1
|
Zaitseva O, Sergushkina M, Polezhaeva T, Solomina O, Khudyakov A. Mechanisms of action of fungal polysaccharides and their therapeutic effect. Eur J Clin Nutr 2024:10.1038/s41430-024-01527-4. [PMID: 39433857 DOI: 10.1038/s41430-024-01527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND The purpose of this article is to discuss the relationship between the therapeutic bioactivity of basidial fungal polysaccharides (BFPs) BFPs and their structural characteristics and conformational features, as well as to characterize the mechanisms of action of BFPs in diseases of various origins. METHODS The review was conducted using the PubMed (Medline), Scopus, Web of Science and the Russian Science Citation Index databases. 8645 records were identified, of which 5250 were studies (86 were randomized controlled trials). The period covered is from 1960 to the present. The most significant studies conducted mainly in Southeast Asian countries were selected for the review. RESULTS Based on clinical studies, as well as the results obtained on in vivo, in vitro and ex vivo models, it has been proven that BFPs have diverse and highly effective biological activity in the human body in various diseases. The production of BFPs-based vaccines is an innovative strategy from a clinical and biochemical point of view, since as potential immunoprotective and low-toxic biopolymers they have innate immune receptors in the body. Promising results have been obtained in the development of antidiabetic drugs, probiotic, renoprotective and neurodegenerative dietary supplements. CONCLUSIONS The biological activity, mechanism of action and specific therapeutic effect of BFPs largely depend on their structural and physicochemical characteristics. BFPs as multifunctional macromolecular complexes with low toxicity and high safety are ideal as new powerful pharmaceuticals for the treatment and prevention of many diseases.
Collapse
Affiliation(s)
- Oksana Zaitseva
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation.
| | - Marta Sergushkina
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Tatyana Polezhaeva
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Olga Solomina
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| | - Andrey Khudyakov
- Institute of Physiology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, Syktyvkar, Komi Republic, 167982, Russian Federation
| |
Collapse
|
2
|
Wang L, Wang Y, Wang Z, Zhang X, Chen H, Lin Q, Wang X, Wen Y, Pan X, Guo Z, Wan B. Anticancer potential of grifolin in lung cancer treatment through PI3K/AKT pathway inhibition. Heliyon 2024; 10:e29447. [PMID: 38644824 PMCID: PMC11033154 DOI: 10.1016/j.heliyon.2024.e29447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
Objective Grifolin is a natural secondary metabolite isolated from edible fruiting bodies of the mushroom Albatrellus confluens. Grifolin has antitumor activities in several types of cancer. We aimed to determine the effects of grifolin on lung cancer. Methods We determined the proliferation, migration, invasion, and apoptosis of lung cancer cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Ethynyl deoxyuridine, colony formation, wound scratch, transwell, flow cytometry, and xenograft mouse assays. Molecular docking evaluated the binding relation between grifolin and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). The levels of PIK3CA, AKT, and p-AKT were measured by western blot. Results Grifolin (10, 20, or 40 μM) inhibited the proliferation, migration, and invasion of lung cancer cells, and induced cell cycle arrest and apoptosis. Grifolin also decreased CDK4, CDK6, and CyclinD1 expression and significantly decreased PIK3CA and p-AKT expression in lung cancer cells. These anticancer effects were abolished by 740Y-P. Conclusions Grifolin regulates the PI3K/AKT pathway, thus inhibiting lung cancer progression.
Collapse
Affiliation(s)
- Li Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Yongjun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Zexu Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Huayong Chen
- Lanshan Central Hospital, Yongzhou, Hunan, 425899, China
| | - Qiuqi Lin
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Xin Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Yuting Wen
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Xia Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Zhongliang Guo
- Department of Respiratory and Critical Care Medicine, The Affiliated Shanghai East Hospital of Nanjing Medical University, Shanghai, 200120, China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| |
Collapse
|
3
|
Zhang T, Kim BM, Lee TH. Death-associated protein kinase 1 as a therapeutic target for Alzheimer's disease. Transl Neurodegener 2024; 13:4. [PMID: 38195518 PMCID: PMC10775678 DOI: 10.1186/s40035-023-00395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly and represents a major clinical challenge in the ageing society. Neuropathological hallmarks of AD include neurofibrillary tangles composed of hyperphosphorylated tau, senile plaques derived from the deposition of amyloid-β (Aβ) peptides, brain atrophy induced by neuronal loss, and synaptic dysfunctions. Death-associated protein kinase 1 (DAPK1) is ubiquitously expressed in the central nervous system. Dysregulation of DAPK1 has been shown to contribute to various neurological diseases including AD, ischemic stroke and Parkinson's disease (PD). We have established an upstream effect of DAPK1 on Aβ and tau pathologies and neuronal apoptosis through kinase-mediated protein phosphorylation, supporting a causal role of DAPK1 in the pathophysiology of AD. In this review, we summarize current knowledge about how DAPK1 is involved in various AD pathological changes including tau hyperphosphorylation, Aβ deposition, neuronal cell death and synaptic degeneration. The underlying molecular mechanisms of DAPK1 dysregulation in AD are discussed. We also review the recent progress regarding the development of novel DAPK1 modulators and their potential applications in AD intervention. These findings substantiate DAPK1 as a novel therapeutic target for the development of multifunctional disease-modifying treatments for AD and other neurological disorders.
Collapse
Affiliation(s)
- Tao Zhang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China
| | - Byeong Mo Kim
- Research Center for New Drug Development, AgingTarget Inc., 10F Ace Cheonggye Tower, 53, Seonggogae-Ro, Uiwang-Si, 16006, Gyeonggi-Do, Korea.
| | - Tae Ho Lee
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute of Basic Medicine, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
| |
Collapse
|
4
|
Ao X, Luo C, Zhang M, Liu L, Peng S. The efficacy of natural products for the treatment of nasopharyngeal carcinoma. Chem Biol Drug Des 2024; 103:e14411. [PMID: 38073436 DOI: 10.1111/cbdd.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originating in the nasopharyngeal epithelium with a high incidence in southern China and parts of Southeast Asia. The current treatment methods are mainly radiotherapy and chemotherapy. However, they often have side effects and are not suitable for long-term exposure. Natural products have received more and more attention in cancer prevention and treatment because of their its high efficiency, low toxic side effects, and low toxicity. Natural products can serve as a viable alternative, and this study aimed to review the efficacy and mechanisms of natural products in the treatment of NPC by examining previous literature. Most natural products act by inhibiting cell proliferation, metastasis, inducing cell cycle arrest, and apoptosis. Although further research is needed to verify their effectiveness and safety, natural products can significantly improve the treatment of NPC.
Collapse
Affiliation(s)
- Xudong Ao
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Luo
- Medical Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengni Zhang
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lisha Liu
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shunlin Peng
- Department of Otolaryngology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Sułkowska-Ziaja K, Trepa M, Olechowska-Jarząb A, Nowak P, Ziaja M, Kała K, Muszyńska B. Natural Compounds of Fungal Origin with Antimicrobial Activity-Potential Cosmetics Applications. Pharmaceuticals (Basel) 2023; 16:1200. [PMID: 37765008 PMCID: PMC10535449 DOI: 10.3390/ph16091200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The phenomenon of drug resistance in micro-organisms necessitates the search for new compounds capable of combating them. Fungi emerge as a promising source of such compounds as they produce a wide range of secondary metabolites with bacteriostatic or fungistatic activity. These compounds can serve as alternatives for commonly used antibiotics. Furthermore, fungi also accumulate compounds with antiviral activity. This review focuses on filamentous fungi and macrofungi as sources of antimicrobial compounds. The article describes both individual isolated compounds and extracts that exhibit antibacterial, antifungal, and antiviral activity. These compounds are produced by the fruiting bodies and mycelium, as well as the biomass of mycelial cultures. Additionally, this review characterizes the chemical compounds extracted from mushrooms used in the realm of cosmetology; specifically, their antimicrobial activity.
