predictor of 5-fluorouracil response. Future research could perhaps be directed towards alternate targets and metabolites of 5-fluorouracil, in an effort to find a clinically relevant biomarker panel for response and to optimize fluoropyrimidine-based therapy.
Collapse
Affiliation(s)
- Shayna L Showalter
- Department of Surgery, Thomas Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Several studies indicate that low thymidylate synthase (TS) protein levels in tumor and normal tissues of colorectal cancer patients are associated with better clinical response to fluorouracil-based chemotherapy and higher risk of toxicity. However, no correlation or even reverse correlation has also been reported. These conflicting results may be partly due to the methodological limitations of the immunohistochemical techniques generally used to quantify thymidylate synthase expression. In this sense, a genetic approach aiming at determining the influence of the TS gene polymorphisms on clinical outcome seems more appealing. So far three polymorphisms have been identified and studied in the TYMS gene: the variable number of 28-bp tandem repeats (2R or 3R) in the 5 UTR; the G>C substitution at the 12th nucleotide in the second repeat of the 3R allele (3RG>3RC) and the 6-bp deletion in the 3 UTR (+6bp/-6bp 3 UTR). In vitro studies indicate that each of these polymorphisms can influence thymidylate synthase expression. In particular, the G>C SNP, which alters the E-box sequence binding an upstream stimulatory factor (USF-1), seems more important than the variable number of tandem repeats in determining TS gene expression in that the 3RC allele has a reduced translational activity compared with the 3RG allele, while showing the same activity as the 2R allele. In contrast with the in vitro findings, the clinical studies in colorectal patients failed to find a consistent relationship between the G>C polymorphism and clinical outcome measures (response, survival or toxicity). This discrepancy may be due to methodological heterogeneities amongst the studies, including genotyping in normal or tumor tissues, loss of heterozygosity in tumor cells not evaluated, variable doses and schedules of fluorouracil-based therapy, and variable tumor stage. The complexity of TYMS gene regulation, and the possibility that other polymorphisms may contribute to fluorouracil response, call for further studies before TYMS genotyping can be used in clinical practice to select colorectal cancer patients who are most likely to benefit from chemotherapy.
Collapse
Affiliation(s)
- Milena Gusella
- Rovigo General Hospital, Oncology Division, Viale Tre Martiri 89, 45100 Rovigo, Italy.
| | | |
Collapse
|
28
|
Sakaki N, Iida Y, Okazaki Y, Kawamura S, Takemoto T. Magnifying endoscopic observation of the gastric mucosa, particularly in patients with atrophic gastritis. Endoscopy 1979; 8:146-54. [PMID: 738222 DOI: 10.3816/ccc.2009.n.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The gastric mucosal surface was observed using the magnifying fibergastroscope (FGS-ML), and the fine gastric mucosal patterns, which were even smaller than one unit of gastric area, were examined at a magnification of about 30. For simplicification, we classified these patterns by magnifying endoscopy in the following ways; FP, FIP, FSP, SP and MP, modifying Yoshii's classification under the dissecting microscope. The FIP, which was found to have round and long elliptical gastric pits, is a new addition to our endoscopic classification. The relationship between the FIP and the intermediate zone was evaluated by superficial and histological studies of surgical and biopsy specimens. The width of the band of FIP seems to be related to the severity of atrophic gastritis. Also, the transformation of FP to FIP was assessed by comparing specimens taken from the resected and residual parts of the stomach, respectively. Moreover, it appears that severe gastritis occurs in the gastric mucosa which shows a FIP. Therefore, we consider that the FIP indicates the position of the atrophic border.
Collapse
|