1
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
2
|
Piplani N, Roy T, Saxena N, Sen S. Bulky glycocalyx shields cancer cells from invasion-associated stresses. Transl Oncol 2024; 39:101822. [PMID: 37931370 PMCID: PMC10654248 DOI: 10.1016/j.tranon.2023.101822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023] Open
Abstract
The glycocalyx-that forms a protective barrier around cells-has been implicated in cancer cell proliferation, survival, and metastasis. However, its role in maintaining the integrity of DNA/nucleus during migration through dense matrices remains unexplored. In this study, we address this question by first documenting heterogeneity in glycocalyx expression in highly invasive MDA-MB-231 breast cancer cells, and establishing a negative correlation between cell size and glycocalyx levels. Next, we set-up transwell migration through 3 µm pores, to isolate two distinct sub-populations and to show that the early migrating cell sub-population possesses a bulkier glycocalyx and undergoes less DNA damage and nuclear rupture, assessed using γH2AX foci formation and nuclear/cytoplasmic distribution of Ku70/80. Interestingly, enzymatic removal of glycocalyx led to disintegration of the nuclear membrane indicated by increased cytoplasmic localisation of Ku70/80, increased nuclear blebbing and reduction in nuclear area. Together, these results illustrate an inverse association between bulkiness of the glycocalyx and nuclear stresses, and highlights the mechanical role of the glycocalyx in shielding migration associated stresses.
Collapse
Affiliation(s)
- Niyati Piplani
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Tanusri Roy
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Neha Saxena
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Shamik Sen
- Dept. of Biosciences & Bioengineering, IIT Bombay, Mumbai, India.
| |
Collapse
|
3
|
Kuburich NA, Sabapathy T, Demestichas BR, Maddela JJ, den Hollander P, Mani SA. Proactive and reactive roles of TGF-β in cancer. Semin Cancer Biol 2023; 95:120-139. [PMID: 37572731 PMCID: PMC10530624 DOI: 10.1016/j.semcancer.2023.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Cancer cells adapt to varying stress conditions to survive through plasticity. Stem cells exhibit a high degree of plasticity, allowing them to generate more stem cells or differentiate them into specialized cell types to contribute to tissue development, growth, and repair. Cancer cells can also exhibit plasticity and acquire properties that enhance their survival. TGF-β is an unrivaled growth factor exploited by cancer cells to gain plasticity. TGF-β-mediated signaling enables carcinoma cells to alter their epithelial and mesenchymal properties through epithelial-mesenchymal plasticity (EMP). However, TGF-β is a multifunctional cytokine; thus, the signaling by TGF-β can be detrimental or beneficial to cancer cells depending on the cellular context. Those cells that overcome the anti-tumor effect of TGF-β can induce epithelial-mesenchymal transition (EMT) to gain EMP benefits. EMP allows cancer cells to alter their cell properties and the tumor immune microenvironment (TIME), facilitating their survival. Due to the significant roles of TGF-β and EMP in carcinoma progression, it is essential to understand how TGF-β enables EMP and how cancer cells exploit this plasticity. This understanding will guide the development of effective TGF-β-targeting therapies that eliminate cancer cell plasticity.
Collapse
Affiliation(s)
- Nick A Kuburich
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Thiru Sabapathy
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Breanna R Demestichas
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Joanna Joyce Maddela
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Sendurai A Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
4
|
Kim HJ, Lee PCW, Hong JH. Overview of cellular homeostasis-associated nuclear envelope lamins and associated input signals. Front Cell Dev Biol 2023; 11:1173514. [PMID: 37250905 PMCID: PMC10213260 DOI: 10.3389/fcell.2023.1173514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
With the discovery of the role of the nuclear envelope protein lamin in human genetic diseases, further diverse roles of lamins have been elucidated. The roles of lamins have been addressed in cellular homeostasis including gene regulation, cell cycle, cellular senescence, adipogenesis, bone remodeling as well as modulation of cancer biology. Features of laminopathies line with oxidative stress-associated cellular senescence, differentiation, and longevity and share with downstream of aging-oxidative stress. Thus, in this review, we highlighted various roles of lamin as key molecule of nuclear maintenance, specially lamin-A/C, and mutated LMNA gene clearly reveal aging-related genetic phenotypes, such as enhanced differentiation, adipogenesis, and osteoporosis. The modulatory roles of lamin-A/C in stem cell differentiation, skin, cardiac regulation, and oncology have also been elucidated. In addition to recent advances in laminopathies, we highlighted for the first kinase-dependent nuclear lamin biology and recently developed modulatory mechanisms or effector signals of lamin regulation. Advanced knowledge of the lamin-A/C proteins as diverse signaling modulators might be biological key to unlocking the complex signaling of aging-related human diseases and homeostasis in cellular process.