Collapse
Affiliation(s)
- Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Trepa
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Aldona Olechowska-Jarząb
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland
- Department of Microbiology, University Hospital, ul. Jakubowskiego 2, 30-688 Kraków, Poland
| | - Paweł Nowak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland
| | - Marek Ziaja
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
6
|
Dowaraka-Persad B, Neergheen VS. Mushroom-Derived Compounds as Metabolic Modulators in Cancer. Molecules 2023; 28:1441. [PMID: 36771106 PMCID: PMC9920867 DOI: 10.3390/molecules28031441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Cancer is responsible for lifelong disability and decreased quality of life. Cancer-associated changes in metabolism, in particular carbohydrate, lipid, and protein, offer a new paradigm of metabolic hits. Hence, targeting the latter, as well as related cross-linked signalling pathways, can reverse the malignant phenotype of transformed cells. The systemic toxicity and pharmacokinetic limitations of existing drugs prompt the discovery of multi-targeted and safe compounds from natural products. Mushrooms possess biological activities relevant to disease-fighting and to the prevention of cancer. They have a long-standing tradition of use in ethnomedicine and have been included as an adjunct therapy during and after oncological care. Mushroom-derived compounds have also been reported to target the key signature of cancer cells in in vitro and in vivo studies. The identification of metabolic pathways whose inhibition selectively affects cancer cells appears as an interesting approach to halting cell proliferation. For instance, panepoxydone exerted protective mechanisms against breast cancer initiation and progression by suppressing lactate dehydrogenase A expression levels and reinducing lactate dehydrogenase B expression levels. This further led to the accumulation of pyruvate, the activation of the electron transport chain, and increased levels of reactive oxygen species, which eventually triggered mitochondrial apoptosis in the breast cancer cells. Furthermore, the inhibition of hexokinase 2 by neoalbaconol induced selective cytotoxicity against nasopharyngeal carcinoma cell lines, and these effects were also observed in mouse models. Finally, GL22 inhibited hepatic tumour growth by downregulating the mRNA levels of fatty acid-binding proteins and blocking fatty acid transport and impairing cardiolipin biosynthesis. The present review, therefore, will highlight how the metabolites isolated from mushrooms can target potential biomarkers in metabolic reprogramming.
Collapse
Affiliation(s)
- Bhoomika Dowaraka-Persad
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit 80837, Mauritius
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius
| | - Vidushi Shradha Neergheen
- Biopharmaceutical Unit, Centre for Biomedical and Biomaterials Research (CBBR), University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
7
|
Awasthi P, Dwivedi M, Kumar D, Hasan S. Insights into intricacies of the Latent Membrane Protein-1 (LMP-1) in EBV-associated cancers. Life Sci 2023; 313:121261. [PMID: 36493876 DOI: 10.1016/j.lfs.2022.121261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Numerous lymphomas, carcinomas, and other disorders have been associated with Epstein-Barr Virus (EBV) infection. EBV's carcinogenic potential can be correlated to latent membrane protein 1 (LMP1), which is essential for fibroblast and primary lymphocyte transformation. LMP1, a transmembrane protein with constitutive activity, belongs to the tumour necrosis factor receptor (TNFR) superfamily. LMP1 performs number of role in the life cycle of EBV and the pathogenesis by interfering with, reprogramming, and influencing a vast range of host cellular activities and functions that are getting well-known but still poorly understood. LMP1, pleiotropically perturbs, reprograms and balances a wide range of various processes of cell such as extracellular vesicles, epigenetics, ubiquitin machinery, metabolism, cell proliferation and survival, and also promotes oncogenic transformation, angiogenesis, anchorage-independent cell growth, metastasis and invasion, tumour microenvironment. By the help of various experiments, it is proven that EBV-encoded LMP1 activates multiple cell signalling pathways which affect antigen presentation, cell-cell interactions, chemokine and cytokine production. Therefore, it is assumed that LMP1 may perform majorly in EBV associated malignancies. For the development of novel techniques toward targeted therapeutic applications, it is essential to have a complete understanding of the LMP1 signalling landscape in order to identify potential targets. The focus of this review is on LMP1-interacting proteins and related signalling processes. We further discuss tactics for using the LMP1 protein as a potential therapeutic for cancers caused by the EBV.
Collapse
Affiliation(s)
- Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES University Dehradun, Uttarakhand, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India.
| |
Collapse
|
8
|
Secondary Metabolites from Fungi-In Honor of Prof. Dr. Ji-Kai Liu's 60th Birthday. J Fungi (Basel) 2022; 8:jof8121271. [PMID: 36547604 PMCID: PMC9782213 DOI: 10.3390/jof8121271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
It is our pleasure and privilege to serve as Guest Editors for this Special Issue of the Journal of Fungi in honor of Professor Ji-Kai Liu's 60th birthday [...].
Collapse
|
9
|
Rahman MM, Sarker MT, Alam Tumpa MA, Yamin M, Islam T, Park MN, Islam MR, Rauf A, Sharma R, Cavalu S, Kim B. Exploring the recent trends in perturbing the cellular signaling pathways in cancer by natural products. Front Pharmacol 2022; 13:950109. [PMID: 36160435 PMCID: PMC9498834 DOI: 10.3389/fphar.2022.950109] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is commonly thought to be the product of irregular cell division. According to the World Health Organization (WHO), cancer is the major cause of death globally. Nature offers an abundant supply of bioactive compounds with high therapeutic efficacy. Anticancer effects have been studied in a variety of phytochemicals found in nature. When Food and Drug Administration (FDA)-approved anticancer drugs are combined with natural compounds, the effectiveness improves. Several agents have already progressed to clinical trials based on these promising results of natural compounds against various cancer forms. Natural compounds prevent cancer cell proliferation, development, and metastasis by inducing cell cycle arrest, activating intrinsic and extrinsic apoptosis pathways, generating reactive oxygen species (ROS), and down-regulating activated signaling pathways. These natural chemicals are known to affect numerous important cellular signaling pathways, such as NF-B, MAPK, Wnt, Notch, Akt, p53, AR, ER, and many others, to cause cell death signals and induce apoptosis in pre-cancerous or cancer cells without harming normal cells. As a result, non-toxic “natural drugs” taken from nature’s bounty could be effective for the prevention of tumor progression and/or therapy of human malignancies, either alone or in combination with conventional treatments. Natural compounds have also been shown in preclinical studies to improve the sensitivity of resistant cancers to currently available chemotherapy agents. To summarize, preclinical and clinical findings against cancer indicate that natural-sourced compounds have promising anticancer efficacy. The vital purpose of these studies is to target cellular signaling pathways in cancer by natural compounds.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Taslim Sarker
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Mst. Afroza Alam Tumpa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Yamin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Tamanna Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Pakistan
- *Correspondence: Abdur Rauf, ; Bonglee Kim,
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Abdur Rauf, ; Bonglee Kim,
| |
Collapse
|
10
|
Liu C, Zhang Y, Zhang Y, Liu Z, Mao F, Chai Z. Mechanistic Insights into the Mechanism of Inhibitor Selectivity toward the Dark Kinase STK17B against Its High Homology STK17A. Molecules 2022; 27:molecules27144655. [PMID: 35889528 PMCID: PMC9317881 DOI: 10.3390/molecules27144655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
As a member of the death-associated protein kinase (DAPK) family, STK17B plays an important role in the regulation of cellular apoptosis and has been considered as a promising drug target for hepatocellular carcinoma. However, the highly conserved ATP-binding site of protein kinases represents a challenge to design selective inhibitors for a specific DAPK isoform. In this study, molecular docking, multiple large-scale molecular dynamics (MD) simulations, and binding free energy calculations were performed to decipher the molecular mechanism of the binding selectivity of PKIS43 toward STK17B against its high homology STK17A. MD simulations revealed that STK17A underwent a significant conformational arrangement of the activation loop compared to STK17B. The binding free energy predictions suggested that the driving force to control the binding selectivity of PKIS43 was derived from the difference in the protein–ligand electrostatic interactions. Furthermore, the per-residue free energy decomposition unveiled that the energy contribution from Arg41 at the phosphate-binding loop of STK17B was the determinant factor responsible for the binding specificity of PKIS43. This study may provide useful information for the rational design of novel and potent selective inhibitors toward STK17B.
Collapse
Affiliation(s)
- Chang Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China; (C.L.); (Z.L.)
| | - Yichi Zhang
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China;
| | - Yuqing Zhang
- MD Cancer Center, Yue Yang Hospital of Integrative Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China;
| | - Zonghan Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China; (C.L.); (Z.L.)
| | - Feifei Mao
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Correspondence: (F.M.); (Z.C.)
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China; (C.L.); (Z.L.)
