1
|
Valdivia-Silva J, Chinney-Herrera A. Chemokine receptors and their ligands in breast cancer: The key roles in progression and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:124-161. [PMID: 39260935 DOI: 10.1016/bs.ircmb.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokines and their receptors are a family of chemotactic cytokines with important functions in the immune response in both health and disease. Their known physiological roles such as the regulation of leukocyte trafficking and the development of immune organs generated great interest when it was found that they were also related to the control of early and late inflammatory stages in the tumor microenvironment. In fact, in breast cancer, an imbalance in the synthesis of chemokines and/or in the expression of their receptors was attributed to be involved in the regulation of disease progression, including invasion and metastasis. Research in this area is progressing rapidly and the development of new agents based on chemokine and chemokine receptor antagonists are emerging as attractive alternative strategies. This chapter provides a snapshot of the different functions reported for chemokines and their receptors with respect to the potential to regulate breast cancer progression.
Collapse
Affiliation(s)
- Julio Valdivia-Silva
- Centro de Investigación en Bioingenieria (BIO), Universidad de Ingenieria y Tecnologia-UTEC, Barranco, Lima, Peru.
| | - Alberto Chinney-Herrera
- Facultad de Medicina, Universidad Nacional Autonoma de Mexico-UNAM, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, Mexico
| |
Collapse
|
2
|
Muacevic A, Adler JR, Ghenev P. Fibroblast Growth Factor-2 and the Invasive Potential in Urothelial Malignancies of the Bladder. Cureus 2023; 15:e34147. [PMID: 36843751 PMCID: PMC9949347 DOI: 10.7759/cureus.34147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction Urothelial carcinomas represent a distinct group of malignancies with a high recurrence potential. Multiple studies have established a set of interactions between the tumor cells of urothelial neoplasms and the extracellular matrix regarding invasion and tumor progression. In the present study, we evaluated the expression of fibroblast growth factor-2 (FGF2) in early-stage urothelial carcinomas of the urinary bladder (pTa and pT1) regarding the invasive potential of these tumors. Materials and methods A retrospective non-clinical approach was utilized for the study. Tumor tissue sections used for the initial diagnosis were stained by immunohistochemical means with an anti-FGF2 antibody and the expression within the extracellular matrix was evaluated using a histo-score (h-score). Statistical parameters regarding tumor invasion, FGF2 expression pattern and levels, patient demographic characteristics, and disease recurrence were analyzed for significance. Results A total of 163 cases were analyzed, with an h-score of 110 determined as the optimal cut-off value for invasive potential regarding FGF2 expression, with a sensitivity of 75.4% and a specificity of 78.9%. No statistical correlation was established between the demographic profile of the patients and the occurrence of disease recurrence. Conclusion Based on our results, the study of tumor-extracellular matrix interactions in regards to FGF2 expression is a promising field, at least in urothelial malignancies of the urinary bladder, in regards to tumor invasive potential, while it remains unestablished how these interactions affect metastatic potential.
Collapse
|
3
|
Pinkney HR, Black MA, Diermeier SD. Single-Cell RNA-Seq Reveals Heterogeneous lncRNA Expression in Xenografted Triple-Negative Breast Cancer Cells. BIOLOGY 2021; 10:987. [PMID: 34681087 PMCID: PMC8533545 DOI: 10.3390/biology10100987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/03/2022]
Abstract
Breast cancer is the most commonly diagnosed cancer in the world, with triple-negative breast cancer (TNBC) making up 12% of these diagnoses. TNBC tumours are highly heterogeneous in both inter-tumour and intra-tumour gene expression profiles, where they form subclonal populations of varying levels of aggressiveness. These aspects make it difficult to study and treat TNBC, requiring further research into tumour heterogeneity as well as potential therapeutic targets and biomarkers. Recently, it was discovered that the majority of the transcribed genome comprises non-coding RNAs, in particular long non-coding RNAs (lncRNAs). LncRNAs are transcripts of >200 nucleotides in length that do not encode a protein. They have been characterised as regulatory molecules and their expression can be associated with a malignant phenotype. We set out to explore TNBC tumour heterogeneity in vivo at a single cell level to investigate whether lncRNA expression varies across different cells within the tumour, even if cells are coming from the same cell line, and whether lncRNA expression is sufficient to define cellular subpopulations. We applied single-cell expression profiling due to its ability to capture expression signals of lncRNAs expressed in small subpopulations of cells. Overall, we observed most lncRNAs to be expressed at low, but detectable levels in TNBC xenografts, with a median of 25 lncRNAs detected per cell. LncRNA expression alone was insufficient to define a subpopulation of cells, and lncRNAs showed highly heterogeneous expression patterns, including ubiquitous expression, subpopulation-specific expression, and a hybrid pattern of lncRNAs expressed in several, but not all subpopulations. These findings reinforce that transcriptionally defined tumour cell subpopulations can be identified in cell-line derived xenografts, and uses single-cell RNA-seq (scRNA-seq) to detect and characterise lncRNA expression across these subpopulations in xenografted tumours. Future studies will aim to investigate the spatial distribution of lncRNAs within xenografts and patient tissues, and study the potential of subclone-specific lncRNAs as new therapeutic targets and/or biomarkers.
Collapse
Affiliation(s)
- Holly R. Pinkney
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand; (H.R.P.); (M.A.B.)
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand; (H.R.P.); (M.A.B.)
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand; (H.R.P.); (M.A.B.)
- Amaroq Therapeutics Ltd., Dunedin 9016, New Zealand
| |
Collapse
|
4
|
Kronemberger GS, Miranda GASC, Tavares RSN, Montenegro B, Kopke ÚDA, Baptista LS. Recapitulating Tumorigenesis in vitro: Opportunities and Challenges of 3D Bioprinting. Front Bioeng Biotechnol 2021; 9:682498. [PMID: 34239860 PMCID: PMC8258101 DOI: 10.3389/fbioe.2021.682498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is considered one of the most predominant diseases in the world and one of the principal causes of mortality per year. The cellular and molecular mechanisms involved in the development and establishment of solid tumors can be defined as tumorigenesis. Recent technological advances in the 3D cell culture field have enabled the recapitulation of tumorigenesis in vitro, including the complexity of stromal microenvironment. The establishment of these 3D solid tumor models has a crucial role in personalized medicine and drug discovery. Recently, spheroids and organoids are being largely explored as 3D solid tumor models for recreating tumorigenesis in vitro. In spheroids, the solid tumor can be recreated from cancer cells, cancer stem cells, stromal and immune cell lineages. Organoids must be derived from tumor biopsies, including cancer and cancer stem cells. Both models are considered as a suitable model for drug assessment and high-throughput screening. The main advantages of 3D bioprinting are its ability to engineer complex and controllable 3D tissue models in a higher resolution. Although 3D bioprinting represents a promising technology, main challenges need to be addressed to improve the results in cancer research. The aim of this review is to explore (1) the principal cell components and extracellular matrix composition of solid tumor microenvironment; (2) the recapitulation of tumorigenesis in vitro using spheroids and organoids as 3D culture models; and (3) the opportunities, challenges, and applications of 3D bioprinting in this area.
Collapse
Affiliation(s)
- Gabriela S. Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | - Guilherme A. S. C. Miranda
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Renata S. N. Tavares
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Bianca Montenegro
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | - Úrsula de A. Kopke
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Leandra S. Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
5
|
Singh S, Tran S, Putman J, Tavana H. Three-dimensional models of breast cancer-fibroblasts interactions. Exp Biol Med (Maywood) 2020; 245:879-888. [PMID: 32276543 DOI: 10.1177/1535370220917366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Tumor stroma plays an important role in progression of cancers to a fatal metastatic disease. Modern treatment strategies are considering targeting tumor stroma to improve outcomes for cancer patients. A current challenge to develop stroma-targeting therapeutics is the lack of preclinical physiologic tumor models. Animal models widely used in cancer research lack human stroma and are not amenable to screening of chemical compounds for cancer drug discovery. In this review, we outline in vitro three-dimensional tumor models that we have developed to study the interactions among cancer cells and stromal cells. We describe development of the tumor models in a modular fashion, from a spheroid model to a sophisticated organotypic model, and discuss the importance of using correct physiologic models to recapitulate tumor-stromal signaling. These biomimetic tumor models will facilitate understanding of tumor-stromal signaling biology and provide a scalable approach for testing and discovery of cancer drugs.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Sydnie Tran
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Justin Putman
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
6
|
Januškevičienė I, Petrikaitė V. Heterogeneity of breast cancer: The importance of interaction between different tumor cell populations. Life Sci 2019; 239:117009. [PMID: 31669239 DOI: 10.1016/j.lfs.2019.117009] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/12/2019] [Accepted: 10/20/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Breast cancer is the most common cancer and the second leading cause of cancer-related death in women worldwide. Despite the early detection of breast cancer and increasing knowledge of its biology and chemo-resistance, metastatic breast cancer is largely incurable disease. We provide a review of the intertumor and intratumor heterogeneity, explain the differences between triple-negative breast cancer subtypes. Also, we describe the interaction of breast tumor cells with their microenvironment cells and explain how this interaction contributes to the tumor progression, metastasis formation and resistance to the treatment. DISCUSSION One of the main causes that complicate the treatment is tumor heterogeneity. It is observed among patients (intertumor heterogeneity) and in each individual tumor (intratumor heterogeneity). In the case of intratumor heterogeneity, the tumor consists of different phenotypical cell populations. During breast cancer subtype identification, a small piece of solid tumor tissue does not necessarily represent all the tumor composition. Breast tumor cell phenotypical differences may appear due to cell localization in different tumor sites, unique response to the treatment, cell interaction with tumor microenvironment or tumor cell interaction with each other. This heterogeneity may lead to breast cancer aggressiveness and challenging treatment. CONCLUSION Understanding the molecular and cellular mechanisms of tumor heterogeneity that are relevant to the development of treatment resistance is a major area of research. Identification of differences between populations and their response to anticancer drugs would help to predict the potential resistance to chemotherapy and thus would help to select the most suitable anticancer treatment.
Collapse
Affiliation(s)
- Indrė Januškevičienė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Av. 13, LT-50161, Kaunas, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Av. 13, LT-50161, Kaunas, Lithuania; Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
7
|
Gu LQ, Cui PF, Xing L, He YJ, Chang X, Zhou TJ, Liu Y, Li L, Jiang HL. An energy-blocking nanoparticle decorated with anti-VEGF antibody to reverse chemotherapeutic drug resistance. RSC Adv 2019; 9:12110-12123. [PMID: 35548379 PMCID: PMC9087936 DOI: 10.1039/c9ra01356c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/03/2019] [Indexed: 11/21/2022] Open
Abstract
Multi-drug resistance (MDR) of tumor cells has greatly hindered the therapeutic efficacy of chemotherapeutic drugs, resulting in chemotherapy failure, while overexpression of ATP-binding cassette (ABC) transporters in cell membranes is the leading cause of MDR. In this study, we reported novel self-assembled triphenylphosphine-quercetin-polyethylene glycol-monoclonal antibody nanoparticles (TQ-PEG-mAb NPs) for overcoming MDR primarily through mitochondrial damage to block ATP supply to ABC transporters both in vitro and in vivo. The doxorubicin (DOX)-loaded NPs (TQ/DOX-PEG-mAb) were composed of two drugs (TQ and DOX) and an outer shielding shell of the PEG-mAb conjugate. Besides, the outer shell could be acid-responsively detached to expose the positive charge of TQ inside the NPs to enhance cellular uptake. TQ was proved to effectively induce mitochondrial damage with increased ROS levels and depolarization of mitochondrial membrane potential (MMP), leading to prominently reduced ATP supply to ABC transporters. Moreover, the involvement of the anti-vascular endothelial growth factor (VEGF) mAb was not only for efficient targeting but also for combined therapy. Consequently, TQ/DOX-PEG-mAb showed that the internalized amount of DOX was largely improved while the efflux amount was dramatically inhibited on MCF-7/ADR cells, indicating excellent reversal of DOX resistance. Importantly, the growth of DOX-resistant breast tumors was significantly inhibited with no evident systemic toxicity. Therefore, the employment of TQ-PEG-mAb is believed to be a new approach to improve the efficacy of chemotherapeutic drugs in MDR tumors.
