1
|
Tu Y, Gong J, Mou J, Jiang H, Zhao H, Gao J. Strategies for the development of stimuli-responsive small molecule prodrugs for cancer treatment. Front Pharmacol 2024; 15:1434137. [PMID: 39144632 PMCID: PMC11322083 DOI: 10.3389/fphar.2024.1434137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Approved anticancer drugs typically face challenges due to their narrow therapeutic window, primarily because of high systemic toxicity and limited selectivity for tumors. Prodrugs are initially inactive drug molecules designed to undergo specific chemical modifications. These modifications render the drugs inactive until they encounter specific conditions or biomarkers in vivo, at which point they are converted into active drug molecules. This thoughtful design significantly improves the efficacy of anticancer drug delivery by enhancing tumor specificity and minimizing off-target effects. Recent advancements in prodrug design have focused on integrating these strategies with delivery systems like liposomes, micelles, and polymerosomes to further improve targeting and reduce side effects. This review outlines strategies for designing stimuli-responsive small molecule prodrugs focused on cancer treatment, emphasizing their chemical structures and the mechanisms controlling drug release. By providing a comprehensive overview, we aim to highlight the potential of these innovative approaches to revolutionize cancer therapy.
Collapse
Affiliation(s)
- Yuxuan Tu
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianbao Gong
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Mou
- Department of Neonatology, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Haibo Zhao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jiake Gao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Fernández Y, Movellan J, Foradada L, Giménez V, García‐Aranda N, Mancilla S, Armiñán A, Borgos SE, Hyldbakk A, Bogdanska A, Gobbo OL, Prina‐Mello A, Ponti J, Calzolai L, Zagorodko O, Gallon E, Niño‐Pariente A, Paul A, Schwartz Jr S, Abasolo I, Vicent MJ. In Vivo Antitumor and Antimetastatic Efficacy of a Polyacetal-Based Paclitaxel Conjugate for Prostate Cancer Therapy. Adv Healthc Mater 2022; 11:e2101544. [PMID: 34706167 DOI: 10.1002/adhm.202101544] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa), one of the leading causes of cancer-related deaths, currently lacks effective treatment for advanced-stage disease. Paclitaxel (PTX) is a highly active chemotherapeutic drug and the first-line treatment for PCa; however, conventional PTX formulation causes severe hypersensitivity reactions and limits PTX use at high concentrations. In the pursuit of high molecular weight, biodegradable, and pH-responsive polymeric carriers, one conjugates PTX to a polyacetal-based nanocarrier to yield a tert-Ser-PTX polyacetal conjugate. tert-Ser-PTX conjugate provides sustained release of PTX over 2 weeks in a pH-responsive manner while also obtaining a degree of epimerization of PTX to 7-epi-PTX. Serum proteins stabilize tert-Ser-PTX, with enhanced stability in human serum versus PBS (pH 7.4). In vitro efficacy assessments in PCa cells demonstrate IC50 values above those for the free form of PTX due to the differential cell trafficking modes; however, in vivo tolerability assays demonstrate that tert-Ser-PTX significantly reduces the systemic toxicities associated with free PTX treatment. tert-Ser-PTX also effectively inhibits primary tumor growth and hematologic, lymphatic, and coelomic dissemination, as confirmed by in vivo and ex vivo bioluminescence imaging and histopathological evaluations in mice carrying orthotopic LNCaP tumors. Overall, the results suggest the application of tert-Ser-PTX as a robust antitumor/antimetastatic treatment for PCa.
Collapse
Affiliation(s)
- Yolanda Fernández
- Functional Validation & Preclinical Research (FVPR) CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - Julie Movellan
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Laia Foradada
- Functional Validation & Preclinical Research (FVPR) CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - Vanessa Giménez
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Natalia García‐Aranda
- Functional Validation & Preclinical Research (FVPR) CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - Sandra Mancilla
- Functional Validation & Preclinical Research (FVPR) CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Sven Even Borgos
- Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim NO‐7465 Norway
| | - Astrid Hyldbakk
- Department of Biotechnology and Nanomedicine SINTEF Industry Trondheim NO‐7465 Norway
| | - Anna Bogdanska
- Laboratory for Biological Characterization of Advanced Materials (LBCAM) Trinity Translational Medicine Institute Trinity College Dublin Dublin D08 W9RT Ireland
- Trinity St James's Cancer Institute Trinity College Dublin the University of Dublin Dublin D08 W9RT Ireland
| | - Oliviero L. Gobbo
- Trinity St James's Cancer Institute Trinity College Dublin the University of Dublin Dublin D08 W9RT Ireland
- School of Pharmacy and Pharmaceutical Sciences Trinity College Dublin Dublin D02 R590 Ireland
| | - Adriele Prina‐Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM) Trinity Translational Medicine Institute Trinity College Dublin Dublin D08 W9RT Ireland