- Department of Hepatic Surgery, Shanghai Geriatric Center, Shanghai 201104, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, China
- Correspondence: (F.M.); (Z.C.)
| |
Collapse
|
11
|
Regulation of DAPK1 by Natural Products: An Important Target in Treatment of Stroke. Neurochem Res 2022; 47:2142-2157. [PMID: 35674928 DOI: 10.1007/s11064-022-03628-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
Stroke is a sudden neurological disorder that occurs due to impaired blood flow to an area of the brain. Stroke can be caused by the blockage or rupture of a blood vessel in the brain, called ischemic stroke and hemorrhagic stroke, respectively. Stroke is more common in men than women. Atrial fibrillation, hypertension, kidney disease, high cholesterol and lipids, genetic predisposition, inactivity, poor nutrition, diabetes mellitus, family history and smoking are factors that increase the risk of stroke. Restoring blood flow by repositioning blocked arteries using thrombolytic agents or endovascular therapy are the most effective treatments for stroke. However, restoring circulation after thrombolysis can cause fatal edema or intracranial hemorrhage, and worsen brain damage in a process known as ischemia-reperfusion injury. Therefore, there is a pressing need to find and develop more effective treatments for stroke. In the past, the first choice of treatment was based on natural compounds. Natural compounds are able to reduce the symptoms and reduce various diseases including stroke that attract the attention of the pharmaceutical industry. Nowadays, as a result of the numerous studies carried out in the field of herbal medicine, many useful and valuable effects of plants have been identified. The death-associated protein kinase (DAPK) family is one of the vital families of serine/threonine kinases involved in the regulation of some biological functions in human cells. DAPK1 is the most studied kinase within the DAPKs family as it is involved in neuronal and recovery processes. Dysregulation of DAPK1 in the brain is involved in the developing neurological diseases such as stroke. Natural products can function in a variety of ways, including reducing cerebral edema, reducing brain endothelial cell death, and inhibiting TNFα and interleukin-1β (IL-1β) through regulating the DAPK1 signal against stroke. Due to the role of DAPK1 in neurological disorders, the aim of this article was to investigate the role of DAPK1 in stroke and its modulation by natural compounds.
Collapse
|
12
|
Hasan A, Rizvi SF, Parveen S, Pathak N, Nazir A, Mir SS. Crosstalk Between ROS and Autophagy in Tumorigenesis: Understanding the Multifaceted Paradox. Front Oncol 2022; 12:852424. [PMID: 35359388 PMCID: PMC8960719 DOI: 10.3389/fonc.2022.852424] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer formation is a highly regulated and complex process, largely dependent on its microenvironment. This complexity highlights the need for developing novel target-based therapies depending on cancer phenotype and genotype. Autophagy, a catabolic process, removes damaged and defective cellular materials through lysosomes. It is activated in response to stress conditions such as nutrient deprivation, hypoxia, and oxidative stress. Oxidative stress is induced by excess reactive oxygen species (ROS) that are multifaceted molecules that drive several pathophysiological conditions, including cancer. Moreover, autophagy also plays a dual role, initially inhibiting tumor formation but promoting tumor progression during advanced stages. Mounting evidence has suggested an intricate crosstalk between autophagy and ROS where they can either suppress cancer formation or promote disease etiology. This review highlights the regulatory roles of autophagy and ROS from tumor induction to metastasis. We also discuss the therapeutic strategies that have been devised so far to combat cancer. Based on the review, we finally present some gap areas that could be targeted and may provide a basis for cancer suppression.
Collapse
Affiliation(s)
- Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow, India.,Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Suroor Fatima Rizvi
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow, India.,Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| | - Sana Parveen
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow, India.,Department of Biosciences, Faculty of Science, Integral University, Lucknow, India
| | - Neelam Pathak
- Department of Biochemistry, Dr. RML Avadh University, Faizabad, India
| | - Aamir Nazir
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Lucknow, India.,Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India
| |
Collapse
|
13
|
Bouyahya A, El Allam A, Zeouk I, Taha D, Zengin G, Goh BH, Catauro M, Montesano D, El Omari N. Pharmacological Effects of Grifolin: Focusing on Anticancer Mechanisms. Molecules 2022; 27:284. [PMID: 35011516 PMCID: PMC8746472 DOI: 10.3390/molecules27010284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 02/05/2023] Open
Abstract
Grifolin is a volatile compound contained in essential oils of several medicinal plants. Several studies show that this substance has been the subject of numerous pharmacological investigations, which have yielded interesting results. Grifolin demonstrated beneficial effects for health via its multiple pharmacological activities. It has anti-microbial properties against bacteria, fungi, and parasites. In addition, grifolin exhibited remarkable anti-cancer effects on different human cancer cells. The anticancer action of this molecule is related to its ability to act at cellular and molecular levels on different checkpoints controlling the signaling pathways of human cancer cell lines. Grifolin can induce apoptosis, cell cycle arrest, autophagy, and senescence in these cells. Despite its major pharmacological properties, grifolin has only been investigated in vitro and in vivo. Therefore, further investigations concerning pharmacodynamic and pharmacokinetic tests are required for any possible pharmaceutical application of this substance. Moreover, toxicological tests and other investigations involving humans as a study model are required to validate the safety and clinical applications of grifolin.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco; (A.B.); (A.E.A.)
| | - Aicha El Allam
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco; (A.B.); (A.E.A.)
| | - Ikrame Zeouk
- Pharmaceutical Industry Laboratory, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco;
| | - Douae Taha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, CERNE2D, Faculté des Sciences, Mohammed V University, Rabat 10106, Morocco;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey;
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Michelina Catauro
- Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco;
| |
Collapse
|
14
|
Patel DK, Dutta SD, Ganguly K, Cho SJ, Lim KT. Mushroom-Derived Bioactive Molecules as Immunotherapeutic Agents: A Review. Molecules 2021; 26:molecules26051359. [PMID: 33806285 PMCID: PMC7961999 DOI: 10.3390/molecules26051359] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mushrooms with enhanced medicinal properties focus on finding such compounds that could modulate the human body's immune systems. Mushrooms have antimicrobial, antidiabetic, antiviral, hepatoprotective, antitumor, and immunomodulatory properties due to the presence of various bioactive components. β-glucans are the major constituent of the mushroom cell wall and play a significant role in their biological activity. This review described the techniques used in the extraction of the active ingredients from the mushroom. We highlighted the structure of the bioactive polysaccharides present in the mushrooms. Therapeutic applications of different mushrooms were also described. It is interesting to note that mushrooms have the potential sources of many bioactive products that can regulate immunity. Thus, the development of functional medicinal food based on the mushroom is vital for human welfare.
Collapse
Affiliation(s)
- Dinesh K. Patel
- Department of Biosystems Engineering, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.); (K.G.)
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.); (K.G.)
| | - Keya Ganguly
- Department of Biosystems Engineering, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.); (K.G.)
| | - Seong-Jun Cho
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea;
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Korea; (D.K.P.); (S.D.D.); (K.G.)
- Correspondence: ; Tel.: +82-033-250-6491
| |
Collapse
|
15
|
Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, Zhao L, Zhao L, Yu X, Luo X, Liao W, Bode AM. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther 2021; 6:15. [PMID: 33436584 PMCID: PMC7801793 DOI: 10.1038/s41392-020-00376-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus-associated diseases are important global health concerns. As a group I carcinogen, EBV accounts for 1.5% of human malignances, including both epithelial- and lymphatic-originated tumors. Moreover, EBV plays an etiological and pathogenic role in a number of non-neoplastic diseases, and is even involved in multiple autoimmune diseases (SADs). In this review, we summarize and discuss some recent exciting discoveries in EBV research area, which including DNA methylation alterations, metabolic reprogramming, the changes of mitochondria and ubiquitin-proteasome system (UPS), oxidative stress and EBV lytic reactivation, variations in non-coding RNA (ncRNA), radiochemotherapy and immunotherapy. Understanding and learning from this advancement will further confirm the far-reaching and future value of therapeutic strategies in EBV-associated diseases.