Collapse
Affiliation(s)
- Hyeong Jae Kim
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Peter C. W. Lee
- Lung Cancer Research Center, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
5
|
Kurma K, Alix-Panabières C. Mechanobiology and survival strategies of circulating tumor cells: a process towards the invasive and metastatic phenotype. Front Cell Dev Biol 2023; 11:1188499. [PMID: 37215087 PMCID: PMC10196185 DOI: 10.3389/fcell.2023.1188499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Metastatic progression is the deadliest feature of cancer. Cancer cell growth, invasion, intravasation, circulation, arrest/adhesion and extravasation require specific mechanical properties to allow cell survival and the completion of the metastatic cascade. Circulating tumor cells (CTCs) come into contact with the capillary bed during extravasation/intravasation at the beginning of the metastatic cascade. However, CTC mechanobiology and survival strategies in the bloodstream, and specifically in the microcirculation, are not well known. A fraction of CTCs can extravasate and colonize distant areas despite the biomechanical constriction forces that are exerted by the microcirculation and that strongly decrease tumor cell survival. Furthermore, accumulating evidence shows that several CTC adaptations, via molecular factors and interactions with blood components (e.g., immune cells and platelets inside capillaries), may promote metastasis formation. To better understand CTC journey in the microcirculation as part of the metastatic cascade, we reviewed how CTC mechanobiology and interaction with other cell types in the bloodstream help them to survive the harsh conditions in the circulatory system and to metastasize in distant organs.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (E LBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (E LBS), Hamburg, Germany
| |
Collapse
|
6
|
Tuning between Nuclear Organization and Functionality in Health and Disease. Cells 2023; 12:cells12050706. [PMID: 36899842 PMCID: PMC10000962 DOI: 10.3390/cells12050706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The organization of eukaryotic genome in the nucleus, a double-membraned organelle separated from the cytoplasm, is highly complex and dynamic. The functional architecture of the nucleus is confined by the layers of internal and cytoplasmic elements, including chromatin organization, nuclear envelope associated proteome and transport, nuclear-cytoskeletal contacts, and the mechano-regulatory signaling cascades. The size and morphology of the nucleus could impose a significant impact on nuclear mechanics, chromatin organization, gene expression, cell functionality and disease development. The maintenance of nuclear organization during genetic or physical perturbation is crucial for the viability and lifespan of the cell. Abnormal nuclear envelope morphologies, such as invagination and blebbing, have functional implications in several human disorders, including cancer, accelerated aging, thyroid disorders, and different types of neuro-muscular diseases. Despite the evident interplay between nuclear structure and nuclear function, our knowledge about the underlying molecular mechanisms for regulation of nuclear morphology and cell functionality during health and illness is rather poor. This review highlights the essential nuclear, cellular, and extracellular components that govern the organization of nuclei and functional consequences associated with nuclear morphometric aberrations. Finally, we discuss the recent developments with diagnostic and therapeutic implications targeting nuclear morphology in health and disease.