- Trinity St James's Cancer Institute Trinity College Dublin the University of Dublin Dublin D08 W9RT Ireland
| | - Jessica Ponti
- European Commission Joint Research Centre (JRC) via Fermi 2749 Ispra 21027 Italy
| | - Luigi Calzolai
- European Commission Joint Research Centre (JRC) via Fermi 2749 Ispra 21027 Italy
| | - Oleksandr Zagorodko
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Elena Gallon
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Amaya Niño‐Pariente
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| | - Alison Paul
- School of Chemistry Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Simó Schwartz Jr
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - Ibane Abasolo
- Functional Validation & Preclinical Research (FVPR) CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Drug Delivery & Targeting Group CIBBIM‐Nanomedicine Vall d'Hebron Institut de Recerca (VHIR) Universitat Autònoma de Barcelona (UAB) Barcelona 08035 Spain
- Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Barcelona 08035 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory. Centro de Investigación Príncipe Felipe. Av. Eduardo Primo Yúfera 3 Valencia 46012 Spain
| |
Collapse
|
3
|
Screening for new peptide substrates for the development of albumin binding anticancer pro-drugs that are cleaved by prostate-specific antigen (PSA) to improve the anti tumor efficacy. Biochem Biophys Rep 2021; 26:100966. [PMID: 33718631 PMCID: PMC7933701 DOI: 10.1016/j.bbrep.2021.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 01/25/2021] [Accepted: 02/15/2021] [Indexed: 11/30/2022] Open
Abstract
Several attempts have been made over the past decade to explore the concept of prodrug strategies that exploit PSA as a molecular target for the release of anticancer drugs in prostate tumors using various prostate specific antigen (PSA)-cleavable peptide linkers, but the desired antitumor and antimetastatic efficacy has not yet been fully achieved. We set out to look for new PSA-cleavable peptide substrates that could be cleaved more rapidly and efficiently than the previously used peptides. To look for the most susceptible PSA-cleavable peptide substrates, we used the so-called spot technology. With the following general formula, we designed 25 different fluorogenic heptapeptides; Cellulose-P5-P4-P3-P2-P1-P1′-P2’ (Fluorophore). The increase of the fluorescence in the supernatant of the reaction mixture was monitored using a 96-well fluorometric plate reader with excitation of λex 485 nm and λem 535 nm. Three sequences showed a high fluorogenic liberation after incubation with PSA, i.e., Arg-Arg-Leu-His-Tyr-Ser-Leu (7), Arg-Arg-Leu-Asn-Tyr-Ser-Leu (8) and Arg-Ser-Ser-Tyr-Arg-Ser-Leu (23). Future incorporation of these optimized substrates in the PSA-cleavable prodrug formulations could further optimize the cleavage pattern and so the release characteristics of these prodrugs to rapidly and efficiently liberate the free cytotoxic agents inside the tumor tissues. Prostate-specific antigen (PSA) represents a molecular target for selectively releasing anticancer agents from prodrugs. Optimal PSA-cleavable peptide substrates are not yet identified. Spot technology is used to elucidate a new PSA-cleavable peptide substrates. We describe new three peptide sequences with a maximal PSA cleavability. These new peptide substrates could improve the antitumor efficacy of PSA-cleavable prodrugs.
Collapse
|
4
|
Liu B, Gao W, Wu H, Liu H, Pan H. New PTX-HS15/T80 Mixed Micelles: Cytotoxicity, Pharmacokinetics and Tissue Distribution. AAPS PharmSciTech 2021; 22:56. [PMID: 33486601 DOI: 10.1208/s12249-021-01929-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022] Open
Abstract
Compared with single micelle, the new PTX-HS15/T80 mixed micelle system (PTX-HS15/T80 MMs) had achieved better results in solubilization, stability, and sensitization before. Therefore, we intend to further verify the potential advantages of the mixed micelle delivery system through in vitro cytotoxicity test and animal test to understand the anticancer effect and in vivo pharmaceutical behavior of the system. In vitro cytotoxicity test showed that the new PTX-HS15/T80 MMs had a stronger ability to inhibit the proliferation of cancer cells. The results of in vivo pharmacokinetics showed that the micelle had shorter half-life, higher clearance rate, and lower blood concentration and had good blood clearance characteristics. The results of in vivo tissue distribution showed that, compared with the single micelle Taxol®, the new PTX-HS15/T80 MMs had good distribution characteristics in the lung (AUC (lung 0-4 H) increased about 26%) and low concentration in the heart (AUC (Heart 0-4 H) decreased about 10%). Paclitaxel was mainly metabolized through the liver and kidney. The above results suggested that the new PTX-HS15/T80 MMs may have a certain therapeutic potential against lung cancer and reduce the toxic and side effects. In general, the mixed micelle delivery system was not only simple and cheap to prepare but also had certain advantages in vitro and in vivo, indicating that the combination of surfactants provides a good choice for solving the problem of insoluble drug delivery.