Collapse
Affiliation(s)
- Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China. .,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China. .,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China. .,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, 410078, Changsha, China. .,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China. .,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, 410078, Changsha, China. .,Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Luqing Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| |
Collapse
|
16
|
Wang L, Wu Y, Li Z, Lan T, Zhao X, Lv W, Shi F, Luo X, Rao Y, Cao Y. Design and synthesis of water-soluble grifolin prodrugs for DNA methyltransferase 1 (DNMT1) down-regulation. RSC Adv 2021; 11:38907-38914. [PMID: 35493211 PMCID: PMC9044205 DOI: 10.1039/d1ra06648j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
DNA methylation and gene silencing play indispensable roles in the epigenetic landscape and gene expression. DNA methyltransferase 1 (DNMT1), a member of the DNMT family, which catalyzes the addition of methyl groups on DNA has been identified to have a close relationship with tumorigenesis. But DNMT1 inhibitors are rare except for the highly toxic nucleoside derivates. Grifolin is a unique natural product which down-regulates DNMT1 and has low toxicity. However, the poor solubility and stability of grifolin limit its application. Herein, we synthesized PEG5-Grifolin as a water-miscible prodrug of grifolin. The half-life of PEG5-Grifolin at 25 °C was considerably extended, revealing excellent stability. Meanwhile, PEG5-Grifolin suppressed tumor growth of by downregulating DNMT1 and reactivating the expression of several tumor suppressor genes in vivo. PEG5-Grifolin might be a promising demethylation agent for DNMT1 associated diseases and benefit much against various types of DNMT1 associated cancer. In this work, a series of prodrugs of grifolin with much improved solubility and stability were designed and synthesis, which potently downregulated DNMT1 and inhibited tumor proliferation in vitro and in vivo.![]()
Collapse
Affiliation(s)
- Liguo Wang
- Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yue Wu
- Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Zhenzhen Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, China
- Molecular Imaging Research Center of Central South University, Changsha, China
- National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha 410078, China
| | - Tianlong Lan
- Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xu Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, China
- Molecular Imaging Research Center of Central South University, Changsha, China
- National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha 410078, China
| | - Wenxing Lv
- Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, China
- Molecular Imaging Research Center of Central South University, Changsha, China
- National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha 410078, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, China
- Molecular Imaging Research Center of Central South University, Changsha, China
- National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha 410078, China
| | - Yu Rao
- Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Central South University, Changsha 410078, China
- Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, China
- Molecular Imaging Research Center of Central South University, Changsha, China
- National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha 410078, China
| |
Collapse
|
17
|
Kour H, Kour S, Sharma Y, Singh S, Sharma I, Kour D, Yadav AN. Bioprospecting of Industrially Important Mushrooms. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
18
|
Yaqoob A, Li WM, Liu V, Wang C, Mackedenski S, Tackaberry LE, Massicotte HB, Egger KN, Reimer K, Lee CH. Grifolin, neogrifolin and confluentin from the terricolous polypore Albatrellus flettii suppress KRAS expression in human colon cancer cells. PLoS One 2020; 15:e0231948. [PMID: 32369483 PMCID: PMC7199964 DOI: 10.1371/journal.pone.0231948] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
In our search for bioactive mushrooms native to British Columbia, we determined that the ethanol extracts from fruiting bodies of the terrestrial polypore Albatrellus flettii had potent anti-cell viability activity. Using bioassay-guided fractionation, mass spectrometry and nuclear magnetic resonance, we successfully isolated three known compounds (grifolin, neogrifolin and confluentin). These compounds represent the major anti-cell viability components from the ethanol extracts of A. flettii. We also identified a novel biological activity for these compounds, specifically in down-regulating KRAS expression in two human colon cancer cell lines. Relatively little is known about the anti-cell viability activity and mechanism of action of confluentin. For the first time, we show the ability of confluentin to induce apoptosis and arrest the cell cycle at the G2/M phase in SW480 human colon cancer cells. The oncogenic insulin-like growth factor 2 mRNA-binding protein 1 (IMP1) has been previously shown to regulate KRAS mRNA expression in colon cancer cells, possibly through its ability to bind to the KRAS transcript. Using a fluorescence polarization assay, we show that confluentin dose-dependently inhibits the physical interaction between KRAS RNA and full-length IMP1. The inhibition also occurs with truncated IMP1 containing the KH1 to KH4 domain (KH1to4 IMP1), but not with the di-domain KH3 and KH4 (KH3&4 IMP1). In addition, unlike the control antibiotic neomycin, grifolin, neogrifolin and confluentin do not bind to KRAS RNA. These results suggest that confluentin inhibits IMP1-KRAS RNA interaction by binding to the KH1&2 di-domains of IMP1. Since the molecular interaction between IMP1 and its target RNAs is a pre-requisite for the oncogenic function of IMP1, confluentin should be further explored as a potential inhibitor of IMP1 in vivo.
Collapse
Affiliation(s)
- Almas Yaqoob
- Chemistry and Biochemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Wai Ming Li
- Chemistry and Biochemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Victor Liu
- Chemistry and Biochemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Chuyi Wang
- Chemistry and Biochemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Sebastian Mackedenski
- Chemistry and Biochemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Linda E. Tackaberry
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Hugues B. Massicotte
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Keith N. Egger
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Kerry Reimer
- Chemistry and Biochemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Chow H. Lee
- Chemistry and Biochemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada
- * E-mail:
| |
Collapse
|
19
|
Chen D, Zhou XZ, Lee TH. Death-Associated Protein Kinase 1 as a Promising Drug Target in Cancer and Alzheimer's Disease. Recent Pat Anticancer Drug Discov 2020; 14:144-157. [PMID: 30569876 PMCID: PMC6751350 DOI: 10.2174/1574892814666181218170257] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/23/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
Abstract
Background: Death-Associated Protein Kinase 1 (DAPK1) plays an important role in apopto-sis, tumor suppression and neurodegeneration including Alzheimer’s Disease (AD). Objective: This review will describe the diverse roles of DAPK1 in the development of cancer and AD, and the current status of drug development targeting DAPK1-based therapies. Methods: Reports of DAPK1 regulation, function and substrates were analyzed using genetic DAPK1 manipulation and chemical DAPK1 modulators. Results: DAPK1 expression and activity are deregulated in cancer and AD. It is down-regulated and/or inactivated by multiple mechanisms in many human cancers, and elicits a protective effect to counteract numerous death stimuli in cancer, including activation of the master regulator Pin1. Moreover, loss of DAPK1 expression has correlated strongly with tumor recurrence and metastasis, suggesting that lack of sufficient functional DAPK1 might contribute to cancer. In contrast, DAPK1 is highly expressed in the brains of most human AD patients and has been identified as one of the genetic factors affecting suscepti-bility to late-onset AD. The absence of DAPK1 promotes efficient learning and better memory in mice and prevents the development of AD by acting on many key proteins including Pin1 and its downstream tar-gets tau and APP. Recent patents show that DAPK1 modulation might be used to treat both cancer and AD. Conclusion: DAPK1 plays a critical role in diverse physiological processes and importantly, its deregula-tion is implicated in the pathogenesis of either cancer or AD. Therefore, manipulating DAPK1 activity and/or expression may be a promising therapeutic option for cancer or AD.
Collapse
Affiliation(s)
- Dongmei Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Xiao Z Zhou
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Tae H Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China
| |
Collapse
|
20
|
Chemical modifications of polysaccharides and their anti-tumor activities. Carbohydr Polym 2019; 229:115436. [PMID: 31826393 DOI: 10.1016/j.carbpol.2019.115436] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/14/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022]
Abstract
With the rising trend of incidence of cancers, effective therapies are urgently needed to control human malignancies. However, the chemotherapy drugs currently on the market cause serious side effects. Polysaccharides belong to a class of biomacromolecules, which have drawn considerable research interest over the years as it possess anti-cancer activities or can increase the efficacy of conventional chemotherapy drugs with fewer side effects. The antitumor activity of many polysaccharides was significantly increased after modification. Based on these encouraging observations, a great deal of effort has been focused on discovering anti-cancer polysaccharides and modified derivatives for the development of effective therapeutics for various human cancers. This review highlights recent advances on the major chemical modification methods of polysaccharides, and discusses the effect of molecular modification on the physicochemical properties and anti-tumor activities of polysaccharides. Meanwhile, the underlying anti-tumor mechanisms of polysaccharide and its modified derivatives were also discussed.
Collapse
|
21
|
Jing ZF, Bi JB, Li Z, Liu X, Li J, Zhu Y, Zhang XT, Zhang Z, Li Z, Kong CZ. Inhibition of miR-34a-5p can rescue disruption of the p53-DAPK axis to suppress progression of clear cell renal cell carcinoma. Mol Oncol 2019; 13:2079-2097. [PMID: 31294899 PMCID: PMC6763763 DOI: 10.1002/1878-0261.12545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/06/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
DAPK, a transcriptional target of the p53 protein, has long been characterized as a tumor suppressor that acts as a negative regulator in multiple cellular processes. However, increasing studies have suggested that the role of DAPK may vary depending on cell type and cellular context. Thus far, the expression and function of DAPK in clear cell renal cell carcinoma (ccRCC) remain ambiguous. Since ccRCC behaves in an atypical way with respect to p53, whether the p53‐DAPK axis functions normally in ccRCC is also an intriguing question. Here, tissue specimens from 61 ccRCC patients were examined for DAPK expression. Functional studies regarding apoptosis, growth, and migration were used to determine the role of DAPK in renal cancer cells. The validity of the p53‐DAPK axis in ccRCC was also determined. Our study identified DAPK as a negative regulator of ccRCC, and its expression was reduced in certain subgroups. However, the p53‐DAPK axis was disrupted due to upregulation of miR‐34a‐5p under stressed conditions. miR‐34a‐5p was identified as a novel repressor of DAPK acting downstream of p53. Inhibition of miR‐34a‐5p can correct the p53‐DAPK axis disruption by upregulating DAPK protein and may have potential to be used as a therapeutic target to improve outcomes for ccRCC patients.