Collapse
|
7
|
Meng X, Cao J, Zheng H, Ma X, Wang Y, Tong Y, Xie S, Lu R, Guo L. TPX2 promotes ovarian tumorigenesis by interacting with Lamin A/C and affecting its stability. Cancer Med 2023; 12:9738-9748. [PMID: 36789877 PMCID: PMC10166900 DOI: 10.1002/cam4.5683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE Ovarian cancer (OC) is one of the fatal gynecologic malignancies. However, there are no effective prognostic or therapeutic indicators for OC. Herein, we aim to reveal the potential function of targeting protein for Xklp2 (TPX2) in OC progression. METHODS Immunohistochemical and bioinformatic analyses were used to evaluate the level of TPX2 in OC samples. Effects of TPX2 on cell proliferation, cell apoptosis and ROS production were evaluated in vivo and in vitro. Mass spectrometry, Co-IP and immunofluorescence assays were performed to identify and verify protein-protein interactions. RESULTS Our data showed that pathological overexpression (OE) of the TPX2 in OC could manifest a poor prognosis. Functional studies demonstrated that TPX2 silencing led to the suppression of cell proliferation in vitro and in vivo through an increase in reactive oxygen species (ROS) level and apoptosis, while TPX2 OE exhibited the opposite effect. Furthermore, by mass spectrometric analysis, we identified a novel interacting partner, Lamin A/C, for TPX2. Mechanistically, TPX2 regulated Lamin A/C's stability by modulating the level of phospho-Lamin A/C (Ser 22). CONCLUSION Our findings thus suggest that TPX2 may be a promising therapeutic target for OC.
Collapse
Affiliation(s)
- Xin Meng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiazhen Cao
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Zheng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaolu Ma
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ying Tong
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
A Lamin Family-Based Signature Predicts Prognosis and Immunotherapy Response in Hepatocellular Carcinoma. J Immunol Res 2022; 2022:4983532. [DOI: 10.1155/2022/4983532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/04/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
Background. Lamin family members play crucial roles in promoting oncogenesis and cancer development. The values of lamin family in predicting prognosis and immunotherapy response remain largely unclarified. Our research is aimed at comprehensively estimating the clinical significance of lamin family in hepatocellular carcinoma and constructing a novel lamin family-based signature to predict prognosis and guide the precise immunotherapy. Methods. The expression features and prognostic value of LMNA, LMNB1, and LMNB2 were explored in the TCGA and GEO databases. The biological functions of LMNB1 and LMNB2 were validated by in vitro assays. A lamin family-based signature was built using the TCGA training set. The TCGA test set, entire TCGA set, and GSE14520 set were used to validate its predictive power. Univariate and multivariate analyses were performed to evaluate the independence of the lamin family-based signature from other clinicopathological characteristics. A nomogram was constructed using the lamin family-based signature and TNM stage. The associations of this signature with molecular pathways, clinical characteristics, immune cell infiltration, and immunotherapy response were analyzed. Results. Lamin family members were upregulated in HCC. Upregulation of LMNB1 and LMNB2 promoted HCC proliferation, migration, and invasion. The predictive signature was initially established based on LMNB1 and LMNB2 which could effectively identify differences in overall survival, immune cell infiltration, and clinicopathological characteristics of high- and low-risk patients. The nomogram showed high prognostic predictive accuracy. Importantly, the lamin family-based signature was correlated with immune suppression and expression of immune checkpoint molecules. Conclusions. The lamin family-based signature is a robust biomarker to predict overall survival and immunotherapy response in HCC. High-risk score patients have a poorer overall survival and might be more sensitive to immunotherapy. This signature may contribute to improving individualized prognosis prediction and precision immunotherapy for HCC patients.
Collapse
|
9
|
Stenvall CGA, Nyström JH, Butler-Hallissey C, Jansson T, Heikkilä TRH, Adam SA, Foisner R, Goldman RD, Ridge KM, Toivola DM. Cytoplasmic keratins couple with and maintain nuclear envelope integrity in colonic epithelial cells. Mol Biol Cell 2022; 33:ar121. [PMID: 36001365 PMCID: PMC9634972 DOI: 10.1091/mbc.e20-06-0387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2022] [Accepted: 08/18/2022] [Indexed: 01/18/2023] Open
Abstract
Keratin intermediate filaments convey mechanical stability and protection against stress to epithelial cells. Keratins are essential for colon health, as seen in keratin 8 knockout (K8-/-) mice exhibiting a colitis phenotype. We hypothesized that keratins support the nuclear envelope and lamina in colonocytes. K8-/- colonocytes in vivo exhibit significantly decreased levels of lamins A/C, B1, and B2 in a colon-specific and cell-intrinsic manner. CRISPR/Cas9- or siRNA-mediated K8 knockdown in Caco-2 cells similarly decreased lamin levels, which recovered after reexpression of K8 following siRNA treatment. Nuclear area was not decreased, and roundness was only marginally increased in cells without K8. Down-regulation of K8 in adult K8flox/flox;Villin-CreERt2 mice following tamoxifen administration significantly decreased lamin levels at day 4 when K8 levels had reduced to 40%. K8 loss also led to reduced levels of plectin, LINC complex, and lamin-associated proteins. While keratins were not seen in the nucleoplasm without or with leptomycin B treatment, keratins were found intimately located at the nuclear envelope and complexed with SUN2 and lamin A. Furthermore, K8 loss in Caco-2 cells compromised nuclear membrane integrity basally and after shear stress. In conclusion, colonocyte K8 helps maintain nuclear envelope and lamina composition and contributes to nuclear integrity.