Collapse
|
5
|
Liu X, Mohanty RP, Maier EY, Peng X, Wulfe S, Looney AP, Aung KL, Ghosh D. Controlled loading of albumin-drug conjugates ex vivo for enhanced drug delivery and antitumor efficacy. J Control Release 2020; 328:1-12. [DOI: 10.1016/j.jconrel.2020.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
|
6
|
Moradi A, Srinivasan S, Clements J, Batra J. Beyond the biomarker role: prostate-specific antigen (PSA) in the prostate cancer microenvironment. Cancer Metastasis Rev 2020; 38:333-346. [PMID: 31659564 DOI: 10.1007/s10555-019-09815-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prostate-specific antigen (PSA) blood test is the accepted biomarker of tumor recurrence. PSA levels in serum correlate with disease progression, though its diagnostic accuracy is questionable. As a result, significant progress has been made in developing modified PSA tests such as PSA velocity, PSA density, 4Kscore, PSA glycoprofiling, Prostate Health Index, and the STHLM3 test. PSA, a serine protease, is secreted from the epithelial cells of the prostate. PSA has been suggested as a molecular target for prostate cancer therapy due to the fact that it is not only active in prostate tissue but also has a pivotal role on prostate cancer signaling pathways including proliferation, invasion, metastasis, angiogenesis, apoptosis, immune response, and tumor microenvironment regulation. Here, we summarize the current standing of PSA in prostate cancer progression as well as its utility in prostate cancer therapeutic approaches with an emphasis on the role of PSA in the tumor microenvironment.
Collapse
Affiliation(s)
- Afshin Moradi
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia. .,Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
7
|
Zhu Y, Wang L, Li Y, Huang Z, Luo S, He Y, Han H, Raza F, Wu J, Ge L. Injectable pH and redox dual responsive hydrogels based on self-assembled peptides for anti-tumor drug delivery. Biomater Sci 2020; 8:5415-5426. [DOI: 10.1039/d0bm01004a] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dual responsive and injectable peptide hydrogels that form gels in vitro control the release of antitumor drugs in vivo.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Liying Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Yiping Li
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Zhewei Huang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Shiyao Luo
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Yue He
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Han Han
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Faisal Raza
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Liang Ge
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|
8
|
Enhanced anti-tumor activity of the Multi-Leu peptide PACE4 inhibitor transformed into an albumin-bound tumor-targeting prodrug. Sci Rep 2019; 9:2118. [PMID: 30765725 PMCID: PMC6376031 DOI: 10.1038/s41598-018-37568-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023] Open
Abstract
The proprotein convertase PACE4 has been validated as a potential target to develop new therapeutic interventions in prostate cancer (PCa). So far, the most effective compound blocking the activity of this enzyme has been designed based on the structure of a small peptide Ac-LLLLRVKR-NH2 known as the Multi-Leu (ML) peptide. Optimization of this scaffold led to the synthesis of compound C23 (Ac-[DLeu]LLLRVK-amidinobenzylamide) with a potent in vivo inhibitory effect on the tumor growth. However, further developments of PACE4 inhibitors may require additional improvements to counter their rapid renal clearance and to increase their tumor targeting efficiency. Herein, we explored the transformation of the ML-peptide into an albumin-binding prodrug containing a tumor specific release mechanism based on the prostate-specific antigen. Our data confirms that intravenous treatment using the ML-peptide alone has little effect on tumor growth, whereas by using the ML-prodrug in LNCaP xenograft-bearing mice it was significantly reduced. Additionally, excellent in vivo stability and tumor-targeting efficiency was demonstrated using a radiolabelled version of this compound. Taken together, these results provide a solid foundation for further development of targeted PACE4 inhibition in PCa.
Collapse
|
9
|
Song P, Yao X, Zhong T, Zhang S, Guo Y, Ren W, Huang D, Duan XC, Yin YF, Zhang SS, Zhang X. The anti-tumor efficacy of 3-(2-Nitrophenyl) propionic acid-paclitaxel (NPPA-PTX): a novel paclitaxel bioreductive prodrug. Oncotarget 2018; 7:48467-48480. [PMID: 27366947 PMCID: PMC5217032 DOI: 10.18632/oncotarget.10310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is an important microenvironmental pressure present in the majority of solid tumors and, so, tumor hypoxia might be considered an attractive target for tumor therapy. One strategy for targeting hypoxia is to develop bioreductive prodrugs. In the present research, we synthesized a bioreductive paclitaxel prodrug, 3-(2-Nitrophenyl) propionic acid-paclitaxel (NPPA-PTX). The stability of NPPA-PTX in PBS and rat plasma was investigated. The anti-tumor activity of NPPA-PTX was also evaluated in vitro and in vivo. The results of our stability study indicated that NPPA-PTX was stable in PBS and rat plasma as well as in the blood circulation. The in vitro and in vivo anti-tumor activity of NPPA-PTX was confirmed in both KB cells and MDA-MB-231 cells. Our results also indicated that NPPA-PTX could completely convert to active PTX in tumor tissues and produced the anti-tumor activity in both KB and MDA-MB-231 tumor-bearing nude mice. We suggest that the dissociated PTX which converted from NPPA-PTX in tumor tissues played a key role in producing anti-tumor activity. Considering all our results, we suggest that NPPA-PTX is a novel bioreductive PTX prodrug which could undergo further evaluation.