Collapse
Affiliation(s)
- Zhi-Fei Jing
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Jian-Bin Bi
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Zeliang Li
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Xiankui Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Jun Li
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Yuyan Zhu
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Xiao-Tong Zhang
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Zhe Zhang
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Zhenhua Li
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Chui-Ze Kong
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| |
Collapse
|
22
|
|
23
|
Wu J, Gu Y, Xiao Y, Xia C, Li H, Kang Y, Sun J, Shao Z, Lin Z, Zhao X. Characterization of DNA Methylation Associated Gene Regulatory Networks During Stomach Cancer Progression. Front Genet 2019; 9:711. [PMID: 30778372 PMCID: PMC6369581 DOI: 10.3389/fgene.2018.00711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/18/2018] [Indexed: 01/11/2023] Open
Abstract
DNA methylation plays a critical role in tumorigenesis through regulating oncogene activation and tumor suppressor gene silencing. Although extensively analyzed, the implication of DNA methylation in gene regulatory network is less characterized. To address this issue, in this study we performed an integrative analysis on the alteration of DNA methylation patterns and the dynamics of gene regulatory network topology across distinct stages of stomach cancer. We found the global DNA methylation patterns in different stages are generally conserved, whereas some significantly differentially methylated genes were exclusively observed in the early stage of stomach cancer. Integrative analysis of DNA methylation and network topology alteration yielded several genes which have been reported to be involved in the progression of stomach cancer, such as IGF2, ERBB2, GSTP1, MYH11, TMEM59, and SST. Finally, we demonstrated that inhibition of SST promotes cell proliferation, suggesting that DNA methylation-associated SST suppression possibly contributes to the gastric cancer progression. Taken together, our study suggests the DNA methylation-associated regulatory network analysis could be used for identifying cancer-related genes. This strategy can facilitate the understanding of gene regulatory network in cancer biology and provide a new insight into the study of DNA methylation at system level.
Collapse
Affiliation(s)
- Jun Wu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yunzhao Gu
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yawen Xiao
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Xia
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Li
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yani Kang
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jielin Sun
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhifeng Shao
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zongli Lin
- Charles L. Brown Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, United States
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Farag AK, Roh EJ. Death-associated protein kinase (DAPK) family modulators: Current and future therapeutic outcomes. Med Res Rev 2018; 39:349-385. [PMID: 29949198 DOI: 10.1002/med.21518] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/06/2018] [Accepted: 06/03/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Ahmed Karam Farag
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center; Korea Institute of Science and Technology (KIST); Seoul Republic of Korea
- Division of Bio-Medical Science &Technology, Korea Institute of Science and Technology (KIST) School; University of Science and Technology; Seoul Republic of Korea
| |
Collapse
|
25
|
Zhao Y, Zhang L, Yan A, Chen D, Xie R, Liu Y, Liang X, Zhao Y, Wei L, Yu J, Xu X, Su X. Grifolic acid induces GH3 adenoma cell death by inhibiting ATP production through a GPR120-independent mechanism. BMC Pharmacol Toxicol 2018; 19:26. [PMID: 29843779 PMCID: PMC5975534 DOI: 10.1186/s40360-018-0215-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 05/04/2018] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Grifolic acid is a derivative of grifolin, an antitumor natural compound, and it was reported as an agonist of free fatty acid receptor GPR120. Little is known about its antitumor effects and the involvement of GPR120. METHODS GH3 cells, the rat anterior pituitary adenoma cells, were cultured and the cell death was measured by MTT assay and Annexin V/PI staining. The mitochondrial membrane potential (MMP) of GH3 cells was measured by JC-1 staining. Cellular ATP levels and the intracellular NAD/NADH ratio were measured. GPR120 expression in GH3 cells was observed by RT-PCR and Western Blot, and siRNA was used to inhibit GPR120 expression in GH3 cells. RESULTS Grifolic acid dose- and time-dependently induced the necrosis of GH3 cells. Grifolic acid significantly reduced the mitochondrial membrane potential (MMP) and decreased cellular ATP levels in GH3 cells. In contrast, the MMP of isolated mitochondria was not decreased by grifolic acid. The intracellular NAD/NADH ratio was significantly increased by grifolic acid. GPR120 is expressed in GH3 cells, but GPR120 agonists such as EPA, GW9508 and TUG891 did not affect the viability of GH3 cells. Moreover, GPR120 siRNA knockdown showed no significant influence on grifolic acid-induced GH3 cell death. CONCLUSION Grifolic acid induces GH3 cell death by decreasing MMP and inhibiting ATP production, which may be due to the inhibition of NADH production through a GPR120-independent mechanism.
Collapse
Affiliation(s)
- Yufeng Zhao
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Lei Zhang
- Department of Gerontological Surgery, The First Affiliated Hospital, Xi’an Medical University, Xi’an, 710061 China
| | - Aili Yan
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Di Chen
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Rong Xie
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Yingguang Liu
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Xiangyan Liang
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Yanyan Zhao
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Lanlan Wei
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Jun Yu
- Medical Research Center, The Second Affiliated Hospital, Xi’an Medical University, Xi’an, 710038 China
| | - Xi Xu
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| | - Xingli Su
- The institute of Basic Medical Sciences, Xi’an Medical University, Xi’an, 710021 China
| |
Collapse
|
26
|
DNMT1 mediates metabolic reprogramming induced by Epstein-Barr virus latent membrane protein 1 and reversed by grifolin in nasopharyngeal carcinoma. Cell Death Dis 2018; 9:619. [PMID: 29795311 PMCID: PMC5966399 DOI: 10.1038/s41419-018-0662-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
Abstract
Cancer cells frequently adapt fundamentally altered metabolism to support tumorigenicity and malignancy. Epigenetic and metabolic networks are closely interactive, in which DNA methyltransferases (DNMTs) play important roles. Epstein–Barr virus (EBV)-encoded latent membrane protein 1 (EBV-LMP1) is closely associated with nasopharyngeal carcinoma (NPC) pathogenesis because it can trigger multiple cell signaling pathways that promote cell transformation, proliferation, immune escape, invasiveness, epigenetic modification, and metabolic reprogramming. Our current findings reveal for the first time that LMP1 not only upregulates DNMT1 expression and activity, but also promotes its mitochondrial translocation. This induces epigenetic silencing of pten and activation of AKT signaling as well as hypermethylation of the mtDNA D-loop region and downregulation of oxidative phosphorylation (OXPHOS) complexes, consequently, leading to metabolic reprogramming in NPC. Furthermore, we demonstrate that grifolin, a natural farnesyl phenolic compound originated from higher fungi, is able to attenuate glycolytic flux and recover mitochondrial OXPHOS function by inhibiting DNMT1 expression and activity as well as its mitochondrial retention in NPC cells. Therefore, our work establishes a mechanistic connection between epigenetics and metabolism in EBV-positive NPC and provides further evidence for pathological classification based on CpG island methylator phenotype (CIMP) in EBV-associated malignancies. In addition, grifolin might be a promising lead compound in the intervention of high-CIMP tumor types. The availability of this natural product could hamper tumor cell metabolic reprogramming by targeting DNMT1.
Collapse
|
27
|
Zhao YF, Jiang F, Liang XY, Wei LL, Zhao YY, Ma Q, Hu YS, Su XL. Grifolic acid causes osteosarcoma cell death in vitro and in tumor-bearing mice. Biomed Pharmacother 2018; 103:1035-1042. [PMID: 29710661 DOI: 10.1016/j.biopha.2018.04.132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022] Open
Abstract
Grifolic acid is a natural compound isolated from the fungus Albatrellus confluens. In the present study, we assessed the effects of grifolic acid on human osteosarcoma cells. We found that grifolic acid dose- and time-dependently induced cell death in the U-2 OS, MG-63, Saos-2, and 143B human osteosarcoma cell lines. Grifolic acid decreased osteosarcoma cell mitochondrial membrane potential, ATP production, and cellular NADH levels, but did not impact mitochondrial membrane potential in isolated mitochondria from human osteosarcoma cells. Intratumoral injection of grifolic acid also promoted tumor cell death and prolonged survival in nude mice bearing human osteosarcoma xenografts. Grifolic acid had no obvious toxicity in mice, with no histological changes in liver, kidney, lung, or heart, and no changes in blood cell counts or levels of plasma total protein, alanine aminotransferase, or aspartate aminotransferase. These results show that grifolic acid induces osteosarcoma cell death by inhibiting NADH generation and ATP production without obvious toxicity. Intratumoral injection of grifolic acid may be a promising anti-osteosarcoma therapeutic option in patients.