Collapse
Affiliation(s)
| | - Joel H. Nyström
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University
| | - Ciarán Butler-Hallissey
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University
- Turku Bioscience Centre, University of Turku, and Åbo Akademi University, and
- Aix Marseille Université, CNRS, INP UMR7051, NeuroCyto, 13005 Marseille, France
| | - Theresia Jansson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University
| | - Taina R. H. Heikkilä
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University
| | | | - Roland Foisner
- Max Perutz Labs, Medical University of Vienna, Vienna Biocenter Campus, 1030 Vienna, Austria
| | | | - Karen M. Ridge
- Department of Cell and Developmental Biology and
- Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Diana M. Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University
- InFLAMES Research Flagship Center, Åbo Akademi University, 20500 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, 20520 Turku, Finland
| |
Collapse
|
10
|
Bell ES, Shah P, Zuela-Sopilniak N, Kim D, Varlet AA, Morival JL, McGregor AL, Isermann P, Davidson PM, Elacqua JJ, Lakins JN, Vahdat L, Weaver VM, Smolka MB, Span PN, Lammerding J. Low lamin A levels enhance confined cell migration and metastatic capacity in breast cancer. Oncogene 2022; 41:4211-4230. [PMID: 35896617 PMCID: PMC9925375 DOI: 10.1038/s41388-022-02420-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Aberrations in nuclear size and shape are commonly used to identify cancerous tissue. However, it remains unclear whether the disturbed nuclear structure directly contributes to the cancer pathology or is merely a consequence of other events occurring during tumorigenesis. Here, we show that highly invasive and proliferative breast cancer cells frequently exhibit Akt-driven lower expression of the nuclear envelope proteins lamin A/C, leading to increased nuclear deformability that permits enhanced cell migration through confined environments that mimic interstitial spaces encountered during metastasis. Importantly, increasing lamin A/C expression in highly invasive breast cancer cells reflected gene expression changes characteristic of human breast tumors with higher LMNA expression, and specifically affected pathways related to cell-ECM interactions, cell metabolism, and PI3K/Akt signaling. Further supporting an important role of lamins in breast cancer metastasis, analysis of lamin levels in human breast tumors revealed a significant association between lower lamin A levels, Akt signaling, and decreased disease-free survival. These findings suggest that downregulation of lamin A/C in breast cancer cells may influence both cellular physical properties and biochemical signaling to promote metastatic progression.