Collapse
Affiliation(s)
- Liu-Qing Gu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Peng-Fei Cui
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University Nanjing 210009 China
| | - Yu-Jing He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Xin Chang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Yu Liu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University Nanjing 210009 China +86-25-83271019 +86-25-83271543
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, Southeast University Nanjing 210009 China +86-25-83272011 +86-25-83272012
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
8
|
Interleukin-8 Activates Breast Cancer-Associated Adipocytes and Promotes Their Angiogenesis- and Tumorigenesis-Promoting Effects. Mol Cell Biol 2019; 39:MCB.00332-18. [PMID: 30397072 DOI: 10.1128/mcb.00332-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/25/2018] [Indexed: 01/23/2023] Open
Abstract
Increasing evidence supports the critical role of active stromal adipocytes in breast cancer development and spread. However, the mediators and the mechanisms of action are still elusive. We show here that cancer-associated adipocytes (CAAs) isolated from 10 invasive breast carcinomas are proinflammatory and exhibit active phenotypes, including higher proliferative, invasive, and migratory capacities compared to their adjacent tumor-counterpart adipocytes (TCAs). Furthermore, all CAAs secreted higher level of interleukin-8 (IL-8), which is critical in mediating the paracrine procarcinogenic effects of these cells. Importantly, ectopic expression of IL-8 in TCA cells activated them and enhanced their procarcinogenic effects both in vitro, in a STAT3-dependent manner, and in vivo In contrast, inhibition of the IL-8 signaling using specific short hairpin RNA, anti-IL-8 antibody, or reparixin suppressed the active features of CAAs, including their non-cell-autonomous tumor-promoting activities both on breast luminal cells and in orthotopic tumor xenografts in mice. IL-8 played also an important role in enhancing the proangiogenic effects of breast adipocytes. These results provide clear indication that IL-8 plays key roles in the activation of breast CAAs and acts as a major mediator for their paracrine protumorigenic effects. Thus, targeting CAAs by inhibiting the IL-8 pathway could have great therapeutic value.
Collapse
|
9
|
Boiy R, Steenbrugge J, Van Deun J, Hendrix A, Meyer E, De Wever O. Transparent reporting of experimental parameters in assays measuring phenotypic steps in metastasis. Clin Exp Metastasis 2018; 35:715-725. [PMID: 30370460 DOI: 10.1007/s10585-018-9944-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/18/2018] [Indexed: 01/04/2023]
Abstract
Metastasis is key to cancer mortality. Understanding its biology is vital for developing strategies to prevent and treat metastasis. Phenotypic assays to either study metastasis or evaluate anti-metastatic drugs are widely used in preclinical research. This technical note discusses the adherence of reporting essential experimental and methodological parameters in chemotactic invasion assays in vitro and spontaneous metastasis assays in vivo. Following the analysis of 130 recent (< 5 years) research papers, several shortcomings in reporting were identified. Therefore, we strongly argue to increase experimental rigor which should result in a significant improvement with respect to reproducibility of preclinical metastasis research.
Collapse
Affiliation(s)
- Robin Boiy
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Van Deun
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
10
|
Hannafon BN, Ding WQ. Functional Role of miRNAs in the Progression of Breast Ductal Carcinoma in Situ. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:966-974. [PMID: 30273605 DOI: 10.1016/j.ajpath.2018.06.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
Abstract
miRNAs are small RNAs that influence gene expression by targeting mRNAs. Depending on the function of their target genes, miRNAs may regulate the expression of oncogenes and tumor suppressors, thereby contributing to the promotion or inhibition of tumor progression. Ductal carcinoma in situ (DCIS), although often diagnosed as breast cancer, is a potential precursor to invasive ductal carcinoma. Many of the genetic events required for the invasive progression of DCIS occur at the preinvasive stage, and these events include changes in the expression of miRNAs. Aberrant expression of miRNAs can influence specific oncogenic or tumor-suppressive pathways required for breast cancer progression. miRNAs in DCIS have been shown to influence hormone signaling, cell-cell adhesion, epithelial-to-mesenchymal transition, transforming growth factor β signaling, maintenance of cancer stem cells, and modulation of the extracellular matrix. Additionally, extracellular DCIS miRNAs, such as those found in exosomes, may promote invasive progression by modifying the tumor microenvironment. Here, we review the miRNAs that have been identified in DCIS and how they may contribute to the progression to invasive disease. We also touch on the current state of miRNA therapy development, including the current challenges, and discuss the key future perspectives for research into miRNA function for the purpose of miRNA therapy development for DCIS.
Collapse
Affiliation(s)
- Bethany N Hannafon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
11
|
Duivenvoorden HM, Spurling A, O’Toole SA, Parker BS. Discriminating the earliest stages of mammary carcinoma using myoepithelial and proliferative markers. PLoS One 2018; 13:e0201370. [PMID: 30044853 PMCID: PMC6059463 DOI: 10.1371/journal.pone.0201370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022] Open
Abstract
Mammographic screening has led to increased detection of breast cancer at a pre-invasive state, hence modelling the earliest stages of breast cancer invasion is important in defining candidate biomarkers to predict risk of relapse. Discrimination of pre-invasive from invasive lesions is critically important for such studies. Myoepithelial cells are the barrier between epithelial cells and the surrounding stroma in the breast ductal system. A number of myoepithelial immunohistochemistry markers have been identified and validated in human tissue for use by pathologists as diagnostic tools to distinguish in situ carcinoma from invasive breast cancer. However, robust myoepithelial markers for mouse mammary tissue have been largely under-utilised. Here, we investigated the utility of the myoepithelial markers smooth muscle actin (SMA), smooth muscle myosin heavy chain (SMMHC), cytokeratin-14 (CK14) and p63 to discriminate mammary intraepithelial neoplasia (MIN) from invasive disease in the C57BL/6J MMTV-PyMT transgenic model of mammary carcinoma. We identified that SMMHC and CK14 are retained in early in situ neoplasia and are appropriate markers for distinguishing MIN from invasive disease in this model. Additionally, the proliferation marker Ki67 is a superior marker for differentiating between normal and hyperplastic ducts, prior to the development of MIN. Based on this, we developed a scoring matrix for discriminating normal, hyperplasia, MIN and invasive lesions in this spontaneous mammary tumorigenesis model. This study demonstrates heterogeneous expression of myoepithelial proteins throughout tumour development, and highlights the need to characterise the most appropriate markers in other models of early breast cancer to allow accurate classification of disease state.
Collapse
Affiliation(s)
- Hendrika M. Duivenvoorden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Melbourne, VIC, Australia
| | - Alex Spurling
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Melbourne, VIC, Australia
| | - Sandra A. O’Toole
- Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Australian Clinical Labs, Bella Vista, NSW, Australia
- * E-mail: (BSP); (SAOT)
| | - Belinda S. Parker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Melbourne, VIC, Australia
- * E-mail: (BSP); (SAOT)
| |
Collapse
|
12
|
Ghosh A, Sarkar S, Banerjee S, Behbod F, Tawfik O, McGregor D, Graff S, Banerjee SK. MIND model for triple-negative breast cancer in syngeneic mice for quick and sequential progression analysis of lung metastasis. PLoS One 2018; 13:e0198143. [PMID: 29813119 PMCID: PMC5973560 DOI: 10.1371/journal.pone.0198143] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022] Open
Abstract
Mouse models of breast cancer with specific molecular subtypes (e.g., ER or HER2 positive) in an immunocompetent or an immunocompromised environment significantly contribute to our understanding of cancer biology, despite some limitations, and they give insight into targeted therapies. However, an ideal triple-negative breast cancer (TNBC) mouse model is lacking. What has been missing in the TNBC mouse model is a sequential progression of the disease in an essential native microenvironment. This notion inspired us to develop a TNBC-model in syngeneic mice using a mammary intraductal (MIND) method. To achieve this goal, Mvt-1and 4T1 TNBC mouse cell lines were injected into the mammary ducts via nipples of FVB/N mice and BALB/c wild-type immunocompetent mice, respectively. We established that the TNBC-MIND model in syngeneic mice could epitomize all breast cancer progression stages and metastasis into the lungs via lymphatic or hematogenous dissemination within four weeks. Collectively, the syngeneic mouse-TNBC-MIND model may serve as a unique platform for further investigation of the underlying mechanisms of TNBC growth and therapies.
Collapse
Affiliation(s)
- Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Sandipto Sarkar
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Ossama Tawfik
- Saint Luke’s Hospital of Kansas City, Kansas City, Missouri, United States of America
| | - Douglas McGregor
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri, United States of America
- Pathology Department, VA Medical Center, Kansas City, Missouri, United States of America
| | - Stephanie Graff
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri, United States of America
- Sarah Cannon Cancer Center at HCA Midwest Health, Overland Park, Kansas, United States of America
| | - Sushanta K. Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri, United States of America
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail: ,
| |
Collapse
|
13
|
Helal MH, Mansour SM, Salaleldin LA, Alkalaawy BM, Salem DS, Mokhtar NM. The impact of contrast-enhanced spectral mammogram (CESM) and three-dimensional breast ultrasound (3DUS) on the characterization of the disease extend in cancer patients. Br J Radiol 2018; 91:20170977. [PMID: 29641226 DOI: 10.1259/bjr.20170977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE The main importance of imaging breast cancer is to guide conservative surgeries. In this study, we evaluated the role of contrast-enhanced spectral mammogram (CESM) in correlation with three-dimensional (3D) breast ultrasound in characterizing the extension of the intramammary cancer in view of the: (i) the size of the main tumor, (ii) the multiplicity of the breast cancer, and (iii) the peri-tumoral stromal involvement (i.e. free or intraductal extension of the cancer). METHODS The study is a prospective analysis that included 300 breast masses proved to be malignant. The masses were evaluated for their size, multiplicity and surrounding stromal involvement. Contrast-based mammography performed with low (22-33 kVp) and high (44-49 kVp) energy exposures that were taken after i.v. injection of contrast agent and followed by bilateral 3D breast ultrasound. Operative data were the gold standard reference. RESULTS There was no significant difference between the sizes of the included cancers as measured by CESM and 3D ultrasound and that measured at the pathological analysis. CESM showed higher accuracy (32.7%, n = 98) than 3D ultrasound (24.7%, n = 74) in the size agreement within 5% range. CESM was the most accurate modality (94%, n = 282) in detecting tumor multiplicity, followed by traditional sonomammogram (88%, n = 264), then 3D breast ultrasound (84%, n = 252). Intraductal extension of the breast cancer was best evaluated by the 3D ultrasound with an accuracy value of 98% (n = 294) compared to only 60% (n = 180) by CESM. CONCLUSION CESM is a recommended investigation in breast cancer to increase the accuracy of size measurement and the detection of multiple tumors. The addition of 3D ultrasound can enhance the detection of intraductal extension. Advances in knowledge: Choice of conservative breast surgery vs mastectomy is still a debate. We used an advanced, contrast-based, application of the mammogram: CESM and a non-invasive 3D breast ultrasound in the assessment of the local extension of the breast cancer regarding size, perifocal stromal infiltration and multiplicity to guide the selection of proper management in proved cases of breast cancer.