Collapse
Affiliation(s)
- Yu-Feng Zhao
- The institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Feng Jiang
- Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xiang-Yan Liang
- The institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Lan-Lan Wei
- The institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Yan-Yan Zhao
- The institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Qiong Ma
- Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Yun-Sheng Hu
- Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | - Xing-Li Su
- The institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
28
|
Elkhateeb WA, Zaghlol GM, El-Garawani IM, Ahmed EF, Rateb ME, Abdel Moneim AE. Ganoderma applanatum secondary metabolites induced apoptosis through different pathways: In vivo and in vitro anticancer studies. Biomed Pharmacother 2018; 101:264-277. [DOI: 10.1016/j.biopha.2018.02.058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/04/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022] Open
|
29
|
Wang J, Li W, Wang B, Hu B, Jiang H, Lai B, Li N, Cheng M. In Silicon Approach for Discovery of Chemopreventive Agents. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40495-017-0094-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Meroterpenoid total synthesis: Conversion of geraniol and farnesol into amorphastilbol, grifolin and grifolic acid by dioxinone- β -keto-acylation, palladium catalyzed decarboxylative allylic rearrangement and aromatization. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
EBV based cancer prevention and therapy in nasopharyngeal carcinoma. NPJ Precis Oncol 2017; 1:10. [PMID: 29872698 PMCID: PMC5871899 DOI: 10.1038/s41698-017-0018-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus is an important cancer causing virus. Nasopharyngeal carcinoma is an infection-related cancer strongly driven by Epstein-Barr virus. In this cancer model, we identified the major host targets of latent membrane protein 1 which is a driving oncogene encoded by Epstein-Barr virus in latency infection. latent membrane protein 1 activates several oncogenic signaling axes causing multiple malignant phenotypes and therapeutic resistance. Also, Epstein-Barr virus up-regulates DNA methyltransferase 1 and mediates onco-epigenetic effects in the carcinogenesis. The collaborating pathways activated by latent membrane protein 1 constructs an oncogenic signaling network, which makes latent membrane protein 1 an important potential target for effective treatment or preventive intervention. In Epstein-Barr virus lytic phase, the plasma level of Epstein-Barr virus DNA is considered as a distinguishing marker for nasopharyngeal carcinoma in subjects from healthy high-risk populations and is also a novel prognostic marker in Epstein-Barr virus-positive nasopharyngeal carcinoma. Now the early detection and screening of the lytic proteins and Epstein-Barr virus DNA have been applied to clinical and high-risk population. The knowledge generated regarding Epstein-Barr virus can be used in Epstein-Barr virus based precision cancer prevention and therapy in the near future.
Collapse
|
32
|
Carnosic acid cooperates with tamoxifen to induce apoptosis associated with Caspase-3 activation in breast cancer cells in vitro and in vivo. Biomed Pharmacother 2017; 89:827-837. [DOI: 10.1016/j.biopha.2017.01.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
|
33
|
Luo X, Li N, Zhong J, Tan Z, Liu Y, Dong X, Cheng C, Xu Z, Li H, Yang L, Tang M, Weng X, Yi W, Liu J, Cao Y. Grifolin inhibits tumor cells adhesion and migration via suppressing interplay between PGC1α and Fra-1 / LSF- MMP2 / CD44 axes. Oncotarget 2016; 7:68708-68720. [PMID: 27626695 PMCID: PMC5356584 DOI: 10.18632/oncotarget.11929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/29/2016] [Indexed: 02/05/2023] Open
Abstract
Grifolin, a farnesyl phenolic compound isolated from the fresh fruiting bodies of the mushroom Albatrellus confluens, exhibits effective antitumor bioactivity in previous study of our group and other lab. In this study, we observed that grifolin inhibited tumor cells adhesion and migration. Moreover, grifolin reduced reactive oxygen species (ROS) production and caused cellular ATP depletion in high-metastatic tumor cells. PGC1α (Peroxisome proliferator-activated receptor γ, coactivator 1α) encodes a transcriptional co-activator involved in mitochondrial biogenesis and respiration and play a critical role in the maintenance of energy homeostasis. Interestingly, grifolin suppressed the mRNA as well as protein level of PGC1α. We further identified that MMP2 and CD44 expressions were PGC1α inducible. PGC1α can bind with metastatic-associated transcription factors: Fra-1 and LSF and the protein-protein interaction was attenuated by grifolin treatment. Overall, these findings suggest that grifolin decreased ROS generation and intracellular ATP to suppress tumor cell adhesion/migration via impeding the interplay between PGC1α and Fra-1 /LSF-MMP2/CD44 axes. Grifolin may develop as a promising lead compound for antitumor therapies by targeting energy metabolism regulator PGC1α signaling.
Collapse
Affiliation(s)
- Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Namei Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Juanfang Zhong
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Zheqiong Tan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Ying Liu
- Department of Medicine, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China
| | - Xin Dong
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Can Cheng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Zhijie Xu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Hongde Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Lifang Yang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Xinxian Weng
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Wei Yi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| | - Jikai Liu
- School of Pharmacy, South-Central University For Nationalities, Wuhan, Hubei 430074, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha, Hunan 410078, China
| |
Collapse
|
34
|
Luo X, Yang L, Xiao L, Xia X, Dong X, Zhong J, Liu Y, Li N, Chen L, Li H, Li W, Liu W, Yu X, Chen H, Tang M, Weng X, Yi W, Bode A, Dong Z, Liu J, Cao Y. Grifolin directly targets ERK1/2 to epigenetically suppress cancer cell metastasis. Oncotarget 2016; 6:42704-16. [PMID: 26516701 PMCID: PMC4767464 DOI: 10.18632/oncotarget.5678] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022] Open
Abstract
Grifolin, a secondary metabolite isolated from the fresh fruiting bodies of the mushroom Albatrellus confluens, has been reported by us and others to display potent antitumor effects. However, the molecular target of grifolin has not been identified and the underlying mechanism of action is not fully understood. Here, we report that the ERK1/2 protein kinases are direct molecular targets of grifolin. Molecular modeling, affinity chromatography and fluorescence quenching analyses showed that grifolin directly binds to ERK1/2. And in vitro and ex vivo kinase assay data further demonstrated that grifolin inhibited the kinase activities of ERK1/2. We found that grifolin suppressed adhesion, migration and invasion of high-metastatic cancer cells. The inhibitory effect of grifolin against tumor metastasis was further confirmed in a metastatic mouse model. We found that grifolin decreased phosphorylation of Elk1 at Ser383, and the protein as well as the mRNA level of DNMT1 was also down-regulated. By luciferase reporter and ChIP assay analyses, we confirmed that grifolin inhibited the transcription activity of Elk1 as well as its binding to the dnmt1 promoter region. Moreover, we report that significant increases in the mRNA levels of Timp2 and pten were induced by grifolin. Thus, our data suggest that grifolin exerts its anti-tumor activity by epigenetic reactivation of metastasis inhibitory-related genes through ERK1/2-Elk1-DNMT1 signaling. Grifolin may represent a promising therapeutic lead compound for intervention of cancer metastasis, and it may also be useful as an ERK1/2 kinase inhibitor as well as an epigenetic agent to further our understanding of DNMT1 function.