Collapse
Affiliation(s)
- Emily S. Bell
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY,Current address: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA
| | - Pragya Shah
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | | | - Dongsung Kim
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Alice-Anais Varlet
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Julien L.P. Morival
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Alexandra L. McGregor
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Philipp Isermann
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | | | - Joshua J. Elacqua
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Jonathan N. Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Linda Vahdat
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA,Helen Diller Cancer Center, Department of Bioengineering and Therapeutic Sciences, and Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Marcus B. Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Paul N. Span
- Department of Radiation Oncology, Radiotherapy & OncoImmunology laboratory, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA. .,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
11
|
Nugteren S, den Uil SH, Delis-van Diemen PM, Simons-Oosterhuis Y, Lindenbergh-Kortleve DJ, van Haaften DH, Stockmann HBAC, Sanders J, Meijer GA, Fijneman RJA, Samsom JN. High expression of secretory leukocyte protease inhibitor (SLPI) in stage III micro-satellite stable colorectal cancer is associated with reduced disease recurrence. Sci Rep 2022; 12:12174. [PMID: 35842496 PMCID: PMC9288430 DOI: 10.1038/s41598-022-16427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Secretory leukocyte protease inhibitor (SLPI) is a pleiotropic protein produced by healthy intestinal epithelial cells. SLPI regulates NF-κB activation, inhibits neutrophil proteases and has broad antimicrobial activity. Recently, increased SLPI expression was found in various types of carcinomas and was suggested to increase their metastatic potential. Indeed, we demonstrated that SLPI protein expression in colorectal cancer (CRC) liver metastases and matched primary tumors is associated with worse outcome, suggesting that SLPI promotes metastasis in human CRC. However, whether SLPI plays a role in CRC before distant metastases have formed is unclear. Therefore, we examined whether SLPI expression is associated with prognosis in CRC patients with localized disease. Using a cohort of 226 stage II and 160 stage III CRC patients we demonstrate that high SLPI protein expression is associated with reduced disease recurrence in patients with stage III micro-satellite stable tumors treated with adjuvant chemotherapy, independently of established clinical risk factors (hazard rate ratio 0.54, P-value 0.03). SLPI protein expression was not associated with disease-free survival in stage II CRC patients. Our data suggest that the role of SLPI in CRC may be different depending on the stage of disease. In stage III CRC, SLPI expression may be unfavorable for tumors, whereas SLPI expression may be beneficial for tumors once distant metastases have established.
Collapse
Affiliation(s)
- Sandrine Nugteren
- Division Gastroenterology and Nutrition, Laboratory of Pediatrics, Erasmus University Medical Center, Sophia Children's Hospital, Room Ee1567A, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Sjoerd H den Uil
- Department of Surgery, Spaarne Gasthuis, Haarlem, The Netherlands
| | | | - Ytje Simons-Oosterhuis
- Division Gastroenterology and Nutrition, Laboratory of Pediatrics, Erasmus University Medical Center, Sophia Children's Hospital, Room Ee1567A, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Dicky J Lindenbergh-Kortleve
- Division Gastroenterology and Nutrition, Laboratory of Pediatrics, Erasmus University Medical Center, Sophia Children's Hospital, Room Ee1567A, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Daniëlle H van Haaften
- Division Gastroenterology and Nutrition, Laboratory of Pediatrics, Erasmus University Medical Center, Sophia Children's Hospital, Room Ee1567A, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | - Joyce Sanders
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gerrit A Meijer
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Remond J A Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Janneke N Samsom
- Division Gastroenterology and Nutrition, Laboratory of Pediatrics, Erasmus University Medical Center, Sophia Children's Hospital, Room Ee1567A, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Akkour K, Alanazi IO, Alfadda AA, Alhalal H, Masood A, Musambil M, Rahman AMA, Alwehaibi MA, Arafah M, Bassi A, Benabdelkamel H. Tissue-Based Proteomic Profiling in Patients with Hyperplasia and Endometrial Cancer. Cells 2022; 11:cells11132119. [PMID: 35805203 PMCID: PMC9265283 DOI: 10.3390/cells11132119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Uterine cancers are among the most prevalent gynecological malignancies, and endometrial cancer (EC) is the most common in this group. This study used tissue-based proteomic profiling analysis in patients with endometrial cancer and hyperplasia, and control patients. Conventional 2D gel electrophoresis, followed by a mass spectrometry approach with bioinformatics, including a network pathway analysis pipeline, was used to identify differentially expressed proteins and associated metabolic pathways between the study groups. Thirty-six patients (twelve with endometrial cancer, twelve with hyperplasia, and twelve controls) were enrolled in this study. The mean age of the participants was 46–75 years. Eighty-seven proteins were significantly differentially expressed between the study groups, of which fifty-three were significantly differentially regulated (twenty-eight upregulated and twenty-five downregulated) in the tissue samples of EC patients compared to the control (Ctrl). Furthermore, 26 proteins were significantly dysregulated (8 upregulated and 18 downregulated) in tissue samples of hyperplasia (HY) patients compared to Ctrl. Thirty-two proteins (nineteen upregulated and thirteen downregulated) including desmin, peptidyl prolyl cis-trans isomerase A, and zinc finger protein 844 were downregulated in the EC group compared to the HY group. Additionally, fructose bisphosphate aldolase A, alpha enolase, and keratin type 1 cytoskeletal 10 were upregulated in the EC group compared to those in the HY group. The proteins identified in this study were known to regulate cellular processes (36%), followed by biological regulation (16%). Ingenuity pathway analysis found that proteins that are differentially expressed between EC and HY are linked to AKT, ACTA2, and other signaling pathways. The panels of protein markers identified in this study could be used as potential biomarkers for distinguishing between EC and HY and early diagnosis and progression of EC from hyperplasia and normal patients.