Collapse
Affiliation(s)
- Maha Hussien Helal
- 1 Department of Radiology, Women's Imaging Unit, National Cancer Institute, Cairo University , Cairo , Egypt
| | - Sahar Mahmoud Mansour
- 2 Department of Radiology, Women's Imaging Unit, Kasr-El Ainy Hospital, Cairo University , Cairo , Egypt
| | - Lamia Adel Salaleldin
- 2 Department of Radiology, Women's Imaging Unit, Kasr-El Ainy Hospital, Cairo University , Cairo , Egypt
| | - Basma Mohamed Alkalaawy
- 2 Department of Radiology, Women's Imaging Unit, Kasr-El Ainy Hospital, Cairo University , Cairo , Egypt
| | - Dorria Saleh Salem
- 2 Department of Radiology, Women's Imaging Unit, Kasr-El Ainy Hospital, Cairo University , Cairo , Egypt
| | | |
Collapse
|
14
|
Dumeaux V, Fjukstad B, Fjosne HE, Frantzen JO, Holmen MM, Rodegerdts E, Schlichting E, Børresen-Dale AL, Bongo LA, Lund E, Hallett M. Interactions between the tumor and the blood systemic response of breast cancer patients. PLoS Comput Biol 2017; 13:e1005680. [PMID: 28957325 PMCID: PMC5619688 DOI: 10.1371/journal.pcbi.1005680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/07/2017] [Indexed: 02/01/2023] Open
Abstract
Although systemic immunity is critical to the process of tumor rejection, cancer research has largely focused on immune cells in the tumor microenvironment. To understand molecular changes in the patient systemic response (SR) to the presence of BC, we profiled RNA in blood and matched tumor from 173 patients. We designed a system (MIxT, Matched Interactions Across Tissues) to systematically explore and link molecular processes expressed in each tissue. MIxT confirmed that processes active in the patient SR are especially relevant to BC immunogenicity. The nature of interactions across tissues (i.e. which biological processes are associated and their patterns of expression) varies highly with tumor subtype. For example, aspects of the immune SR are underexpressed proportionally to the level of expression of defined molecular processes specific to basal tumors. The catalog of subtype-specific interactions across tissues from BC patients provides promising new ways to tackle or monitor the disease by exploiting the patient SR. We present a novel system (MIxT) to identify genes and pathways in the primary tumor that are tightly linked to genes and pathways in the patient systemic response (SR). These results suggest new ways to tackle and monitor the disease by looking outside the tumor and exploiting the patient SR.
Collapse
Affiliation(s)
- Vanessa Dumeaux
- Department of Biology, Concordia University, Montreal, QC, Canada
- School of Computer Science, McGill University, Montreal, QC, Canada
- * E-mail:
| | - Bjørn Fjukstad
- Department of Computer Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Hans E. Fjosne
- Department of Surgery, St. Olavs University Hospital, Trondheim, Norway
- Faculty of Medicine, The Norwegian University of Technology and Science, Trondheim, Norway
| | | | - Marit Muri Holmen
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Lars Ailo Bongo
- Department of Computer Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Eiliv Lund
- Institute of Community Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Michael Hallett
- Department of Biology, Concordia University, Montreal, QC, Canada
- School of Computer Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Sameni M, Cavallo-Medved D, Franco OE, Chalasani A, Ji K, Aggarwal N, Anbalagan A, Chen X, Mattingly RR, Hayward SW, Sloane BF. Pathomimetic avatars reveal divergent roles of microenvironment in invasive transition of ductal carcinoma in situ. Breast Cancer Res 2017; 19:56. [PMID: 28506312 PMCID: PMC5433063 DOI: 10.1186/s13058-017-0847-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/25/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The breast tumor microenvironment regulates progression of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC). However, it is unclear how interactions between breast epithelial and stromal cells can drive this progression and whether there are reliable microenvironmental biomarkers to predict transition of DCIS to IDC. METHODS We used xenograft mouse models and a 3D pathomimetic model termed mammary architecture and microenvironment engineering (MAME) to study the interplay between human breast myoepithelial cells (MEPs) and cancer-associated fibroblasts (CAFs) on DCIS progression. RESULTS Our results show that MEPs suppress tumor formation by DCIS cells in vivo even in the presence of CAFs. In the in vitro MAME model, MEPs reduce the size of 3D DCIS structures and their degradation of extracellular matrix. We further show that the tumor-suppressive effects of MEPs on DCIS are linked to inhibition of urokinase plasminogen activator (uPA)/urokinase plasminogen activator receptor (uPAR)-mediated proteolysis by plasminogen activator inhibitor 1 (PAI-1) and that they can lessen the tumor-promoting effects of CAFs by attenuating interleukin 6 (IL-6) signaling pathways. CONCLUSIONS Our studies using MAME are, to our knowledge, the first to demonstrate a divergent interplay between MEPs and CAFs within the DCIS tumor microenvironment. We show that the tumor-suppressive actions of MEPs are mediated by PAI-1, uPA and its receptor, uPAR, and are sustained even in the presence of the CAFs, which themselves enhance DCIS tumorigenesis via IL-6 signaling. Identifying tumor microenvironmental regulators of DCIS progression will be critical for defining a robust and predictive molecular signature for clinical use.
Collapse
Affiliation(s)
- Mansoureh Sameni
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Dora Cavallo-Medved
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Department of Biological Sciences, University of Windsor, Windsor, ON N9B 3P4 Canada
| | - Omar E. Franco
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, IL 60201 USA
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Anita Chalasani
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Arulselvi Anbalagan
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Xuequn Chen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Raymond R. Mattingly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| | - Simon W. Hayward
- Department of Surgery, NorthShore University HealthSystem Research Institute, Evanston, IL 60201 USA
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Bonnie F. Sloane
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201 USA
- Department of Biological Sciences, University of Windsor, Windsor, ON N9B 3P4 Canada
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201 USA
| |
Collapse
|
16
|
Zhang W, Li C, Baguley BC, Zhou F, Zhou W, Shaw JP, Wang Z, Wu Z, Liu J. Optimization of the formation of embedded multicellular spheroids of MCF-7 cells: How to reliably produce a biomimetic 3D model. Anal Biochem 2016; 515:47-54. [PMID: 27717854 DOI: 10.1016/j.ab.2016.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/13/2016] [Accepted: 10/03/2016] [Indexed: 01/09/2023]
Abstract
To obtain a multicellular MCF-7 spheroid model to mimic the three-dimensional (3D) of tumors, the microwell liquid overlay (A) and hanging-drop/agar (B) methods were first compared for their technical parameters. Then a method for embedding spheroids within collagen was optimized. For method A, centrifugation assisted cells form irregular aggregates but not spheroids. For method B, an extended sedimentation period of over 24 h for cell suspensions and increased viscosity of the culture medium using methylcellulose were necessary to harvest a dense and regular cell spheroid. When the number was less than 5000 cells/drop, embedded spheroids showed no tight cores and higher viability than the unembedded. However, above 5000 cells/drop, cellular viability of embedded spheroids was not significantly different from unembedded spheroids and cells invading through the collagen were in a sun-burst pattern with tight cores. Propidium Iodide staining indicated that spheroids had necrotic cores. The doxorubicin cytotoxicity demonstrated that spheroids were less susceptible to DOX than their monolayer cells. A reliable and reproducible method for embedding spheroids using the hanging-drop/agarose method within collagen is described herein. The cell culture model can be used to guide experimental manipulation of 3D cell cultures and to evaluate anticancer drug efficacy.
Collapse
Affiliation(s)
- Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Caibin Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Weisai Zhou
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, PR China
| | - John P Shaw
- School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Zhen Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zimei Wu
- School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
17
|
Al-Rakan MA, Hendrayani SF, Aboussekhra A. CHEK2 represses breast stromal fibroblasts and their paracrine tumor-promoting effects through suppressing SDF-1 and IL-6. BMC Cancer 2016; 16:575. [PMID: 27484185 PMCID: PMC4970236 DOI: 10.1186/s12885-016-2614-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022] Open
Abstract
Background Active fibroblasts, the predominant and the most active cells of breast cancer stroma, are responsible for tumor growth and spread. However, the molecular mediators and pathways responsible for stromal fibroblast activation, and their paracrine pro-carcinogenic effects are still not well defined. The CHEK2 tumor suppressor gene codes for a protein kinase, which plays important roles in the cellular response to various genotoxic stresses. Methods Immunoblotting, quantitative RT-PCR and Immunofluorescence were used to assess the expression of CHEK2 in different primary breast fibroblasts and in tissues. The effect of CHEK2 on the expression and secretion of SDF-1 and IL-6 was evaluated by immunoblotting and ELISA. The WST-1 colorimetric assay was used to assess cell proliferation, while the BD BioCoat Matrigel invasion chambers were utilized to determine the effects of CHEK2 on the migratory and the invasiveness capacities of breast stromal fibroblasts as well as breast cancer cells. Results We have shown that CHEK2 is down-regulated in most cancer-associated fibroblasts (CAFs) as compared to their corresponding tumor counterpart fibroblasts (TCFs) at both the mRNA and protein levels. Interestingly, CHEK2 down-regulation using specific siRNA increased the expression/secretion of both cancer-promoting cytokines SDF-1 and IL-6, and transdifferentiated stromal fibroblasts to myofibroblasts. These cells were able to enhance the proliferation of non-cancerous epithelial cells, and also boosted the migration/invasion abilities of breast cancer cells in a paracrine manner. The later effect was SDF-1/IL-6-dependent. Importantly, ectopic expression of CHEK2 in active CAFs converted these cells to a normal state, with lower migration/invasion capacities and reduced paracrine pro-carcinogenic effects. Conclusion These results indicate that CHEK2 possesses non-cell-autonomous tumor suppressor functions, and present the Chk2 protein as an important mediator in the functional interplay between breast carcinomas and their stromal fibroblasts.
Collapse
Affiliation(s)
- Maha A Al-Rakan
- Present address: Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11211, Kingdom of Saudi Arabia.,Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, MBC# 03, PO BOX 3354, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Siti-Faujiah Hendrayani
- Present address: Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11211, Kingdom of Saudi Arabia.,Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, MBC# 03, PO BOX 3354, Riyadh, 11211, Kingdom of Saudi Arabia
| | - Abdelilah Aboussekhra
- Present address: Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11211, Kingdom of Saudi Arabia. .,Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, MBC# 03, PO BOX 3354, Riyadh, 11211, Kingdom of Saudi Arabia.
| |
Collapse
|
18
|
Pavon LF, Sibov TT, de Oliveira DM, Marti LC, Cabral FR, de Souza JG, Boufleur P, Malheiros SM, de Paiva Neto MA, da Cruz EF, Chudzinski-Tavassi AM, Cavalheiro S. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells. Oncotarget 2016; 7:40546-40557. [PMID: 27244897 PMCID: PMC5130027 DOI: 10.18632/oncotarget.9658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/16/2016] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types.