Collapse
Affiliation(s)
- Ping Song
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xin Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ting Zhong
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shuang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yang Guo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Ren
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Huang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Chuan Duan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi-Fan Yin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shu-Shi Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xuan Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.,Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
10
|
Furman C, Carpentier R, Barczyk A, Chavatte P, Betbeder D, Lipka E. Development and validation of a reversed-phase HPLC method for the quantification of paclitaxel in different PLGA nanocarriers. Electrophoresis 2017; 38:2536-2541. [DOI: 10.1002/elps.201600552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/10/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Christophe Furman
- Inserm; U995-LIRIC Lille France
- Faculté de Pharmacie, Plateforme de Binding; Université de Lille; U995-LIRIC Lille France
| | - Rodolphe Carpentier
- Inserm; U995-LIRIC Lille France
- CHRU de Lille; U995-LIRIC France
- Faculté de Médecine; Université de Lille; U995-LIRIC Lille France
| | - Amélie Barczyk
- Inserm; U995-LIRIC Lille France
- Faculté de Pharmacie, Plateforme de Binding; Université de Lille; U995-LIRIC Lille France
- Faculté de Pharmacie; Institut de Chimie A. Lespagnol; Université de Lille; U995-LIRIC Lille France
| | - Philippe Chavatte
- Inserm; U995-LIRIC Lille France
- Faculté de Pharmacie, Plateforme de Binding; Université de Lille; U995-LIRIC Lille France
- Faculté de Pharmacie; Institut de Chimie A. Lespagnol; Université de Lille; U995-LIRIC Lille France
| | - Didier Betbeder
- Inserm; U995-LIRIC Lille France
- CHRU de Lille; U995-LIRIC France
- Faculté de Médecine; Université de Lille; U995-LIRIC Lille France
| | - Emmanuelle Lipka
- Inserm; U995-LIRIC Lille France
- Faculté de Pharmacie; Laboratoire de Chimie Analytique; Université de Lille; U995-LIRIC Lille France
| |
Collapse
|
11
|
Abstract
Conjugates of cytotoxic agents with RGD peptides (Arg-Gly-Asp) addressed to ανβ3, α5β1 and ανβ6 integrin receptors overexpressed by cancer cells, have recently gained attention as potential selective anticancer chemotherapeutics. In this review, the design and the development of RGD conjugates coupled to different small molecules including known cytotoxic drugs and natural products will be discussed.
Collapse
|
12
|
Wu C, Li R, Yin Y, Wang J, Zhang L, Zhong W. Redox-responsive supramolecular hydrogel based on 10-hydroxy camptothecin-peptide covalent conjugates with high loading capacity for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:196-202. [PMID: 28482517 DOI: 10.1016/j.msec.2017.03.103] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/22/2016] [Accepted: 03/12/2017] [Indexed: 01/24/2023]
Abstract
A redox-responsive supramolecular hydrogel system was developed for delivering 10-hydroxy camptothecin (HCPT). The hydrogel was formed by cleaving disulfide bond. The combination of hydrophobic HCPT with hydrogel was a simple and effective way to improve the solubility of HCPT and the drug loading capacity of delivery system. The transmission electron microscopy (TEM) image revealed the self-assembled hydrogel was long and thin nanofibers with a width of <10nm. Rheological test verified the hydrogel had fine physical properties. In vitro release experiment showed that the accumulative releasing percentages within 72h of HCPT-peptide hydrogels at 3.0%, 4.0%, 5.0% were 16.8%, 21.3%, and 26.8% respectively, which indicated the HCPT-peptide hydrogels had a significantly sustained-release characteristic. Besides, in vitro anticancer assay showed that HCPT-peptide hydrogels possessed a favorable anticancer efficacy. These results indicated that HCPT-peptide hydrogel had great potential for cancer treatment as a novel injectable drug delivery system.
Collapse
Affiliation(s)
- Can Wu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ruixin Li
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yajun Yin
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Junling Wang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Li Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wenying Zhong
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
13
|
Wang W, Li M, Zhang Z, Cui C, Zhou J, Yin L, Lv H. Design, synthesis and evaluation of multi-functional tLyP-1-hyaluronic acid-paclitaxel conjugate endowed with broad anticancer scope. Carbohydr Polym 2017; 156:97-107. [DOI: 10.1016/j.carbpol.2016.08.100] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/24/2016] [Accepted: 08/30/2016] [Indexed: 02/08/2023]
|
14
|
Design and synthesis of peptide conjugates of phosphoramide mustard as prodrugs activated by prostate-specific antigen. Bioorg Med Chem 2016; 24:2697-706. [DOI: 10.1016/j.bmc.2016.04.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/08/2016] [Accepted: 04/17/2016] [Indexed: 11/21/2022]
|
15
|
Meng Z, Lv Q, Lu J, Yao H, Lv X, Jiang F, Lu A, Zhang G. Prodrug Strategies for Paclitaxel. Int J Mol Sci 2016; 17:E796. [PMID: 27223283 PMCID: PMC4881612 DOI: 10.3390/ijms17050796] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical uses. However, it is also faced with various challenges especially for its poor water solubility and low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small molecule modifications and macromolecule modifications have been developed by many research groups from all over the world. In this review, we discuss the different strategies especially prodrug strategies that are currently used to make paclitaxel more effective.