Collapse
Affiliation(s)
- Khalid Akkour
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Ibrahim O. Alanazi
- The National Center for Biotechnology (NCB), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Department of Medicine, College of Medicine and King Saud Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| | - Hani Alhalal
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia;
| | - Moudi A. Alwehaibi
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11461, Saudi Arabia
| | - Maria Arafah
- Department of Pathology, College of Medicine, King Saud University, King Saud University Medical City, Riyadh 11461, Saudi Arabia;
| | - Ali Bassi
- Obstetrics and Gynecology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.A.); (H.A.); (A.B.)
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (A.A.A.); (A.M.); (M.M.); (M.A.A.)
- Correspondence:
| |
Collapse
|
13
|
Dempsey ME, Chickering GR, González-Cruz RD, Fonseca VC, Darling EM. Discovery of surface biomarkers for cell mechanophenotype via an intracellular protein-based enrichment strategy. Cell Mol Life Sci 2022; 79:320. [PMID: 35622146 PMCID: PMC9239330 DOI: 10.1007/s00018-022-04351-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Cellular mechanophenotype is often a defining characteristic of conditions like cancer malignancy/metastasis, cardiovascular disease, lung and liver fibrosis, and stem cell differentiation. However, acquiring living cells based on mechanophenotype is challenging for conventional cell sorters due to a lack of biomarkers. In this study, we demonstrate a workflow for surface protein discovery associated with cellular mechanophenotype. We sorted heterogeneous adipose-derived stem/stromal cells (ASCs) into groups with low vs. high lamin A/C, an intracellular protein linked to whole-cell mechanophenotype. Proteomic data of enriched groups identified surface protein candidates as potential biochemical proxies for ASC mechanophenotype. Select surface biomarkers were used for live-cell enrichment, with subsequent single-cell mechanical testing and lineage-specific differentiation. Ultimately, we identified CD44 to have a strong inverse correlation with whole-cell elastic modulus, with CD44lo cells exhibiting moduli three times greater than that of CD44hi cells. Functionally, these stiff and soft ASCs showed enhanced osteogenic and adipogenic differentiation potential, respectively. The described workflow can be replicated for any phenotype with a known correlated intracellular protein, allowing for the acquisition of live cells for further characterization, diagnostics, or therapeutics.
Collapse
Affiliation(s)
- Megan E Dempsey
- Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA
| | | | | | - Vera C Fonseca
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Eric M Darling
- Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA.
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA.
- School of Engineering, Brown University, Providence, RI, 02912, USA.