Collapse
Affiliation(s)
- Lorena Favaro Pavon
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
- Hospital Israelita Albert Einstein (HIAE), Experimental Research, São Paulo, Brazil
| | - Tatiana Tais Sibov
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | | | - Luciana C. Marti
- Hospital Israelita Albert Einstein (HIAE), Experimental Research, São Paulo, Brazil
- Allergy and Immunopathology Graduate Program, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Francisco Romero Cabral
- Hospital Israelita Albert Einstein (HIAE), Experimental Research, São Paulo, Brazil
- Faculdade de Ciências Médicas da São Casa de São Paulo, São Paulo, Brazil
| | - Jean Gabriel de Souza
- Biochemistry and Biophysics Laboratory, Butantan Institute, Neuro-Oncology Program, São Paulo, Brazil
| | - Pamela Boufleur
- Biochemistry and Biophysics Laboratory, Butantan Institute, Neuro-Oncology Program, São Paulo, Brazil
| | - Suzana M.F. Malheiros
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
- Hospital Israelita Albert Einstein (HIAE), Neuro-Oncology Program, São Paulo, Brazil
| | - Manuel A. de Paiva Neto
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Edgard Ferreira da Cruz
- Discipline of Nephrology, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | | | - Sérgio Cavalheiro
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina-Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| |
Collapse
|
19
|
Dixcy Jaba Sheeba J, Mohan C, Marine H, Gauri D, Neeraj K, Anil Mukund L. Estrogen-regulated extracellular matrix remodeling genes in MCF-7 breast cancer cells. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2015.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Gangadhara S, Smith C, Barrett-Lee P, Hiscox S. 3D culture of Her2+ breast cancer cells promotes AKT to MAPK switching and a loss of therapeutic response. BMC Cancer 2016; 16:345. [PMID: 27251376 PMCID: PMC4888214 DOI: 10.1186/s12885-016-2377-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/22/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The Her2 receptor is overexpressed in up to 25 % of breast cancers and is associated with a poor prognosis. Around half of Her2+ breast cancers also express the estrogen receptor and treatment for such tumours can involve both endocrine and Her2-targeted therapies. However, despite preclinical data supporting the effectiveness of these agents, responses can vary widely in the clinical setting. In light of the increasing evidence pointing to the interplay between the tumour and its extracellular microenvironment as a significant determinant of therapeutic sensitivity and response here we investigated the impact of 3D matrix culture of breast cancer cells on their therapeutic sensitivity. METHODS A 3D Matrigel-based culture system was established and optimized for the growth of ER+/Her2+ breast cancer cell models. Growth of cells in response to trastuzumab and endocrine agents in 3D culture versus routine monolayer culture were assessed using cell counting and Ki67 staining. Endogenous and trastuzumab-modulated signalling pathway activity in 2D and 3D cultures were assessed using Western blotting. RESULTS Breast cancer cells in 3D culture displayed an attenuated response to both endocrine agents and trastuzumab compared with cells cultured in traditional 2D monolayers. Underlying this phenomenon was an apparent matrix-induced shift from AKT to MAPK signalling; consequently, suppression of MAPK in 3D cultures restores therapeutic response. CONCLUSION These data suggest that breast cancer cells in 3D culture display a reduced sensitivity to therapeutic agents which may be mediated by internal MAPK-mediated signalling. Targeting of adaptive pathways that maintain growth in 3D culture may represent an effective strategy to improve therapeutic response clinically.
Collapse
Affiliation(s)
- Sharath Gangadhara
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, CF10 3NB, Cardiff, UK.,Velindre Cancer Centre, Whitchurch Road, Cardiff, UK
| | - Chris Smith
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, CF10 3NB, Cardiff, UK.,Velindre Cancer Centre, Whitchurch Road, Cardiff, UK
| | | | - Stephen Hiscox
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, CF10 3NB, Cardiff, UK.
| |
Collapse
|
21
|
Lo PK, Wolfson B, Zhou Q. Cancer stem cells and early stage basal-like breast cancer. World J Obstet Gynecol 2016; 5:150-161. [PMID: 28239564 PMCID: PMC5321620 DOI: 10.5317/wjog.v5.i2.150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/21/2015] [Accepted: 01/22/2016] [Indexed: 02/05/2023] Open
Abstract
Ductal carcinoma in situ (DCIS) is a category of early stage, non-invasive breast tumor defined by the intraductal proliferation of malignant breast epithelial cells. DCIS is a heterogeneous disease composed of multiple molecular subtypes including luminal, HER2 and basal-like types, which are characterized by immunohistochemical analyses and gene expression profiling. Following surgical and radiation therapies, patients with luminal-type, estrogen receptor-positive DCIS breast tumors can benefit from adjuvant endocrine-based treatment. However, there are no available targeted therapies for patients with basal-like DCIS (BL-DCIS) tumors due to their frequent lack of endocrine receptors and HER2 amplification, rendering them potentially susceptible to recurrence. Moreover, multiple lines of evidence suggest that DCIS is a non-obligate precursor of invasive breast carcinoma. This raises the possibility that targeting precursor BL-DCIS is a promising strategy to prevent BL-DCIS patients from the development of invasive basal-like breast cancer. An accumulating body of evidence demonstrates the existence of cancer stem-like cells (CSCs) in BL-DCIS, which potentially determine the features of BL-DCIS and their ability to progress into invasive cancer. This review encompasses the current knowledge in regard to the characteristics of BL-DCIS, identification of CSCs, and their biological properties in BL-DCIS. We summarize recently discovered relevant molecular signaling alterations that promote the generation of CSCs in BL-DCIS and the progression of BL-DCIS to invasive breast cancer, as well as the influence of the tissue microenvironment on CSCs and the invasive transition. Finally, we discuss the translational implications of these findings for the prognosis and prevention of BL-DCIS relapse and progression.
Collapse
|
22
|
Russell TD, Jindal S, Agunbiade S, Gao D, Troxell M, Borges VF, Schedin P. Myoepithelial cell differentiation markers in ductal carcinoma in situ progression. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3076-89. [PMID: 26343330 PMCID: PMC4630168 DOI: 10.1016/j.ajpath.2015.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 07/14/2015] [Accepted: 07/21/2015] [Indexed: 11/20/2022]
Abstract
We describe a preclinical model that investigates progression of early-stage ductal carcinoma in situ (DCIS) and report that compromised myoepithelial cell differentiation occurs before transition to invasive disease. Human breast cancer MCF10DCIS.com cells were delivered into the mouse mammary teat by intraductal injection in the absence of surgical manipulations and accompanying wound-healing confounders. DCIS-like lesions developed throughout the mammary ducts with full representation of human DCIS histologic patterns. Tumor cells were incorporated into the normal mammary epithelium, developed ductal intraepithelial neoplasia and DCIS, and progressed to invasive carcinoma, suggesting the model provides a rigorous approach to study early stages of breast cancer progression. Mammary glands were evaluated for myoepithelium integrity with immunohistochemical assays. Progressive loss of the myoepithelial cell differentiation markers p63, calponin, and α-smooth muscle actin was observed in the mouse myoepithelium surrounding DCIS-involved ducts. p63 loss was an early indicator, calponin loss intermediate, and α-smooth muscle actin a later indicator of compromised myoepithelium. Loss of myoepithelial calponin was specifically associated with gain of the basal marker p63 in adjacent tumor cells. In single time point biopsies obtained from 16 women diagnosed with pure DCIS, a similar loss in myoepithelial cell markers was observed. These results suggest that further research is warranted into the role of myoepithelial cell p63 and calponin expression on DCIS progression to invasive disease.
Collapse
Affiliation(s)
- Tanya D Russell
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sonali Jindal
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Samiat Agunbiade
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dexiang Gao
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Megan Troxell
- Department of Pathology, Oregon Health & Science University, Portland, Oregon; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Virginia F Borges
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; University of Colorado Cancer Center, Aurora, Colorado
| | - Pepper Schedin
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
23
|
Zhu W, Holmes B, Glazer RI, Zhang LG. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:69-79. [PMID: 26472048 DOI: 10.1016/j.nano.2015.09.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/04/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022]
Abstract
Bone is one of the most common metastatic sites of breast cancer, but the underlying mechanisms remain unclear, in part due to an absence of advanced platforms for cancer culture and study that mimic the bone microenvironment. In the present study, we integrated a novel stereolithography-based 3D printer and a unique 3D printed nano-ink consisting of hydroxyapatite nanoparticles suspended in hydrogel to create a biomimetic bone-specific environment for evaluating breast cancer bone invasion. Breast cancer cells cultured in a geometrically optimized matrix exhibited spheroid morphology and migratory characteristics. Co-culture of tumor cells with bone marrow mesenchymal stem cells increased the formation of spheroid clusters. The 3D matrix also allowed for higher drug resistance of breast cancer cells than 2D culture. These results validate that our 3D bone matrix can mimic tumor bone microenvironments, suggesting that it can serve as a tool for studying metastasis and assessing drug sensitivity. From the Clinical Editor: Cancer remains a major cause of mortality for patients in the clinical setting. For breast cancer, bone is one of the most common metastatic sites. In this intriguing article, the authors developed a bone-like environment using 3D printing technology to investigate the underlying biology of bone metastasis. Their results would also allow a new model for other researchers who work on cancer to use.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Benjamin Holmes
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Robert I Glazer
- Department of Oncology, and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA; Department of Medicine, The George Washington University, Washington, DC, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.
| |
Collapse
|
24
|
Qin Z, Feng J, Liu Y, Deng LL, Lu C. PDGF-D promotes dermal fibroblast invasion in 3-dimensional extracellular matrix via Snail-mediated MT1-MMP upregulation. Tumour Biol 2015; 37:591-9. [PMID: 26234766 DOI: 10.1007/s13277-015-3828-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 01/18/2023] Open
Abstract
Increasing attention has been focused on the malignant tumor microenvironment, which plays important roles in tumor occurrence, progression and metastasis. Fibroblasts are recruited by platelet-derived growth factor (PDGFs) and invade the tumor microenvironment. In the PDGF family, PDGF-B has been reported to play an important role in the recruitment and invasion programs. However, whether PDGF-D plays a role in these programs remains unclear. We generated a recombinant plasmid expressing human PDGF-D and transfected the plasmid to dermal fibroblasts to examine the effects on cell invasive activities in 3D type I collagen gels. PDGF-D plasmid transfection enhanced fibroblast invasive activities both in invasive cell numbers and invasion depth in 3D collagen gels. These effects were blocked by Snail-specific siRNA transfection. PDGF-D transfection significantly induced Snail expression at both mRNA and protein levels. PDGF-D further upregulated MT1-MMP mRNA and protein expressions and this was inhibited when Snail was knocked down by siRNA. Both Snail and MT1-MMP expressions in fibroblasts and cellular invasive activities in 3D collagen induced by PDGF-D were inhibited by LY294002, SP600125, and U1026, the inhibitors of PI3K, JNK, and ERK1/2 signaling pathways, respectively. However, no effects were observed in response to the P38MAPK signaling pathway inhibitor SB203580. These effects of PDGF-D were confirmed by using the culture supernatants of the transfectants. Taken together, these data demonstrate that PDGF-D plays important roles in the recruitment and invasion programs of fibroblasts via the activation of PI3K, JNK and ERK1/2 signaling pathways, and upregulation of Snail and downstream effecter MT1-MMP. These findings indicate that PDGF-D is an important player in the tumor microenvironment for fibroblast recruitment.