Collapse
Affiliation(s)
- Xiangjian Luo
- Cancer Research Institute, Key laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China.,Molecular Imaging Center, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| | - Lifang Yang
- Cancer Research Institute, Key laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China.,Molecular Imaging Center, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| | - Lanbo Xiao
- Cancer Research Institute, Key laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Xiaofeng Xia
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Xin Dong
- Cancer Research Institute, Key laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Juanfang Zhong
- Cancer Research Institute, Key laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Ying Liu
- Cancer Research Institute, Key laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Namei Li
- Cancer Research Institute, Key laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Ling Chen
- Cancer Research Institute, Key laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Hongde Li
- Cancer Research Institute, Key laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Wei Li
- Cancer Research Institute, Key laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Wenbin Liu
- Cancer Research Institute, Key laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Xinfang Yu
- Cancer Research Institute, Key laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Min Tang
- Cancer Research Institute, Key laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Xinxian Weng
- Cancer Research Institute, Key laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Wei Yi
- Cancer Research Institute, Key laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Ann Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Jikai Liu
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650204, PR China
| | - Ya Cao
- Cancer Research Institute, Key laboratory of Chinese Ministry of Education, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, PR China.,Molecular Imaging Center, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China
| |
Collapse
|
35
|
Che X, Yan H, Sun H, Dongol S, Wang Y, Lv Q, Jiang J. Grifolin induces autophagic cell death by inhibiting the Akt/mTOR/S6K pathway in human ovarian cancer cells. Oncol Rep 2016; 36:1041-7. [DOI: 10.3892/or.2016.4840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/14/2016] [Indexed: 11/06/2022] Open
|
36
|
Meng X, Liang H, Luo L. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr Res 2016; 424:30-41. [DOI: 10.1016/j.carres.2016.02.008] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 02/02/2023]
|
37
|
Vijayarathna S, Gothai S, Jothy SL, Chen Y, Kanwar JR, Sasidharan S. Can Cancer Therapy be Achieved by Bridging Apoptosis and Autophagy: a Method Based on microRNA-Dependent Gene Therapy and Phytochemical Targets. Asian Pac J Cancer Prev 2015; 16:7435-9. [DOI: 10.7314/apjcp.2015.16.17.7435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
38
|
Luo X, Yu X, Liu S, Deng Q, Liu X, Peng S, Li H, Liu J, Cao Y. The role of targeting kinase activity by natural products in cancer chemoprevention and chemotherapy (Review). Oncol Rep 2015; 34:547-54. [PMID: 26044950 DOI: 10.3892/or.2015.4029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/18/2015] [Indexed: 11/05/2022] Open
Abstract
The WHO clearly identifies tumors as a curable or a chronic disease. The use of natural agents in cancer prevention and therapy is currently playing an important role. Our laboratory has been investigating various natural phenolic compounds, including grifolin, neoalbaconol and epigallocatechin-3-gallate (EGCG). In the present review, we focus on the anticancer activities and the molecular mechanisms of these compounds. Grifolin, a secondary metabolite isolated from the mushroom Albatrellus confluens, has been shown to inhibit cell growth and induce cell cycle arrest in multiple cancer cell lines by targeting extracellular signal-regulated kinase 1 or by upregulating death-associated protein kinase 1 (DAPK1) via p53. We also demonstrated that neoalbaconol, a novel small-molecular compound with a drimane-type sesquiterpenoid structure obtained from Albatrellus confluens, regulates cell metabolism by targeting 3-phosphoinositide-dependent protein kinase 1 (PDK1) and inhibits cancer cell growth. EGCG, a well known catechin found in tea, has gained much attention for its anticancer effects. Previously, we found that it regulates EBV lytic infection through the phosphoinositide-3 kinase/Akt (PI3K/Akt) and mitogen-activated protein kinase (MAPK) pathways in EBV-positive cancer cells. Therefore, these natural agents could be used as potential leading compounds in the prevention of tumor progression and/or EBV-related cancer.
Collapse
Affiliation(s)
- Xiangjian Luo
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Xinfang Yu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Sufang Liu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Qipan Deng
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Xiaolan Liu
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Songling Peng
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Hongde Li
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Jikai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, P.R. China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
39
|
Zhou Z, Zhang L, Xie B, Wang X, Yang X, Ding N, Zhang J, Liu Q, Tan G, Feng D, Sun LQ. FOXC2 promotes chemoresistance in nasopharyngeal carcinomas via induction of epithelial mesenchymal transition. Cancer Lett 2015; 363:137-45. [PMID: 25896630 DOI: 10.1016/j.canlet.2015.04.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Paclitaxel (Taxol) is currently used as the front-line chemotherapeutic drug for many types of human cancers. However, the emergence of drug resistance has been a major obstacle to the effective treatment of cancers in clinical settings. The transcription factor Forkhead box protein C2 (FOXC2) was recently demonstrated to activate the epithelial-mesenchymal transition (EMT). In this article, we present a novel role of FOXC2 in regulating chemoresistance of nasopharyngeal carcinoma (NPC) through the EMT. Using an EMT PCR array based on the screening of 84 genes, the expression of FOXC2 was notably upregulated in paclitaxel-resistant NPC cells (CNE2/t). We observed that the paclitaxel-resistant cells exhibited characteristic EMT phenotypes. The silencing of FOXC2 expression in the resistant cells can reverse the EMT molecular markers and chemoresistant phenotypes, such as cellular morphology, proliferation and anoikis. In an NPC xenograft mouse model, the downregulation of FOXC2 expression in the resistant NPC cells increased their sensitivity to paclitaxel treatment, resulting in reduced tumor growth. Taken together, our results suggest that FOXC2-mediated EMT may be an alternative mechanism through which cancer cells can initiate and maintain drug resistance. Thus, targeting FOXC2 may provide a novel strategy for overcoming chemoresistance in NPC therapy.
Collapse
Affiliation(s)
- Zhijiao Zhou
- Department of Pathology, Xiangya Hospital and School of Basic Medical Sciences, Central South University, Changsha 410008, China
| | - Lu Zhang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bowen Xie
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiangpu Wang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xinhui Yang
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Nianhua Ding
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qingqing Liu
- Department of Respiration, 2nd Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guolin Tan
- Department of Otolaryngology Head and Neck Surgery, 3(rd) Xiangya Hospital, Changsha 410008, China
| | - Deyun Feng
- Department of Pathology, Xiangya Hospital and School of Basic Medical Sciences, Central South University, Changsha 410008, China.
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
40
|
Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin Cancer Biol 2015; 35 Suppl:S244-S275. [PMID: 25865774 DOI: 10.1016/j.semcancer.2015.03.008] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022]
Abstract
Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks.
Collapse
|
41
|
Miura K, Satoh M, Kinouchi M, Yamamoto K, Hasegawa Y, Kakugawa Y, Kawai M, Uchimi K, Aizawa H, Ohnuma S, Kajiwara T, Sakurai H, Fujiya T. The use of natural products in colorectal cancer drug discovery. Expert Opin Drug Discov 2015; 10:411-26. [DOI: 10.1517/17460441.2015.1018174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Koh Miura
- 1Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan ;
| | - Masayuki Satoh
- 2Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan
| | - Makoto Kinouchi
- 2Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan
| | - Kuniharu Yamamoto
- 2Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan
| | - Yasuhiro Hasegawa
- 2Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan
| | - Yoichiro Kakugawa
- 2Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan
| | - Masaaki Kawai
- 2Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan
| | - Kiyoshi Uchimi
- 3Miyagi Cancer Center, Department of Gastroenterology, 47-1 Nodayama, Natori 981-1293, Japan
| | - Hiroki Aizawa
- 3Miyagi Cancer Center, Department of Gastroenterology, 47-1 Nodayama, Natori 981-1293, Japan
| | - Shinobu Ohnuma
- 4Tohoku University Graduate School of Medicine, Department of Surgery, 1-1 Seiryo-machi, Sendai 980-8574, Japan
| | - Taiki Kajiwara
- 4Tohoku University Graduate School of Medicine, Department of Surgery, 1-1 Seiryo-machi, Sendai 980-8574, Japan
| | - Hiroto Sakurai
- 2Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan
| | - Tsuneaki Fujiya
- 2Miyagi Cancer Center, Department of Surgery, 47-1 Nodayama, Natori 981-1293, Japan
| |
Collapse
|
42
|
Wei DM, Liu DY, Lei DP, Jin T, Wang J, Pan XL. Aberrant methylation and expression of DAPk1 in human hypopharyngeal squamous cell carcinoma. Acta Otolaryngol 2015; 135:70-8. [PMID: 25496179 DOI: 10.3109/00016489.2014.956335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CONCLUSION These findings indicate that in hypopharyngeal squamous cell carcinoma (HSCC), hypermethylation and down-regulation of death-associated protein kinase-1 (DAPk1) are common events, which are associated with a poor prognosis. OBJECTIVES This study aimed to investigate the methylation and expression of DAPk1, a tumor suppressor gene, in HSCC, and explore its clinical significance. METHODS The tumor and adjacent non-tumor tissues were collected from 53 patients with HSCC. The methylation status of DAPk1 was detected by methylation-specific polymerase chain reaction (MSP), and expression of DAPk1 was determined with real-time reverse transcriptase polymerase chain reaction (RT-PCR), immunohistochemistry, and Western blot at mRNA or protein levels. Correlations between the findings and patients' clinicopathological parameters were further evaluated. RESULTS The methylation ratio of DAPk1 in tumor tissues (60.38%) was significantly higher than that in the adjacent non-tumor tissues (26.42%) (p = 0.001), while DAPk1 expression in the tumors was down-regulated markedly (real-time RT-PCR, p = 0.002; immunohistochemistry, p = 0.006; Western blot, p < 0.001). DAPk1 methylation was negatively correlated with its mRNA expression (p = 0.002, r = -0.521). Both hypermethylation and down-regulation of DAPk1 were closely related to lymph node metastasis (p = 0.001 and 0.001, respectively), advanced TNM stage (p = 0.009 and 0.019, respectively), and low survival rates (p = 0.031 and 0.045, respectively).