- Department of Orthopaedics, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
14
|
Chiarini F, Paganelli F, Balestra T, Capanni C, Fazio A, Manara MC, Landuzzi L, Petrini S, Evangelisti C, Lollini PL, Martelli AM, Lattanzi G, Scotlandi K. Lamin A and the LINC complex act as potential tumor suppressors in Ewing Sarcoma. Cell Death Dis 2022; 13:346. [PMID: 35422060 PMCID: PMC9010457 DOI: 10.1038/s41419-022-04729-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022]
Abstract
Lamin A, a main constituent of the nuclear lamina, is involved in mechanosignaling and cell migration through dynamic interactions with the LINC complex, formed by the nuclear envelope proteins SUN1, SUN2 and the nesprins. Here, we investigated lamin A role in Ewing Sarcoma (EWS), an aggressive bone tumor affecting children and young adults. In patients affected by EWS, we found a significant inverse correlation between LMNA gene expression and tumor aggressiveness. Accordingly, in experimental in vitro models, low lamin A expression correlated with enhanced cell migration and invasiveness and, in vivo, with an increased metastatic load. At the molecular level, this condition was linked to altered expression and anchorage of nuclear envelope proteins and increased nuclear retention of YAP/TAZ, a mechanosignaling effector. Conversely, overexpression of lamin A rescued LINC complex organization, thus reducing YAP/TAZ nuclear recruitment and preventing cell invasiveness. These effects were also obtained through modulation of lamin A maturation by a statin-based pharmacological treatment that further elicited a more differentiated phenotype in EWS cells. These results demonstrate that drugs inducing nuclear envelope remodeling could be exploited to improve therapeutic strategies for EWS.
Collapse
Affiliation(s)
- Francesca Chiarini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136, Bologna, Italy. .,IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Francesca Paganelli
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136, Bologna, Italy.,Alma Mater Studiorum, University of Bologna, Department of Biomedical and Neuromotor Sciences, 40136, Bologna, Italy
| | - Tommaso Balestra
- IRCCS Istituto Ortopedico Rizzoli, Experimental Oncology Laboratory, 40136, Bologna, Italy.,Alma Mater Studiorum, University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, 40138, Bologna, Italy
| | - Cristina Capanni
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Antonietta Fazio
- Alma Mater Studiorum, University of Bologna, Department of Biomedical and Neuromotor Sciences, 40136, Bologna, Italy
| | - Maria Cristina Manara
- IRCCS Istituto Ortopedico Rizzoli, Experimental Oncology Laboratory, 40136, Bologna, Italy
| | - Lorena Landuzzi
- IRCCS Istituto Ortopedico Rizzoli, Experimental Oncology Laboratory, 40136, Bologna, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Center, Bambino Gesu' Children's Hospital IRCCS, 00146, Rome, Italy
| | - Camilla Evangelisti
- Alma Mater Studiorum, University of Bologna, Department of Biomedical and Neuromotor Sciences, 40136, Bologna, Italy
| | - Pier-Luigi Lollini
- Alma Mater Studiorum, University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, 40138, Bologna, Italy
| | - Alberto M Martelli
- Alma Mater Studiorum, University of Bologna, Department of Biomedical and Neuromotor Sciences, 40136, Bologna, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, 40136, Bologna, Italy. .,IRCCS Istituto Ortopedico Rizzoli, 40136, Bologna, Italy.
| | - Katia Scotlandi
- IRCCS Istituto Ortopedico Rizzoli, Experimental Oncology Laboratory, 40136, Bologna, Italy.
| |
Collapse
|
15
|
Uil SH, Coupé VMH, Bril H, Meijer GA, Fijneman RJA, Stockmann HBAC. KCNQ1 and lymphovascular invasion are key features in a prognostic classifier for stage II and III colon cancer. BMC Cancer 2022; 22:372. [PMID: 35395779 PMCID: PMC8991490 DOI: 10.1186/s12885-022-09473-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
Background The risk of recurrence after resection of a stage II or III colon cancer, and therefore qualification for adjuvant chemotherapy (ACT), is traditionally based on clinicopathological parameters. However, the parameters used in clinical practice are not able to accurately identify all patients with or without minimal residual disease. Some patients considered ‘low-risk’ do develop recurrence (undertreatment), whilst other patients receiving ACT might not have developed recurrence at all (overtreatment). We previously analysed tumour tissue expression of 28 protein biomarkers that might improve identification of patients at risk of recurrence. In the present study we aimed to build a prognostic classifier based on these 28 biomarkers and clinicopathological parameters. Methods Classification and regression tree (CART) analysis was used to build a prognostic classifier based on a well described cohort of 386 patients with stage II and III colon cancer. Separate classifiers were built for patients who were or were not treated with ACT. Routine clinicopathological parameters and tumour tissue immunohistochemistry data were included, available for 28 proteins previously published. Classification trees were pruned until lowest misclassification error was obtained. Survival of the identified subgroups was analysed, and robustness of the selected CART variables was assessed by random forest analysis (1000 trees). Results In patients not treated with ACT, prognosis was estimated best based on expression of KCNQ1. Poor disease-free survival (DFS) was observed in those with loss of expression of KCNQ1 (HR = 3.38 (95% CI 2.12 – 5.40); p < 0.001). In patients treated with ACT, key prognostic factors were lymphovascular invasion (LVI) and expression of KCNQ1. Patients with LVI showed poorest DFS, whilst patients without LVI and high expression of KCNQ1 showed most favourable survival (HR = 7.50 (95% CI 3.57—15.74); p < 0.001). Patients without LVI and loss of expression of KCNQ1 had intermediate survival (HR = 3.91 (95% CI 1.76 – 8.72); p = 0.001). Conclusion KCNQ1 and LVI were identified as key features in prognostic classifiers for disease-free survival in stage II and III colon cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09473-9.