Collapse
Affiliation(s)
- Zhuo Qin
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University Harbin, 157 Baojian Rd, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Jinfa Feng
- Department of General Surgery, Heilongjiang Province Hospital, Harbin, Heilongjiang, 150000, People's Republic of China
| | - Yusi Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University Harbin, 157 Baojian Rd, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Li-Li Deng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Changlian Lu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University Harbin, 157 Baojian Rd, Harbin, Heilongjiang, 150081, People's Republic of China.
| |
Collapse
|
25
|
Guiro K, Patel SA, Greco SJ, Rameshwar P, Arinzeh TL. Investigating breast cancer cell behavior using tissue engineering scaffolds. PLoS One 2015; 10:e0118724. [PMID: 25837691 PMCID: PMC4383476 DOI: 10.1371/journal.pone.0118724] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 01/13/2015] [Indexed: 12/16/2022] Open
Abstract
Despite early detection through the use of mammograms and aggressive intervention, breast cancer (BC) remains a clinical dilemma. BC can resurge after >10 years of remission. Studies indicate that BC cells (BCCs) with self-renewal and chemoresistance could be involved in dormancy. The majority of studies use in vitro, two-dimensional (2-D) monolayer cultures, which do not recapitulate the in vivo microenvironment. Thus, to determine the effect of three-dimensional (3-D) microenvironment on BCCs, this study fabricated tissue engineering scaffolds made of poly (ε-caprolactone) (PCL) having aligned or random fibers. Random and aligned fibers mimic, respectively, the random and highly organized collagen fibers found in the tumor extracellular matrix. Chemoresistant BCCs were obtained by treating with carboplatin. Western blot analysis of carboplatin resistant (treated) MDA-MB-231 (highly invasive, basal-like) and T47D (low-invasive, luminal) BCCs showed an increase in Bcl-2, Oct-4 and Sox-2, suggesting protection from apoptosis and increase in stem-like markers. Further studies with MDA-MB-231 BCCs seeded on the scaffolds showed little to no change in cell number over time for non-treated BCCs whereas on tissue culture polystyrene (TCP), non-treated BCCs displayed a significant increase in cell number at days 4 and 7 as compared to day 1 (p<0.05). Treated BCCs did not proliferate on TCP and the fibrous scaffolds. Little to no cyclin D1 was expressed for non-treated BCCs on TCP. On fibrous scaffolds, non-treated BCCs stained for cyclin D1 during the 7-day culture period. Treated BCCs expressed cyclin D1 on TCP and fibrous scaffolds during the 7-day culture period. Proliferation, viability and cell cycle analysis indicated that this 3-D culture prompted the aggressive BCCs to adopt a dormant phenotype, while the treated BCCs retained their phenotype. The findings indicate that random and aligned fibrous PCL scaffolds may provide a useful system to study how the 3-D microenvironment affects the behavior of BCCs.
Collapse
Affiliation(s)
- Khadidiatou Guiro
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Shyam A. Patel
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Steven J. Greco
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Treena L. Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
26
|
Shankar V, Hori H, Kihira K, Lei Q, Toyoda H, Iwamoto S, Komada Y. Mesenchymal stromal cell secretome up-regulates 47 kDa CXCR4 expression, and induce invasiveness in neuroblastoma cell lines. PLoS One 2015; 10:e0120069. [PMID: 25774696 PMCID: PMC4361348 DOI: 10.1371/journal.pone.0120069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 01/31/2015] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma accounts for 15% of childhood cancer deaths and presents with metastatic disease of the bone and the bone marrow at diagnosis in 70% of the cases. Previous studies have shown that the Mesenchymal Stromal Cell (MSC) secretome, triggers metastases in several cancer types such as breast and prostate cancer, but the specific role of the MSC factors in neuroblastoma metastasis is unclear. To better understand the effect of MSC secretome on chemokine receptors in neuroblastoma, and its role in metastasis, we studied a panel of 20 neuroblastoma cell lines, and compared their invasive potential towards MSC-conditioned-RPMI (mRPMI) and their cytokine receptor expression profiles. Western blot analysis revealed the expression of multiple CXCR4 isoforms in neuroblastoma cells. Among the five major isoforms, the expression of the 47 kDa isoform showed significant correlation with high invasiveness. Pretreatment with mRPMI up-regulated the expression of the 47 kDa CXCR4 isoform and also increased MMP-9 secretion, expression of integrin α3 and integrin β1, and the invasive potential of the cell; while blocking CXCR4 either with AMD 3100, a CXCR4 antagonist, or with an anti-47 kDa CXCR4 neutralizing antibody decreased the secretion of MMP-9, the expression of integrin α3 and integrin β1, and the invasive potential of the cell. Pretreatment with mRPMI also protected the 47 kDa CXCR4 isoform from ubiquitination and subsequent degradation. Our data suggest a modulatory role of the MSC secretome on the expression of the 47 kDa CXCR4 isoform and invasion potential of the neuroblastoma cells to the bone marrow.
Collapse
Affiliation(s)
- Vipin Shankar
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Hiroki Hori
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
- * E-mail:
| | - Kentaro Kihira
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Qi Lei
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Hidemi Toyoda
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Shotaro Iwamoto
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, Japan
| |
Collapse
|
27
|
Meleshina AV, Cherkasova EI, Shirmanova MV, Klementieva NV, Kiseleva EV, Snopova LВ, Prodanets NN, Zagaynova EV. Influence of mesenchymal stem cells on metastasis development in mice in vivo. Stem Cell Res Ther 2015; 6:15. [PMID: 25888992 PMCID: PMC4415299 DOI: 10.1186/s13287-015-0003-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 02/10/2023] Open
Abstract
INTRODUCTION In recent years, mesenchymal stem cells (MSCs) have been demonstrated to play an important role in carcinogenesis. However, the effect of MSCs on tumor and metastasis development and the mechanisms underlying the interaction of cancer and stem cells are not completely understood. This study investigated the effect of MSCs on breast cancer metastasis formation by using the methods of in vivo fluorescence and luminescence imaging. METHODS MSCs were isolated from bone marrow of normal donors, characterized, and genetically labeled with luciferase (luc2). The effects of MSCs on MDA-MB-231 cancer cell proliferation were evaluated in conditioned medium from MSCs. To generate lung metastases, MDA-MB-231 cells stably expressing red fluorescent protein Turbo FP650 were injected intravenously into nude mice. On day 10 after the cancer cell injection, mice were injected via the tail vein with MSCs-luc2 cells (the MET+MSCs group). Animals that received the injection of MDA-MB-231-Turbo FP650 alone (the MET group) and no injections (the intact control group) served as controls. Fluorescence and bioluminescence imaging was performed for monitoring of the metastasis formation and MSC distribution in the recipient's body. RESULTS We found that the proliferative activity of the cancer cells in the presence of MSC conditioned medium was lower than that of the cells grown in conventional culture medium. The metastasis formation in the MET+MSCs group was delayed in time as compared with the MET group. Macroscopic and histological examination of isolated lungs 8 weeks after cancer cell injection showed that the total number of metastases in animals of the MET+MSCs group was significantly lower. Using bioluminescence imaging in vivo, we found that MSCs-luc2 cells survived in the host animal for at least 7 weeks and re-migrated to the lung 6 to 7 weeks after injection. Immunohistochemical analysis revealed the presence of MSCs-luc2 in metastases and lung tissue. CONCLUSIONS Long-term in vivo bioluminescence imaging of intravenously injected MSCs-luc2 cells showed distribution of MSCs to the lungs and abdominal organs within the first 2 to 3 weeks and re-migration to the lungs in weeks 6 to 7. It was found that MSCs reduced the proliferative activity of cancer cells in vitro and lung metastasis formation in mice.
Collapse
Affiliation(s)
- Aleksandra V Meleshina
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny, Novgorod, 603005, Russia. .,Nizhny Novgorod State University, Gagarin Avenue, 23, Nizhny, Novgorod, 603950, Russia.
| | - Elena I Cherkasova
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny, Novgorod, 603005, Russia. .,Nizhny Novgorod State University, Gagarin Avenue, 23, Nizhny, Novgorod, 603950, Russia.
| | - Marina V Shirmanova
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny, Novgorod, 603005, Russia.
| | - Natalia V Klementieva
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny, Novgorod, 603005, Russia.
| | - Ekaterina V Kiseleva
- Koltzov Institute of Developmental Biology of Russian Academy of Science, Vavilova st., 26, Moscow, 119334, Russia.
| | - Ludmila В Snopova
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny, Novgorod, 603005, Russia.
| | - Natalia N Prodanets
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny, Novgorod, 603005, Russia.
| | - Elena V Zagaynova
- Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny, Novgorod, 603005, Russia. .,Nizhny Novgorod State University, Gagarin Avenue, 23, Nizhny, Novgorod, 603950, Russia.
| |
Collapse
|
28
|
Sağlam Ö, Ünal ZS, Subaşı C, Ulukaya E, Karaöz E. IL-6 originated from breast cancer tissue-derived mesenchymal stromal cells may contribute to carcinogenesis. Tumour Biol 2015; 36:5667-77. [PMID: 25697898 DOI: 10.1007/s13277-015-3241-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 02/09/2015] [Indexed: 12/21/2022] Open
Abstract
Tumor microenvironment is an important factor, which sustains and promotes the tumors by inflammatory signals. Interleukin-6 (IL-6) is known as a multifunctional cytokine, which is a major activator of the signaling pathway of Janus kinases (JAKs)/signal transducer and activator of transcription 3 (STAT3). In this study, we aimed to investigate the effect of IL-6 in the tumor microenvironment on carcinogenesis. For this purpose, healthy breast tissue-derived stromal cells (HBT-SCs) and malign breast tissue-derived stromal cells (MBT-SCs) were co-cultured with MCF-7 (human breast adenocarcinoma cell line) cells using semipermeable membranes. The cell proliferation was monitored with water-soluble tetrazolium (WST) and carboxyfluorescein succinimidyl ester (CFSE) assays. Protein levels were measured by enzyme-linked immunosorbent assay (ELISA) and Western blot hybridization, while gene expressions were measured by real-time PCR. The results demonstrated that IL-6 protein levels increased significantly in the supernatants of MBT-SCs when they were co-cultured with MCF-7 cells. In accordance with this, the expression of IL-6 was significantly higher in MBT-SCs. Additionally, the expression of STAT3 in MCF-7 cells increased slightly when they were co-cultured with MBT-SCs. Considering together, there is an important interaction between tumor microenvironment and tumor cells mediated by IL-6 signaling. Thereby, the targeting on IL-6 signaling in the treatment of cancer might effectively prevent the tumor progression.
Collapse
Affiliation(s)
- Özlem Sağlam
- Center for Stem Cell and Gene Therapies Research and Practice, Department of Stem Cell, Kocaeli University, Kocaeli, Turkey
| | | | | | | | | |
Collapse
|
29
|
Silva CAB, Nardello LCL, Garcia FW, Araújo NSD, Montalli VA, Araújo VCD, Martinez EF. The role of FGF-2/HGF and fibronectin matrix on pleomorphic adenoma myoepithelial cell morphology and immunophenotype: an in vitro study. Growth Factors 2015; 33:50-6. [PMID: 25257141 DOI: 10.3109/08977194.2014.957758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Myoepithelial cells play a central role in glandular tumors, regulating the progression of in situ to invasive neoplasias, with the tumor microenvironment being shown to be involved in both initiation and progression. This study aimed to analyze the in vitro effects of fibroblast growth factor-2 (FGF-2) and hepatocyte growth factor (HGF) in myoepithelial cells under the influence of the fibronectin matrix extracellular protein. Benign myoepithelial cells were obtained from pleomorphic adenoma and cultured on a fibronectin substratum. FGF-2 and HGF were supplemented at different concentrations and time intervals, in order to evaluate cell proliferation, morphology and immunophenotype. Individually, FGF-2 and HGF supplementation did not alter myoepithelial cell proliferation, morphology or immunophenotype. The fibronectin substratum provoked an increase in cell proliferation and immunopositivity for α-smooth muscle actin and FGF-2. The myoepithelial cell morphology changed when the fibronectin substratum and FGF-2 acted together, highlighting the importance of the fibronectin extracellular matrix protein on the behavior of these cells.