Collapse
Affiliation(s)
- Ziyuan Meng
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Quanxia Lv
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Jun Lu
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Houzong Yao
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Xiaoqing Lv
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Feng Jiang
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
- The State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Aiping Lu
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| | - Ge Zhang
- Institution for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Research Group of Precision Medicine and Innovative Drug, HKBU (Hong Kong Baptist University) (Haimen) Institute of Science and Technology, Haimen 226100, China.
| |
Collapse
|
16
|
Thapa P, Li M, Bio M, Rajaputra P, Nkepang G, Sun Y, Woo S, You Y. Far-Red Light-Activatable Prodrug of Paclitaxel for the Combined Effects of Photodynamic Therapy and Site-Specific Paclitaxel Chemotherapy. J Med Chem 2016; 59:3204-14. [PMID: 26974508 DOI: 10.1021/acs.jmedchem.5b01971] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Paclitaxel (PTX) is one of the most useful chemotherapeutic agents approved for several cancers, including ovarian, breast, pancreatic, and nonsmall cell lung cancer. However, it causes systemic side effects when administered parenterally. Photodynamic therapy (PDT) is a new strategy for treating local cancers using light and photosensitizer. Unfortunately, PDT is often followed by recurrence due to incomplete ablation of tumors. To overcome these problems, we prepared the far-red light-activatable prodrug of PTX by conjugating photosensitizer via singlet oxygen-cleavable aminoacrylate linker. Tubulin polymerization enhancement and cytotoxicity of prodrugs were dramatically reduced. However, once illuminated with far-red light, the prodrug effectively killed SKOV-3 ovarian cancer cells through the combined effects of PDT and locally released PTX. Ours is the first PTX prodrug that can be activated by singlet oxygen using tissue penetrable and clinically useful far-red light, which kills the cancer cells through the combined effects of PDT and site-specific PTX chemotherapy.
Collapse
Affiliation(s)
- Pritam Thapa
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Mengjie Li
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Moses Bio
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Pallavi Rajaputra
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Gregory Nkepang
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Yajing Sun
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Sukyung Woo
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| | - Youngjae You
- College of Pharmacy, University of Oklahoma Health Sciences Center , 1110 North Stonewall Avenue, Oklahoma City, Oklahoma 73117, United States
| |
Collapse
|
17
|
Protein– and Peptide–Drug Conjugates. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 98:1-55. [DOI: 10.1016/bs.apcsb.2014.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Liu KF, Li CX, Dai L, Liu J, Wang LY, Lei JD, Guo LQ. Design, synthesis and in vivo antitumor efficacy of novel eight-arm-polyethylene glycol–pterostilbene prodrugs. RSC Adv 2015. [DOI: 10.1039/c5ra06253e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Illustration of 8arm-PEG–pterostilbene. In contrast to linear PEG, the 8arm-PEG significantly increased drug-binding capacity.
Collapse
Affiliation(s)
- Ke-feng Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Chun-xiao Li
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Lin Dai
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Lu-ying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Jian-du Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- P. R. China
| | - Li-qun Guo
- Yunnan Pharmaceutical Industrial Co., Ltd
- Kunming 650106
- P. R. China
| |
Collapse
|
19
|
Nam JP, Park JK, Son DH, Kim TH, Park SJ, Park SC, Choi C, Jang MK, Nah JW. Evaluation of polyethylene glycol-conjugated novel polymeric anti-tumor drug for cancer therapy. Colloids Surf B Biointerfaces 2014; 120:168-75. [PMID: 24918700 DOI: 10.1016/j.colsurfb.2014.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/03/2014] [Accepted: 04/19/2014] [Indexed: 12/18/2022]
Abstract
A novel polymeric prodrug (PXPEG) was prepared to enhance the solubility of an anti-cancer drug, paclitaxel, in aqueous solutions and decrease the cytotoxicity by PEGylation, which means PEG attached to another molecule. In addition, the targeting ligand, transferrin (TF), was modified to PXPEG to enhance the therapeutic efficacy. The targeting ligand-modified PXPEG (TFPXPEG) was examined by (1)H-NMR to confirm the successful synthesis. The synthesized TFPXPEG had better solubility than the free drug against aqueous solution. The particle size of TFPXPEG was approximately 197.2nm and it had a spherical shape. The MTT assay showed that the anti-tumor efficiency of TFPXPEG was better than that of TF-unmodified PXPEG. In the KB tumor-bearing mouse model, the tumor volume of TFPXPEG treated groups was decreased dramatically by more than 2 fold or 3 fold compared to the PBS or PXPEG treated groups. The in vitro and in vivo evaluation showed that TFPXPEG had better efficacy than that of PXPEG due to the targeting effect of targeting ligands, such as TF.
