Saiki Y, Ishimaru S, Mimori K, Takatsuno Y, Nagahara M, Ishii H, Yamada K, Mori M. Comprehensive analysis of the clinical significance of inducing pluripotent stemness-related gene expression in colorectal cancer cells.
Ann Surg Oncol 2009;
16:2638-44. [PMID:
19554373 DOI:
10.1245/s10434-009-0567-5]
[Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 02/21/2009] [Accepted: 03/24/2009] [Indexed: 12/14/2022]
Abstract
BACKGROUND
We previously determined that cancer stem-like cells may influence the susceptibility of colorectal cancer (CRC) cells to chemotherapeutic agents. Although Takahashi and Park identified a set of induced pluripotent stem cell (iPS)-related genes required for normal stem cell maintenance, the precise role of iPS-related gene expression in CRC pathogenesis remains to be determined. The purpose of this study was to clarify the clinical relevance of "stemness"-regulating gene expression in CRC cases.
MATERIALS AND METHODS
Cancer cells were excised from tissues of 79 CRC cases by laser microdissection (LMD), and quantitative RT-PCR was used to evaluate expression levels of the iPS-related genes c-MYC, SOX2, OCT3/4, LIN28, KLF4, and NANOG, and to identify any associations between their expression and clinicopathological CRC progression.
RESULTS
We found that LIN28 expression is significantly associated with lymph node metastasis (p = 0.018) and Dukes stage (p = 0.0319). SOX2expression is also correlated with lymph node metastasis. Furthermore, the ten cases with Dukes D disease expressed significantly higher levels of SOX2transcript than the other 69 cases (p = 0.0136). In contrast, KLF4 expression was inversely related to Dukes stage. Expression of c-MYC, OCT3/4, and NANOG did not appear to have clinical relevance in CRC cases.
CONCLUSION
The present analysis strongly suggests that altered expression of several iPS-related genes plays a role in CRC pathogenesis.
Collapse