Collapse
|
30
|
Kamińska K, Szczylik C, Bielecka ZF, Bartnik E, Porta C, Lian F, Czarnecka AM. The role of the cell-cell interactions in cancer progression. J Cell Mol Med 2015; 19:283-96. [PMID: 25598217 PMCID: PMC4407603 DOI: 10.1111/jcmm.12408] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/18/2014] [Indexed: 12/11/2022] Open
Abstract
In the field of cancer research, scientific investigations are based on analysing differences in the secretome, the proteome, the transcriptome, the expression of cell surface molecules, and the deregulation of signal transduction pathways between neoplastic and normal cells. Accumulating evidence indicates a crucial role in carcinogenesis concerning not only stromal cells but also normal cells from target organs and tissue where tumours emerge. The tumour microenvironment (TME) definitively plays an important role in regulating neighbouring cell behaviour. To date, limited attention has been focused upon interactions between cancer cells and normal cells. This review concentrates on the interactions between stromal and healthy cells from the TME in cancer development. In the article, the authors also describe mutations, genes and proteins expression pattern that are involved in tumour development in target organ.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
31
|
Kothari AN, Mi Z, Zapf M, Kuo PC. Novel clinical therapeutics targeting the epithelial to mesenchymal transition. Clin Transl Med 2014; 3:35. [PMID: 25343018 PMCID: PMC4198571 DOI: 10.1186/s40169-014-0035-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/25/2014] [Indexed: 01/25/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is implicated in many processes, ranging from tissue and organogenesis to cancer and metastatic spread. Understanding the key regulatory mechanisms and mediators within this process offers the opportunity to develop novel therapeutics with broad clinical applicability. To date, several components of EMT already are targeted using pharmacologic agents in fibrosis and cancer. As our knowledge of EMT continues to grow, the potential for novel therapeutics will also increase. This review focuses on the role of EMT both as a necessary part of development and a key player in disease progression, specifically the similarity in pathways used during both processes as targets for drug development. Also, the key role of the tumor microenvironment with EMT is outlined, focusing on both co-factors and cell types with the ability to modulate the progression of EMT in cancer and metastatic disease. Lastly, we discuss the current status of clinical therapies both in development and those progressed to clinical trial specifically targeting pathologic EMTs including small molecule inhibitors, non-coding RNAs, exogenous co-factors, and adjunctive therapies to current chemotherapeutics.
Collapse
Affiliation(s)
- Anai N Kothari
- Department of Surgery, Oncology Institute, Loyola University Medical Center, 2160 South First Ave, EMS Bldg, Rm 3244, Maywood 60153, IL, USA
| | - Zhiyong Mi
- Department of Surgery, Oncology Institute, Loyola University Medical Center, 2160 South First Ave, EMS Bldg, Rm 3244, Maywood 60153, IL, USA
| | - Matthew Zapf
- Department of Surgery, Oncology Institute, Loyola University Medical Center, 2160 South First Ave, EMS Bldg, Rm 3244, Maywood 60153, IL, USA
| | - Paul C Kuo
- Department of Surgery, Oncology Institute, Loyola University Medical Center, 2160 South First Ave, EMS Bldg, Rm 3244, Maywood 60153, IL, USA
| |
Collapse
|
32
|
Bao C, Namgung H, Lee J, Park HC, Ko J, Moon H, Ko HW, Lee HJ. Daidzein suppresses tumor necrosis factor-α induced migration and invasion by inhibiting hedgehog/Gli1 signaling in human breast cancer cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3759-67. [PMID: 24724627 DOI: 10.1021/jf500231t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In breast cancer, the cytokine tumor necrosis factor-α (TNF-α) induces cell invasion, although the molecular basis of it has not been clearly elucidated. In this study, we investigated the role of daidzein in regulating TNF-α induced cell invasion and the underlying molecular mechanisms. Daidzein inhibited TNF-α induced cellular migration and invasion in estrogen receptor (ER) negative MCF10DCIS.com human breast cancer cells. TNF-α activated Hedgehog (Hh) signaling by enhancing Gli1 nuclear translocation and transcriptional activity, which resulted in increased invasiveness; these effects were blocked by daidzein and the Hh signaling inhibitors, cyclopamine and vismodegib. Moreover, these compounds suppressed TNF-α induced matrix metalloproteinase (MMP)-9 mRNA expression and activity. Taken together, mammary tumor cell invasiveness was stimulated by TNF-α induced activation of Hh signaling; these effects were abrogated by daidzein, which suppressed Gli1 activation, thereby inhibiting migration and invasion.
Collapse
Affiliation(s)
- Cheng Bao
- Department of Food Science and Technology, Chung-Ang University , 4726 Seodongdaero, Anseong 456-756, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Holliday C, Rummel S, Hooke JA, Shriver CD, Ellsworth DL, Ellsworth RE. Genomic instability in the breast microenvironment? A critical evaluation of the evidence. Expert Rev Mol Diagn 2014; 9:667-78. [DOI: 10.1586/erm.09.55] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
van Rooyen BA, Schäfer G, Leaner VD, Parker MI. Tumour cells down-regulate CCN2 gene expression in co-cultured fibroblasts in a Smad7- and ERK-dependent manner. Cell Commun Signal 2013; 11:75. [PMID: 24090133 PMCID: PMC3850759 DOI: 10.1186/1478-811x-11-75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/25/2013] [Indexed: 11/13/2022] Open
Abstract
Background Recent studies have revealed that interactions between tumour cells and the surrounding stroma play an important role in facilitating tumour growth and invasion. Stromal fibroblasts produce most of the extracellular matrix components found in the stroma. The aim of this study was to investigate mechanisms involved in tumour cell-mediated regulation of extracellular matrix and adhesion molecules in co-cultured fibroblasts. To this end, microarray analysis was performed on CCD-1068SK human fibroblast cells after direct co-culture with MDA-MB-231 human breast tumour cells. Results We found that the expression of both connective tissue growth factor (CTGF/CCN2) and type I collagen was negatively regulated in CCD-1068SK fibroblast cells under direct co-culture conditions. Further analysis revealed that Smad7, a known negative regulator of the Smad signalling pathway involved in CCN2 promoter regulation, was increased in directly co-cultured fibroblasts. Inhibition of Smad7 expression in CCD-1068SK fibroblasts resulted in increased CCN2 expression, while Smad7 overexpression had the opposite effect. Silencing CCN2 gene expression in fibroblasts led, in turn, to a decrease in type I collagen mRNA and protein levels. ERK signalling was also shown to be impaired in CCD-1068SK fibroblasts after direct co-culture with MDA-MB-231 tumour cells, with Smad7 overexpression in fibroblasts leading to a similar decrease in ERK activity. These effects were not, however, seen in fibroblasts that were indirectly co-cultured with tumour cells. Conclusion We therefore conclude that breast cancer cells require close contact with fibroblasts in order to upregulate Smad7 which, in turn, leads to decreased ERK signalling resulting in diminished expression of the stromal proteins CCN2 and type I collagen.
Collapse
Affiliation(s)
- Beverley A van Rooyen
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Anzio Rd Observatory, Cape Town 7925, South Africa.
| | | | | | | |
Collapse
|
35
|
Kim J, Escalante LE, Dollar BA, Hanson SE, Hematti P. Comparison of breast and abdominal adipose tissue mesenchymal stromal/stem cells in support of proliferation of breast cancer cells. Cancer Invest 2013; 31:550-4. [PMID: 24020962 DOI: 10.3109/07357907.2013.830737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this study, we compared MSCs from breast and abdominal tissue in terms of their expression of genes deemed important in the support of breast cancer growth and their effect on gene profile of macrophages after coculture. In addition, we investigated the role of MSCs, alone or in combination with macrophages, on proliferation of breast cancer cell lines. Our results show that MSCs derived from breast and abdominal adipose tissues have a comparable gene expression profile, have similar effect on gene expression of macrophages, and are comparable in supporting breast cancer cell line proliferation.
Collapse
Affiliation(s)
- Jaehyup Kim
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health , Madison, Wisconsin , USA,1
| | | | | | | | | |
Collapse
|
36
|
Wiebe JP, Zhang G, Welch I, Cadieux-Pitre HAT. Progesterone metabolites regulate induction, growth, and suppression of estrogen- and progesterone receptor-negative human breast cell tumors. Breast Cancer Res 2013; 15:R38. [PMID: 25927181 PMCID: PMC3706910 DOI: 10.1186/bcr3422] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/16/2013] [Accepted: 05/11/2013] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Of the nearly 1.4 million new cases of breast cancer diagnosed each year, a large proportion is characterized as hormone receptor negative, lacking estrogen receptors (ER) and/or progesterone receptors (PR). Patients with receptor-negative tumors do not respond to current steroid hormone-based therapies and generally have significantly higher risk of recurrence and mortality compared with patients with tumors that are ER- and/or PR-positive. Previous in vitro studies had shown that the progesterone metabolites, 5α-dihydroprogesterone (5αP) and 3α-dihydroprogesterone (3αHP), respectively, exhibit procancer and anticancer effects on receptor-negative human breast cell lines. Here in vivo studies were conducted to investigate the ability of 5αP and 3αHP to control initiation, growth, and regression of ER/PR-negative human breast cell tumors. METHODS ER/PR-negative human breast cells (MDA-MB-231) were implanted into mammary fat pads of immunosuppressed mice, and the effects of 5αP and 3αHP treatments on tumor initiation, growth, suppression/regression, and histopathology were assessed in five separate experiments. Specific radioimmunoassays and gas chromatography-mass spectrometry were used to measure 5αP, 3αHP, and progesterone in mouse serum and tumors. RESULTS Onset and growth of ER/PR-negative human breast cell tumors were significantly stimulated by 5αP and inhibited by 3αHP. When both hormones were applied simultaneously, the stimulatory effects of 5αP were abrogated by the inhibitory effects of 3αHP and vice versa. Treatment with 3αHP subsequent to 5αP-induced tumor initiation resulted in suppression of further tumorigenesis and regression of existing tumors. The levels of 5αP in tumors, regardless of treatment, were about 10-fold higher than the levels of 3αHP, and the 5αP:3αHP ratios were about fivefold higher than in serum, indicating significant changes in endogenous synthesis of these hormones in tumorous breast tissues. CONCLUSIONS The studies showed that estrogen/progesterone-insensitive breast tumors are sensitive to, and controlled by, the progesterone metabolites 5αP and 3αHP. Tumorigenesis of ER/PR-negative breast cells is significantly enhanced by 5αP and suppressed by 3αHP, the outcome depending on the relative concentrations of these two hormones in the microenvironment in the breast regions. The findings show that the production of 5αP greatly exceeds that of 3αHP in ER/PR-negative tumors and that treatment with 3αHP can effectively block tumorigenesis and cause existing tumors to regress. The results provide the first hormonal theory to explain tumorigenesis of ER/PR-negative breast tissues and support the hypothesis that a high 3αHP-to-5αP concentration ratio in the microenvironment may foster normalcy in noncancerous breast regions. The findings suggest new diagnostics based on the relative levels of these hormones and new approaches to prevention and treatment of breast cancers based on regulating the levels and action mechanisms of anti- and pro-cancer progesterone metabolites.