Collapse
Affiliation(s)
- Joung-Pyo Nam
- Department of Polymer Science and Engineering, Sunchon National University, 255 Juang-ro, Suncheon 540-950, Jeollanam-do, Republic of Korea
| | - Jun-Kyu Park
- Department of Polymer Science and Engineering, Sunchon National University, 255 Juang-ro, Suncheon 540-950, Jeollanam-do, Republic of Korea
| | - Dong-Hee Son
- Department of Polymer Science and Engineering, Sunchon National University, 255 Juang-ro, Suncheon 540-950, Jeollanam-do, Republic of Korea
| | - Tae-Hun Kim
- Department of Polymer Science and Engineering, Sunchon National University, 255 Juang-ro, Suncheon 540-950, Jeollanam-do, Republic of Korea
| | - Sun-Jeong Park
- Department of Polymer Science and Engineering, Sunchon National University, 255 Juang-ro, Suncheon 540-950, Jeollanam-do, Republic of Korea
| | - Seong-Cheol Park
- Department of Polymer Science and Engineering, Sunchon National University, 255 Juang-ro, Suncheon 540-950, Jeollanam-do, Republic of Korea
| | - Changyong Choi
- Department of Polymer Science and Engineering, Sunchon National University, 255 Juang-ro, Suncheon 540-950, Jeollanam-do, Republic of Korea
| | - Mi-Kyeong Jang
- Department of Polymer Science and Engineering, Sunchon National University, 255 Juang-ro, Suncheon 540-950, Jeollanam-do, Republic of Korea
| | - Jae-Woon Nah
- Department of Polymer Science and Engineering, Sunchon National University, 255 Juang-ro, Suncheon 540-950, Jeollanam-do, Republic of Korea.
| |
Collapse
|
20
|
Tranoy-Opalinski I, Legigan T, Barat R, Clarhaut J, Thomas M, Renoux B, Papot S. β-Glucuronidase-responsive prodrugs for selective cancer chemotherapy: an update. Eur J Med Chem 2014; 74:302-13. [PMID: 24480360 DOI: 10.1016/j.ejmech.2013.12.045] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/22/2013] [Accepted: 12/23/2013] [Indexed: 02/07/2023]
Abstract
The design of novel antitumor agents allowing the destruction of malignant cells while sparing healthy tissues is one of the major challenges in medicinal chemistry. In this context, the use of non-toxic prodrugs programmed to be selectively activated by beta-glucuronidase present at high concentration in the microenvironment of most solid tumors has attracted considerable attention. This review summarizes the major progresses that have been realized in this field over the past ten years. This includes the new prodrugs that have been designed to target a wide variety of anticancer drugs, the prodrugs employed in the course of a combined therapy, the dendritic glucuronide prodrugs and the concept of β-glucuronidase-responsive albumin binding prodrugs.
Collapse
Affiliation(s)
- Isabelle Tranoy-Opalinski
- Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés", 4 rue Michel Brunet, 86022 Poitiers, France
| | - Thibaut Legigan
- Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés", 4 rue Michel Brunet, 86022 Poitiers, France
| | - Romain Barat
- Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés", 4 rue Michel Brunet, 86022 Poitiers, France
| | - Jonathan Clarhaut
- Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés", 4 rue Michel Brunet, 86022 Poitiers, France; INSERM CIC 0802, CHU de Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
| | - Mikaël Thomas
- Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés", 4 rue Michel Brunet, 86022 Poitiers, France
| | - Brigitte Renoux
- Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés", 4 rue Michel Brunet, 86022 Poitiers, France
| | - Sébastien Papot
- Université de Poitiers, UMR-CNRS 7285, Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés", 4 rue Michel Brunet, 86022 Poitiers, France.
| |
Collapse
|
21
|
Hackett MJ, Zaro JL, Shen WC, Guley PC, Cho MJ. Fatty acids as therapeutic auxiliaries for oral and parenteral formulations. Adv Drug Deliv Rev 2013; 65:1331-9. [PMID: 22921839 DOI: 10.1016/j.addr.2012.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/25/2012] [Accepted: 07/20/2012] [Indexed: 01/08/2023]
Abstract
Many drugs have decreased therapeutic activity due to issues with absorption, distribution, metabolism and excretion. The co-formulation or covalent attachment of drugs with fatty acids has demonstrated some capacity to overcome these issues by improving intestinal permeability, slowing clearance and binding serum proteins for selective tissue uptake and metabolism. For orally administered drugs, albeit at low level of availability, the presence of fatty acids and triglycerides in the intestinal lumen may promote intestinal uptake of small hydrophilic molecules. Small lipophilic drugs or acylated hydrophilic drugs also show increased lymphatic uptake and enhanced passive diffusional uptake. Fatty acid conjugation of small and large proteins or peptides has exhibited protracted plasma half-lives, site-specific delivery and sustained release upon parenteral administration. These improvements are most likely due to associations with lipid-binding serum proteins, namely albumin, LDL and HDL. These molecular interactions, although not fully characterized, could provide the ability of using the endogenous carrier systems for improving therapeutic outcomes.