Collapse
Affiliation(s)
- Dong-Min Wei
- Department of Otolaryngology, Qilu Hospital of Shandong University , Jinan, Shandong , China
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Death associated protein kinase 1 (DAPK) is an important serine/theoreine kinase involved in various cellular processes such as apoptosis, autophagy and inflammation. DAPK expression and activity are misregulated in multiple diseases including cancer, neuronal death, stoke, et al. Methylation of the DAPK gene is common in many types of cancer and can lead to loss of DAPK expression. In this review, we summarize the pathological status and functional roles of DAPK in disease and compare the published reagents that can manipulate the expression or activity of DAPK. The pleiotropic functions of DAPK make it an intriguing target and the barriers and opportunities for targeting DAPK for future clinical application are discussed.
Collapse
|
44
|
Iso-suillin from the mushroom Suillus flavus induces cell cycle arrest and apoptosis in K562 cell line. Food Chem Toxicol 2014; 67:17-25. [DOI: 10.1016/j.fct.2014.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/14/2014] [Accepted: 02/03/2014] [Indexed: 11/22/2022]
|
45
|
Neoalbaconol induces energy depletion and multiple cell death in cancer cells by targeting PDK1-PI3-K/Akt signaling pathway. Cell Death Dis 2013; 4:e804. [PMID: 24052072 PMCID: PMC3789182 DOI: 10.1038/cddis.2013.324] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 12/19/2022]
Abstract
Many natural compounds derived from plants or microbes show promising potential for anticancer treatment, but few have been found to target energy-relevant regulators. In this study, we report that neoalbaconol (NA), a novel small-molecular compound isolated from the fungus, Albatrellus confluens, could target 3-phosphoinositide-dependent protein kinase 1 (PDK1) and inhibit its downstream phosphoinositide-3 kinase (PI3-K)/Akt-hexokinase 2 (HK2) pathway, which eventually resulted in energy depletion. By targeting PDK1, NA reduced the consumption of glucose and ATP generation, activated autophagy and caused apoptotic and necroptotic death of cancer cells through independent pathway. Necroptosis was remarkably induced, which was confirmed by several necroptosis-specific markers: the activation of autophagy, presence of necrotic morphology, increase of receptor-interacting protein 1 (RIP1)/RIP3 colocalization and interaction and rescued by necroptosis inhibitor necrostatin-1. The possibility that Akt overexpression reversed the NA-induced energy crisis confirmed the importance of the PDK1-Akt-energy pathway in NA-mediated cell death. Moreover, NA shows the capability to inhibit PI3-K/Akt signaling and suppress tumor growth in the nasopharyngeal carcinoma (NPC) nude mouse model. These results supported the feasibility of NA in anticancer treatments.
Collapse
|
46
|
Wu B, Yao H, Wang S, Xu R. DAPK1 modulates a curcumin-induced G2/M arrest and apoptosis by regulating STAT3, NF-κB, and caspase-3 activation. Biochem Biophys Res Commun 2013; 434:75-80. [PMID: 23545262 DOI: 10.1016/j.bbrc.2013.03.063] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 03/21/2013] [Indexed: 10/27/2022]
Abstract
Curcumin, an active polyphenol extracted from the perennial herb Curcuma longa, controls various molecules involved in tumor cell death. In this study, we found that the tumor suppressor death-associated protein kinase 1 (DAPK1) plays a vital role in the anti-carcinogenic effects of curcumin. We found that curcumin increased DAPK1 expression at the mRNA and protein levels in U251 cells, and that the siRNA-mediated knockdown of DAPK1 attenuated the curcumin-induced inhibition of STAT3 and NF-κB. Moreover, DAPK1 suppression diminished curcumin-induced caspase-3 activation. In addition, we confirmed that DAPK1 was required for a curcumin-induced G2/M cell cycle arrest and apoptosis. Thus, DAPK1 is involved in curcumin-mediated death pathways. Our data suggest novel mechanisms for curcumin in cancer therapy.
Collapse
Affiliation(s)
- Bingshan Wu
- Affiliated Bayi Brain Hospital, Bayi Clinical College, Southern Medical University, Beijing, PR China
| | | | | | | |
Collapse
|
47
|
Li L, Ishdorj G, Gibson SB. Reactive oxygen species regulation of autophagy in cancer: implications for cancer treatment. Free Radic Biol Med 2012; 53:1399-410. [PMID: 22820461 DOI: 10.1016/j.freeradbiomed.2012.07.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are important in regulating normal cellular processes, but deregulated ROS contribute to the development of various human diseases including cancers. Autophagy is one of the first lines of defense against oxidative stress damage. The autophagy pathway can be induced and upregulated in response to intracellular ROS or extracellular oxidative stress. This leads to selective lysosomal self-digestion of intracellular components to maintain cellular homeostasis. Hence, autophagy is the survival pathway, conferring stress adaptation and promoting viability under oxidative stress. However, increasing evidence has demonstrated that autophagy can also lead to cell death under oxidative stress conditions. In addition, altered autophagic signaling pathways that lead to decreased autophagy are frequently found in many human cancers. This review discusses the advances in understanding of the mechanisms of ROS-induced autophagy and how this process relates to tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Lin Li
- Manitoba Institute of Cell Biology, Winnipeg, MB R3E 0V9, Canada
| | | | | |
Collapse
|
48
|
Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech 2012; 2:1-15. [PMID: 22582152 PMCID: PMC3339609 DOI: 10.1007/s13205-011-0036-2] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/09/2011] [Indexed: 12/23/2022] Open
Abstract
From time immemorial, mushrooms have been valued by humankind as a culinary wonder and folk medicine in Oriental practice. The last decade has witnessed the overwhelming interest of western research fraternity in pharmaceutical potential of mushrooms. The chief medicinal uses of mushrooms discovered so far are as anti-oxidant, anti-diabetic, hypocholesterolemic, anti-tumor, anti-cancer, immunomodulatory, anti-allergic, nephroprotective, and anti-microbial agents. The mushrooms credited with success against cancer belong to the genus Phellinus, Pleurotus, Agaricus, Ganoderma, Clitocybe, Antrodia, Trametes, Cordyceps, Xerocomus, Calvatia, Schizophyllum, Flammulina, Suillus, Inonotus, Inocybe, Funlia, Lactarius, Albatrellus, Russula, and Fomes. The anti-cancer compounds play crucial role as reactive oxygen species inducer, mitotic kinase inhibitor, anti-mitotic, angiogenesis inhibitor, topoisomerase inhibitor, leading to apoptosis, and eventually checking cancer proliferation. The present review updates the recent findings on the pharmacologically active compounds, their anti-tumor potential, and underlying mechanism of biological action in order to raise awareness for further investigations to develop cancer therapeutics from mushrooms. The mounting evidences from various research groups across the globe, regarding anti-tumor application of mushroom extracts unarguably make it a fast-track research area worth mass attention.
Collapse
Affiliation(s)
- Seema Patel
- Department of Biotechnology, Lovely Professional University, Jalandhar, 144402 Punjab India
| | - Arun Goyal
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039 Assam India
| |
Collapse
|
49
|
Medicinal mushrooms in supportive cancer therapies: an approach to anti-cancer effects and putative mechanisms of action. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0151-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Luo XJ, Li W, Yang LF, Yu XF, Xiao LB, Tang M, Dong X, Deng QP, Bode AM, Liu JK, Cao Y. DAPK1 mediates the G1 phase arrest in human nasopharyngeal carcinoma cells induced by grifolin, a potential antitumor natural product. Eur J Pharmacol 2011; 670:427-34. [DOI: 10.1016/j.ejphar.2011.08.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/11/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
|