Collapse
Affiliation(s)
- John P Wiebe
- Department of Biology, The University of Western Ontario, London, Ontario, N6A5B7, Canada.
| | - Guihua Zhang
- Department of Biology, The University of Western Ontario, London, Ontario, N6A5B7, Canada. .,Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | - Ian Welch
- Department of Animal Care & Veterinary Services and Department of Physiology and Pharmacology, Medical Sciences Building, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | - Heather-Anne T Cadieux-Pitre
- Department of Animal Care & Veterinary Services, Medical Sciences Building, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| |
Collapse
|
37
|
Ch'ng S, Choi V, Elliott M, Clark JR. Relationship between postoperative complications and survival after free flap reconstruction for oral cavity squamous cell carcinoma. Head Neck 2013; 36:55-9. [PMID: 23559547 DOI: 10.1002/hed.23266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Current literature on the effect of postoperative complications on survival outcomes in head and neck cancers remains contradictory. This study assesses whether postoperative complications adversely affect survival in cases of complex surgical ablation and reconstruction of oral squamous cell carcinoma. METHODS In all, 255 consecutive patients with complete clinicopathologic data were included. Survival was determined using the log-rank test and Kaplan-Meier survival curves were generated. A Cox proportional hazards model was used to adjust for the effect of other significant covariates to determine the independent effect of complication variables for overall survival (OS). A competing risk model was used for disease-specific survival (DSS). RESULTS On multivariable analysis, major complications independently prognosticated for reduced OS [hazard ratio (HR) 2.4, 95% confidence interval (CI) 1.1-3.2, p = .02]. There was no evidence for an association between any complication-variable and DSS or recurrence. CONCLUSIONS Major postoperative complications are independently associated with decreased OS.
Collapse
Affiliation(s)
- Sydney Ch'ng
- Sydney Head and Neck Cancer Institute, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
38
|
Katchman BA, Ocal IT, Cunliffe HE, Chang YH, Hostetter G, Watanabe A, LoBello J, Lake DF. Expression of quiescin sulfhydryl oxidase 1 is associated with a highly invasive phenotype and correlates with a poor prognosis in Luminal B breast cancer. Breast Cancer Res 2013; 15:R28. [PMID: 23536962 PMCID: PMC3738157 DOI: 10.1186/bcr3407] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 03/14/2013] [Indexed: 12/24/2022] Open
Abstract
Introduction Quiescin sulfhydryl oxidase 1 (QSOX1) oxidizes sulfhydryl groups to form disulfide bonds in proteins. Tumor specific expression of QSOX1 has been reported for numerous tumor types. In this study, we investigate QSOX1 as a marker of breast tumor progression and evaluate the role of QSOX1 as it relates to breast tumor growth and metastasis. Methods Correlation of QSOX1 expression with breast tumor grade, subtype and estrogen receptor (ER) status was gathered through informatic analysis using the "Gene expression based Outcome for Breast cancer Online" (GOBO) web-based tool. Expression of QSOX1 protein in breast tumors tissue microarray (TMA) and in a panel of breast cancer cell lines was used to confirm our informatics analysis. To investigate malignant cell mechanisms for which QSOX1 might play a key role, we suppressed QSOX1 protein expression using short hairpin (sh) RNA in ER+ Luminal A-like MCF7, ER+ Luminal B-like BT474 and ER- Basal-like BT549 breast cancer cell lines. Results GOBO analysis revealed high levels of QSOX1 RNA expression in ER+ subtypes of breast cancer. In addition, Kaplan Meyer analyses revealed QSOX1 RNA as a highly significant predictive marker for both relapse and poor overall survival in Luminal B tumors. We confirmed this finding by evaluation of QSOX1 protein expression in breast tumors and in a panel of breast cancer cell lines. Expression of QSOX1 in breast tumors correlates with increasing tumor grade and high Ki-67 expression. Suppression of QSOX1 protein slowed cell proliferation as well as dramatic inhibition of MCF7, BT474 and BT549 breast tumor cells from invading through Matrigel™ in a modified Boyden chamber assay. Inhibition of invasion could be rescued by the exogenous addition of recombinant QSOX1. Gelatin zymography indicated that QSOX1 plays an important role in the function of MMP-9, a key mediator of breast cancer invasive behavior. Conclusions Taken together, our results suggest that QSOX1 is a novel biomarker for risk of relapse and poor survival in Luminal B breast cancer, and has a pro-proliferative and pro-invasive role in malignant progression partly mediated through a decrease in MMP-9 functional activity.
Collapse
|
39
|
Lee JH, Shim JW, Choi YJ, Heo K, Yang K. The combination of sorafenib and radiation preferentially inhibits breast cancer stem cells by suppressing HIF-1α expression. Oncol Rep 2013; 29:917-24. [PMID: 23314174 PMCID: PMC3597559 DOI: 10.3892/or.2013.2228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/10/2012] [Indexed: 01/27/2023] Open
Abstract
The importance of anticancer stem cell research for breast cancer lies in the possibility of providing new approaches for an improved understanding of anticancer activity and cancer treatment. In this study, we demonstrated that the preclinical therapeutic efficacy of combining the multikinase inhibitor sorafenib with radiation was more effective in hypoxia-exposed breast cancer stem cells. We assessed cell viability and Annexin V to evaluate the combined effect of sorafenib and radiation following exposure to hypoxia. Our results showed that the synergistic cytotoxicity increased tumor cell apoptosis significantly and reduced cell proliferation in MDA-MB-231 and MCF-7 cells under hypoxic conditions compared to sorafenib or radiation alone in vitro. Additionally, the combined treatment induced G2/M cell cycle arrest. Notably, the combination of sorafenib and radiation eliminated CD44+CD24-/low cells preferentially, which highly expressed hypoxia-inducible factor (HIF)-1α and effectively inhibited primary and secondary mammosphere formation in MDA-MB-231 cells. A combined effect on MDA-MB‑231 cells in response to hypoxia was shown by inhibiting angiogenesis and metastasis by suppression of HIF-1α and matrix metalloproteinase-2 (MMP-2). Collectively, these results indicate that the efficacy of sorafenib combined with radiation for treating human breast cancer cells is synergistic and suggest a new therapeutic approach to prevent breast cancer progression by eliminating breast cancer stem cells.
Collapse
Affiliation(s)
- Jae Ho Lee
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, Republic of Korea
| | | | | | | | | |
Collapse
|
40
|
Oncostatin M Modulates the Mesenchymal–Epithelial Transition of Lung Adenocarcinoma Cells by a Mesenchymal Stem Cell-Mediated Paracrine Effect. Cancer Res 2012; 72:6051-64. [DOI: 10.1158/0008-5472.can-12-1568] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Gangadhara S, Barrett-Lee P, Nicholson RI, Hiscox S. Pro-metastatic tumor–stroma interactions in breast cancer. Future Oncol 2012; 8:1427-42. [DOI: 10.2217/fon.12.134] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The vast majority of breast cancer-related deaths are due to metastatic disease. Reciprocal and complex interactions between epithelial tumor cells and the various components of the tumor microenvironment influence tumor progression and metastases although the molecular mechanisms underlying these metastasis-promoting effects are not fully characterized. Identifying and understanding pathways of tumor–stroma cross-talk are likely to lead to the development of novel prognostic biomarkers for metastasis and strategies to prevent metastasis at its earliest stages, resulting in improved patient outcomes.
Collapse
Affiliation(s)
- Sharath Gangadhara
- School of Pharmacy & Pharmaceutical Sciences, Redwood Building, Cardiff University, CF10 3NB, UK
- Velindre Cancer Centre, Velindre Road, Whitchurch, Cardiff, UK
| | | | - Robert I Nicholson
- School of Pharmacy & Pharmaceutical Sciences, Redwood Building, Cardiff University, CF10 3NB, UK
| | - Stephen Hiscox
- School of Pharmacy & Pharmaceutical Sciences, Redwood Building, Cardiff University, CF10 3NB, UK
| |
Collapse
|
42
|
Hung SP, Yang MH, Tseng KF, Lee OK. Hypoxia-induced secretion of TGF-β1 in mesenchymal stem cell promotes breast cancer cell progression. Cell Transplant 2012; 22:1869-82. [PMID: 23067574 DOI: 10.3727/096368912x657954] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In solid tumors, a decreased oxygen and nutrient supply creates a hypoxic microenvironment in the central region. This hypoxic condition induces molecular responses of normal and cancer cells in the local area, including angiogenesis, metabolic changes, and metastasis. In addition, other cells including mesenchymal stem cells (MSCs) have been reported to be recruited into the hypoxic area of solid tumors. In our previous study, we found that hypoxic condition induces the secretion of growth factors and cytokines in MSCs, and here we demonstrate that elevated secretion of transforming growth factor-β1 (TGF-β1) by MSCs under hypoxia promotes the growth, motility, and invasive ability of breast cancer cells. It was found that TGF-β1 promoter activity was regulated by hypoxia, and the major hypoxia-regulated element was located between bp -1030 to -666 in front of the TGF-β1 promoter region. In ChIP assay, the results revealed that HIF-1 was bound to the hypoxia response element (HRE) of TGF-β1 promoter. Collectively, the results indicate that hypoxia microenvironment can enhance cancer cell growth through the paracrine effects of the MSCs by driving their TGF-β1 gene expression and secretion. Therefore, extra caution has to be exercised when considering hypoxia pretreatment of MSCs before cell transplantation into patients for therapeutic purposes, particularly in patients susceptible to tumor growth.
Collapse
Affiliation(s)
- Shun-Pei Hung
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
43
|
Toll-like receptor 3: implications for proinflammatory microenvironment in human breast cancer. Mol Biol Rep 2012; 39:11087-92. [PMID: 23053995 DOI: 10.1007/s11033-012-2013-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 10/01/2012] [Indexed: 01/23/2023]
Abstract
Under many circumstances, the host constituents that are found in the tumor microenvironment support a malignancy network and provide the cancer cells with advantages in proliferation, invasiveness and metastasis establishment at remote organs. It is known that Toll like receptors (TLRs) are expressed not only on immune cells but also on cancer cells and it has suggested a deleterious role for TLR3 in inflammatory disease. Hypothesizing that altered IFNγ signaling may be a key mechanism of immune dysfunction common to cancer as well CXCR4 is overexpressed among breast cancer patients, the mRNA expression of TLR3, CXCR4 and IFNγ in breast cancer tumor tissues was investigated. No statistically significant differences in the expression of CXCR4 mRNA, IFNγ and TLR3 between healthy and tumor tissues was observed, however, it was verified a positive correlation between mRNA relative expression of TLR3 and CXCR4 (p < 0.001), and mRNA relative expression of TLR3 was significantly increased in breast cancer tumor tissue when compared to healthy mammary gland tissue among patients expressing high IFNγ (p = 0.001). Since the tumor microenvironment plays important roles in cancer initiation, growth, progression, invasion and metastasis, it is possible to propose that an overexpression of IFNγ mRNA due to the pro-inflammatory microenvironment can lead to an up-regulation of CXCR4 mRNA and consequently to an increased TLR3 mRNA expression even among nodal negative patients. In the future, a comprehensive study of TLR3, CXCR4 and IFNγ axis in primary breast tumors and corresponding healthy tissues will be crucial to further understanding of the cancer network.
Collapse
|
44
|
Rummel S, Valente AL, Kane JL, Shriver CD, Ellsworth RE. Genomic (in)stability of the breast tumor microenvironment. Mol Cancer Res 2012; 10:1526-31. [PMID: 23038813 DOI: 10.1158/1541-7786.mcr-12-0425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The breast tumor microenvironment plays an active role in tumorigenesis. Molecular alterations have been identified in tumor-associated stroma; however, there is considerable debate as to whether the stroma is characterized by genomic instability or whether detection of chromosomal alterations reflects technological artifact rather than the true genomic content of the tumor microenvironment. Thus, breast stroma specimens from 112 women undergoing reductive mammoplasty (n = 7), prophylactic mastectomy (n = 6), or mastectomy for a breast disease (n = 99) were frozen in optimal cutting temperature medium. Allelic imbalance (AI) analysis was conducted using a panel of 52 microsatellite markers in 484 stromal specimens from 98 women, of which 92% had no detectable AI events. When compared with previously generated AI data from 77 formalin-fixed, paraffin-embedded (FFPE) stroma specimens, 42% of which harbored at least one detectable AI event, the frequency of AI in the FFPE specimens (4.62%) was significantly higher (P < 0.001) than that found in frozen specimens (0.45%). This comparison of AI between FFPE and research-grade specimens suggests that past reports of AI in breast stroma reflect artifact in the archival specimens caused by formalin-fixation, paraffin-embedding and tissue storage. Furthermore, SNP data were generated from a subset of 86 stromal specimens using SNP arrays and copy number alterations were identified using Partek Genomics Suite. For 95% of the specimens, no detectable copy number alterations were found and the 11 changes that were detected were small and not shared between specimens. These data, therefore, support a model in which the tumor microenvironment is genetically stable.