Collapse
Affiliation(s)
- Michael J Hackett
- University of North Carolina, Chapel Hill, School of Pharmacy, Division of Molecular Pharmaceutics, USA
| | | | | | | | | |
Collapse
|
22
|
Xiang B, Dong DW, Shi NQ, Gao W, Yang ZZ, Cui Y, Cao DY, Qi XR. PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer. Biomaterials 2013; 34:6976-91. [PMID: 23777916 DOI: 10.1016/j.biomaterials.2013.05.055] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 05/24/2013] [Indexed: 01/04/2023]
Abstract
In the hormone-refractory stage of prostate cancer (PC), the expression of prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) often remains highly active. Accumulating studies have demonstrated that these two proteins are attractive targets for specific delivery of functional molecules to advanced PC, not merely as potential sensitive markers for PC detection. In this study, we constructed a dual-modified liposome that incorporated PSA-responsive and PSMA-mediated liposomes and potentially offers double selectivity for PC. The folate moiety binds quickly to PSMA-positive tumors, and the PSA-responsive moiety is cleaved by PSA that was enriched in tumor tissues. The activated liposomes (folate and cell-penetrating peptides dual-modifications) are subsequently taken up by the tumor cells via polyarginine's penetrating effects and receptor-mediated endocytosis. To corroborate these assumptions, a series of experiments were conducted, including PSA-responsive peptide hydrolysis kinetics, cellular uptake, internalization mechanism and escape from endosomes in PC-3 and/or 22Rv1 cells, biodistribution and antitumor activity of siRNA-loaded liposomes after systemic administration, gene silencing and cell apoptosis in vitro and in vivo. The results reveal that multivalent interactions play a key role in enhancing PC cell recognition and uptake while reducing nonspecific uptake. The dual-modified liposomes carrying small interfering RNA (siRNA) have significant advantages over the control liposomes, including single-modified (folate, CPP, PSA-responsive only) and non-modified liposomes. The dual-modified liposomes elevated cellular uptake, downregulated expression of polo-like kinase 1 (PLK-1) and augmented cell apoptosis in prostate tumor cells. The entry of the dual-modified liposomes into 22Rv1 cells occurred via multiple endocytic pathways, including clathrin-mediated endocytosis and macropinocytosis, followed by an effective endosomal escape of the entrapped siRNA into the cytoplasm. In vivo studies conducted on a 22Rv1 xenograft murine model demonstrated that the dual-modified liposomes demonstrated the maximized accumulation, retention and knockdown of PLK-1 in tumor cells, as well as the strongest inhibition of tumor growth and induction of tumor cell apoptosis. In terms of targeting capacity and therapeutic potency, the combination of a PSA-responsive and PSMA-mediated liposome presents a promising platform for therapy and diagnosis of PSMA/PSA-positive PC.
Collapse
Affiliation(s)
- Bai Xiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, PR China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yewale C, Baradia D, Vhora I, Misra A. Proteins: emerging carrier for delivery of cancer therapeutics. Expert Opin Drug Deliv 2013; 10:1429-48. [DOI: 10.1517/17425247.2013.805200] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Zhang Q, Milliken P, Kulczynska A, Slawin AMZ, Gordon A, Kirkby NS, Webb DJ, Botting NP, Megson IL. Development and characterization of glutamyl-protected N-hydroxyguanidines as reno-active nitric oxide donor drugs with therapeutic potential in acute renal failure. J Med Chem 2013; 56:5321-34. [PMID: 23782349 DOI: 10.1021/jm400146r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acute renal failure (ARF) has high mortality and no effective treatment. Nitric oxide (NO) delivery represents a credible means of preventing the damaging effects of vasoconstriction, central to ARF, but design of drugs with the necessary renoselectivity is challenging. Here, we developed N-hydroxyguanidine NO donor drugs that were protected against spontaneous NO release by linkage to glutamyl adducts that could be cleaved by γ-glutamyl transpeptidase (γ-GT), found predominantly in renal tissue. Parent NO donor drug activity was optimized in advance of glutamyl adduct prodrug design. A lead compound that was a suitable substrate for γ-GT-mediated deprotection was identified. Metabolism of this prodrug to the active parent compound was confirmed in rat kidney homogenates, and the prodrug was shown to be an active vasodilator in rat isolated perfused kidneys (EC50 ~50 μM). The data confirm that glutamate protection of N-hydroxyguanidines is an approach that might hold promise in ARF.
Collapse
Affiliation(s)
- Qingzhi Zhang
- EASTChem, School of Chemistry and Centre for Biomolecular Sciences, The University of St. Andrews , North Haugh, St. Andrews KY16 9ST, U.K
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Caron J, Maksimenko A, Wack S, Lepeltier E, Bourgaux C, Morvan E, Leblanc K, Couvreur P, Desmaële D. Improving the antitumor activity of squalenoyl-paclitaxel conjugate nanoassemblies by manipulating the linker between paclitaxel and squalene. Adv Healthc Mater 2013; 2:172-85. [PMID: 23213041 DOI: 10.1002/adhm.201200099] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/24/2012] [Indexed: 11/06/2022]
Abstract
A series of new lipid prodrugs of paclitaxel, which can be formulated as nanoassemblies, are described. These prodrugs which are designed to overcome the limitations due to the systemic toxicity and low water solubility of paclitaxel consist of a squalene chain bound to the 2'-OH of paclitaxel through a 1,4-cis,cis-dienic linker. This design allows the squalene-conjugates to self-assemble as nanoparticular systems while preserving an efficient release of the free drug, thanks to the dienic spacer. The size, steric hindrance, and functional groups of the spacer have been modulated. All these prodrugs self-assemble into nanosized aggregates in aqueous solution as characterized by dynamic light scattering and transmission electron microscopy and appear stable in water for several days as determined by particle size measurement. In vitro biological assessment shows that these squalenoyl-paclitaxel nanoparticles display notable cytotoxicity on several tumor cell lines including A549 lung cell line, colon cell line HT-29, or KB 3.1 nasopharyngeal epidermoid cell line. The cis,cis-squalenyl-deca-5,8-dienoate prodrug show improved activity over simple 2'-squalenoyl-paclitaxel prodrug highlighting the favourable effect of the dienic linker. The antitumor efficacy of the nanoassemblies constructed with the more active prodrugs has been investigated on human lung (A549) carcinoma xenograft model in mice. The prodrug bearing the cis,cis-deca-5,8-dienoyl linker shows comparable antitumor efficacy to the parent drug, but reveals a much lower subacute toxicity as seen in body weight loss. Thus, nanoparticles with the incorporated squalenoyl paclitaxel prodrug may prove useful for replacement of the toxic Cremophor EL.
Collapse
|
27
|
Sotiropoulou G, Pampalakis G. Targeting the kallikrein-related peptidases for drug development. Trends Pharmacol Sci 2012; 33:623-34. [PMID: 23089221 DOI: 10.1016/j.tips.2012.09.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/14/2012] [Accepted: 09/19/2012] [Indexed: 11/18/2022]
Abstract
Kallikrein-related peptidases (KLKs) constitute a family of 15 serine proteases. Recent studies have shed light on key physiological functions of KLK enzymes and implicate their deregulation in major human pathologies such as neurodegenerative and inflammatory diseases, skin conditions, asthma, and cancer. Consequently, KLKs have emerged as novel targets for pharmacological intervention. Given the pleiotropic roles of KLKs, both activators and inhibitors of KLK activities are of therapeutic interest. For example, inhibitors of hyperactive KLKs in the epidermis would be effective against excess skin desquamation and inflammation, whereas KLK activators could benefit hyperkeratosis caused by diminished KLK proteolysis. Expression of active KLKs by cancer cells and tissues can be exploited to target prodrugs that are proteolytically cleaved to release a cytotoxic compound or a cytolytic toxin at the site of KLK protease activity. Here, we review current approaches for the design and testing of KLK-based therapeutics.
Collapse
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Greece.
| | | |
Collapse
|
28
|
Abu Ajaj K, El-Abadla N, Welker P, Azab S, Zeisig R, Fichtner I, Kratz F. Comparative evaluation of the biological properties of reducible and acid-sensitive folate prodrugs of a highly potent doxorubicin derivative. Eur J Cancer 2012; 48:2054-65. [DOI: 10.1016/j.ejca.2011.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/24/2011] [Accepted: 08/15/2011] [Indexed: 11/24/2022]
|
29
|
Legigan T, Clarhaut J, Renoux B, Tranoy-Opalinski I, Monvoisin A, Berjeaud JM, Guilhot F, Papot S. Synthesis and antitumor efficacy of a β-glucuronidase-responsive albumin-binding prodrug of doxorubicin. J Med Chem 2012; 55:4516-20. [PMID: 22515366 DOI: 10.1021/jm300348r] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper we describe the synthesis and biological evaluation of the first β-glucuronidase-responsive albumin-binding prodrug designed for the selective delivery of doxorubicin at the tumor site. This prodrug leads to superior antitumor efficacy in mice compared to HMR 1826, a well-known glucuronide prodrug of doxorubicin that cannot bind covalently to circulating albumin. Furthermore, this compound inhibits tumor growth in a manner similar to that of doxorubicin while avoiding side effects induced by the free drug.
Collapse
Affiliation(s)
- Thibaut Legigan
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP, Université de Poitiers, UMR-CNRS 7285, 4 Rue Michel Brunet, 86022 Poitiers, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Fang JY, Al-Suwayeh SA. Nanoparticles as delivery carriers for anticancer prodrugs. Expert Opin Drug Deliv 2012; 9:657-69. [DOI: 10.1517/17425247.2012.679927] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Shan L, Cui S, Du C, Wan S, Qian Z, Achilefu S, Gu Y. A paclitaxel-conjugated adenovirus vector for targeted drug delivery for tumor therapy. Biomaterials 2012; 33:146-62. [DOI: 10.1016/j.biomaterials.2011.09.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/07/2011] [Indexed: 11/28/2022]
|