Collapse
Affiliation(s)
- Seth Rummel
- Clinical Breast Care Project, Henry M. Jackson Foundation for the Advancement of Military Medicine, Windber, PA 15963, USA
| | | | | | | | | |
Collapse
|
45
|
Reed JR, Stone MD, Beadnell TC, Ryu Y, Griffin TJ, Schwertfeger KL. Fibroblast growth factor receptor 1 activation in mammary tumor cells promotes macrophage recruitment in a CX3CL1-dependent manner. PLoS One 2012; 7:e45877. [PMID: 23029290 PMCID: PMC3454319 DOI: 10.1371/journal.pone.0045877] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/22/2012] [Indexed: 12/15/2022] Open
Abstract
Tumor formation is an extensive process requiring complex interactions that involve both tumor cell-intrinsic pathways and soluble mediators within the microenvironment. Tumor cells exploit the intrinsic functions of many soluble molecules, including chemokines and their receptors, to regulate pro-tumorigenic phenotypes that are required for growth and progression of the primary tumor. Previous studies have shown that activation of inducible FGFR1 (iFGFR1) in mammary epithelial cells resulted in increased proliferation, migration, and invasion in vitro and tumor formation in vivo. These studies also demonstrated that iFGFR1 activation stimulated recruitment of macrophages to the epithelium where macrophages contributed to iFGFR1-mediated epithelial cell proliferation and angiogenesis. The studies presented here further utilize this model to identify the mechanisms that regulate FGFR1-induced macrophage recruitment. Results from this study elucidate a novel role for the inflammatory chemokine CX3CL1 in FGFR1-induced macrophage migration. Specifically, we illustrate that activation of both the inducible FGFR1 construct in mouse mammary epithelial cells and endogenous FGFR in the triple negative breast cancer cell line, HS578T, leads to expression of the chemokine CX3CL1. Furthermore, we demonstrate that FGFR-induced CX3CL1 is sufficient to recruit CX3CR1-expressing macrophages in vitro. Finally, blocking CX3CR1 in vivo leads to decreased iFGFR1-induced macrophage recruitment, which correlates with decreased angiogenesis. While CX3CL1 is a known target of FGF signaling in the wound healing environment, these studies demonstrate that FGFR activation also leads to induction of CX3CL1 in a tumor setting. Furthermore, these results define a novel role for CX3CL1 in promoting macrophage recruitment during mammary tumor formation, suggesting that the CX3CL1/CX3CR1 axis may represent a potential therapeutic approach for targeting breast cancers associated with high levels of tumor-associated macrophages.
Collapse
MESH Headings
- Animals
- Breast Neoplasms
- CX3C Chemokine Receptor 1
- Cell Line, Tumor
- Cell Movement
- Cell Transformation, Neoplastic
- Chemokine CX3CL1/metabolism
- Chemokine CX3CL1/physiology
- Epithelial Cells/metabolism
- Epithelial Cells/physiology
- Female
- Humans
- Macrophages/metabolism
- Macrophages/physiology
- Mammary Glands, Animal/blood supply
- Mammary Glands, Animal/pathology
- Mice
- Mice, Transgenic
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptors, Chemokine/metabolism
Collapse
Affiliation(s)
- Johanna R. Reed
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Matthew D. Stone
- Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Thomas C. Beadnell
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Yungil Ryu
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Timothy J. Griffin
- Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kathryn L. Schwertfeger
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Laboratory Medicine and Pathology and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
46
|
da Silva AD, Silva CAB, Montalli VAM, Martinez EF, de Araújo VC, Furuse C. In vitro evaluation of the suppressor potential of conditioned medium from benign myoepithelial cells from pleomorphic adenoma in malignant cell invasion. J Oral Pathol Med 2012; 41:610-4. [PMID: 22680065 DOI: 10.1111/j.1600-0714.2012.01163.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tumoral invasion process is the result of a complex interaction between the tumor cells and microenvironment which plays an important role in modulating the growth and invasion of the cancer. The myoepithelial cells, present in glandular organs such as the breast and salivary glands, seem to exert paracrine effects on the glandular epithelium, acting as natural tumor suppressors. To verify the influence of the benign myoepithelial cells in the invasion of malignant cells, simulating an in situ carcinoma ex pleomorphic adenoma, we have cultured three different high-potential invasive malignant tumors (breast ductal adenocarcinoma, melanoma and oral squamous cell carcinoma) in conditioned medium of myoepithelial cells from salivary gland pleomorphic adenomas using transwell chambers with 8-μm pores membrane coated with matrigel. After 96 h, quantitative analyses of the results were performed by calculating the invasion index (number of cells that invaded in relation to the total number of cells). The results showed that there was a reduction of the invasion index mean for the three different malignant tumors. This study supports a tumoral suppressor function of the myoepithelial cells from pleomorphic adenoma in in vitro invasion process.
Collapse
|
47
|
Lee S, Stewart S, Nagtegaal I, Luo J, Wu Y, Colditz G, Medina D, Allred DC. Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer. Cancer Res 2012; 72:4574-86. [PMID: 22751464 PMCID: PMC3899801 DOI: 10.1158/0008-5472.can-12-0636] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Molecular mechanisms mediating the progression of ductal carcinoma in situ (DCIS) to invasive breast cancer remain largely unknown. We used gene expression profiling of human DCIS (n = 53) and invasive breast cancer (n = 51) to discover uniquely expressed genes that may also regulate progression. There were 470 total differentially expressed genes (≥2-fold; P < 0.05). Elevated expression of genes involved in synthesis and organization of extracellular matrix was particularly prominent in the epithelium of invasive breast cancer. The degree of overlap of the genes with nine similar studies in the literature was determined to help prioritize their potential importance, resulting in 74 showing overlap in ≥2 studies (average 3.6 studies/gene; range 2-8 studies). Using hierarchical clustering, the 74-gene profile correctly categorized 96% of samples in this study and 94% of samples from 3 similar independent studies. To study the progression of DCIS to invasive breast cancer in vivo, we introduced human DCIS cell lines engineered to express specific genes into a "mammary intraductal DCIS" xenograft model. Progression of xenografts to invasive breast cancer was dramatically increased by suppressing four genes that were usually elevated in clinical samples of DCIS, including a protease inhibitor (CSTA) and genes involved in cell adhesion and signaling (FAT1, DST, and TMEM45A), strongly suggesting that they normally function to suppress progression. In summary, we have identified unique gene expression profiles of human DCIS and invasive breast cancer, which include novel genes regulating tumor progression. Targeting some of these genes may improve the detection, diagnosis, and therapy of DCIS.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Cell Line
- Cluster Analysis
- Disease Progression
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Mice
- Mice, SCID
- Molecular Sequence Annotation
- Neoplasm Invasiveness/genetics
- Neoplasm Staging
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Sheila Stewart
- Department of Cell Molecular Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of BRIGHT Institute, Washington University School of Medicine, St. Louis, MO
| | - Iris Nagtegaal
- Department of Pathology, Radboud University Medical Center, Nijmengen, NL
| | - Jingqin Luo
- Department of Biostatistics, Washington University School of Medicine, St. Louis, MO
| | - Yun Wu
- Breast Center, Baylor College of Medicine, Houston, TX
| | - Graham Colditz
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Dan Medina
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX
| | - D. Craig Allred
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
48
|
Jing Y, Han Z, Liu Y, Sun K, Zhang S, Jiang G, Li R, Gao L, Zhao X, Wu D, Cai X, Wu M, Wei L. Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition. PLoS One 2012; 7:e43272. [PMID: 22952657 PMCID: PMC3429457 DOI: 10.1371/journal.pone.0043272] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/18/2012] [Indexed: 12/12/2022] Open
Abstract
In response to inflammation, mesenchymal stem cells (MSCs) are known to migrate to tissue injury sites to participate in immune modulation, tissue remodeling and wound healing. Tumors apply persistent mechanical and pathological stress to tissues and causes continual infiltration of MSCs. Here, we demonstrate that MSCs promote human hepatocellular carcinoma (HCC) metastasis under the influence of inflammation. The metastasis promoting effect could be imitated with the supernatant of MSCs pretreated with IFNγ and TNFα. Interestingly, treatment of HCC cells with the supernatant leads to epithelial-mesenchymal transition (EMT), an effect related to the production of TGFβ by cytokines stimulated MSCs. Importantly, the levels of MSCs expressing SSEA4 in clinical HCC samples significantly correlated with poor prognosis of HCC, and EMT of HCC was strongly associated with a shorter cancer-free interval (CFI) and a worse overall survival (OS). Therefore, our results suggest that MSCs in tumor inflammatory microenvironment could promote tumor metastasis through TGFβ-induced EMT.
Collapse
Affiliation(s)
- Yingying Jing
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Zhipeng Han
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Yan Liu
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Kai Sun
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Shanshan Zhang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Guocheng Jiang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Rong Li
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Lu Gao
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Xue Zhao
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Dong Wu
- Department of Combined Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Xiong Cai
- Department of Combined Treatment, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Mengchao Wu
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
49
|
Redis RS, Calin S, Yang Y, You MJ, Calin GA. Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacol Ther 2012; 136:169-74. [PMID: 22903157 DOI: 10.1016/j.pharmthera.2012.08.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/17/2022]
Abstract
The role of non-protein coding RNAs (ncRNAs), microRNAs (miRNAs) in particular, as fine-tuners of both pathological and physiological processes is no longer a matter of debate. With the recent discovery of miRNAs in a wide variety of body fluids and considering them as tools employed in horizontal gene transfer between cells, a new horizon opens in the field of diagnosis and therapeutics. Circulating miRNAs not only enable the communication among cells, but also provide insight into the pathological and physiological state of the originating cells. In this review we summarize the recent advances made in this field, arguing for compelling translation of miRNAs into clinical practice. Moreover, we provide overview of their characteristics and how they impact the evolution of tumor microenvironment and cell-to-cell communication, advancing the idea that miRNAs may function as hormones.
Collapse
Affiliation(s)
- Roxana S Redis
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Cancer progression is a dynamic process of clonal adaptation to changing microenvironments. From the single founder cell until the clinical detection of tumours, there are consecutive clonal expansions and a constant acquisition of genetic and epigenetic alterations, events that contribute to the generation of intra-tumor heterogeneity. In breast cancer intra-tumor heterogeneity can arise from the differentiation of stem-like cells along with the clonal selection during tumor progression, and represents a major challenge for the design of effective therapies. To infer breast cancer progression and its response to particular treatments it is important to understand the origins of the inter- and intra-tumor heterogeneity and the forces that control tumor evolution. Insights about the evolution of breast cancer heterogeneity would contribute to the design of most effective therapeutic strategies to target the tumors at single clon level. This review is intended to give a general overview about the origins of breast cancer heterogeneity and its impact in the clinical management of the disease.
Collapse
|