Collapse
Affiliation(s)
- Sjoerd H Uil
- Department of Surgery, Spaarne Gasthuis, Boerhaavelaan 22, 2035 RC, Haarlem, The Netherlands
| | - Veerle M H Coupé
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, de Boelelaan 1089a, 1081 HV, Amsterdam, The Netherlands
| | - Herman Bril
- Department of Pathology, Spaarne Gasthuis, Boerhaavelaan 22, 2035 RC, Haarlem, The Netherlands
| | - Gerrit A Meijer
- Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Remond J A Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Hein B A C Stockmann
- Department of Surgery, Spaarne Gasthuis, Boerhaavelaan 22, 2035 RC, Haarlem, The Netherlands
| |
Collapse
|
16
|
Xu J, Sun X, Kim K, Brand RM, Hartman D, Ma H, Brand RE, Bai M, Liu Y. Ultrastructural visualization of chromatin in cancer pathogenesis using a simple small-molecule fluorescent probe. SCIENCE ADVANCES 2022; 8:eabm8293. [PMID: 35245126 PMCID: PMC8896800 DOI: 10.1126/sciadv.abm8293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Imaging chromatin organization at the molecular-scale resolution remains an important endeavor in basic and translational research. Stochastic optical reconstruction microscopy (STORM) is a powerful superresolution imaging technique to visualize nanoscale molecular organization down to the resolution of ~20 to 30 nm. Despite the substantial progress in imaging chromatin organization in cells and model systems, its routine application on assessing pathological tissue remains limited. It is, in part, hampered by the lack of simple labels that consistently generates high-quality STORM images on the highly processed clinical tissue. We developed a fast, simple, and robust small-molecule fluorescent probe-cyanine 5-conjugated Hoechst-for routine superresolution imaging of nanoscale nuclear architecture on clinical tissue. We demonstrated the biological and clinical significance of imaging superresolved chromatin structure in cancer development and its potential clinical utility for cancer risk stratification.
Collapse
Affiliation(s)
- Jianquan Xu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xuejiao Sun
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kwangho Kim
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Rhonda M. Brand
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Douglas Hartman
- Department of Pathology, School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Hongqiang Ma
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Randall E. Brand
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mingfeng Bai
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yang Liu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
17
|
Singh I, Lele TP. Nuclear Morphological Abnormalities in Cancer: A Search for Unifying Mechanisms. Results Probl Cell Differ 2022; 70:443-467. [PMID: 36348118 PMCID: PMC9722227 DOI: 10.1007/978-3-031-06573-6_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Irregularities in nuclear shape and/or alterations to nuclear size are a hallmark of malignancy in a broad range of cancer types. Though these abnormalities are commonly used for diagnostic purposes and are often used to assess cancer progression in the clinic, the mechanisms through which they occur are not well understood. Nuclear size alterations in cancer could potentially arise from aneuploidy, changes in osmotic coupling with the cytoplasm, and perturbations to nucleocytoplasmic transport. Nuclear shape changes may occur due to alterations to cell-generated mechanical stresses and/or alterations to nuclear structural components, which balance those stresses, such as the nuclear lamina and chromatin. A better understanding of the mechanisms underlying abnormal nuclear morphology and size may allow the development of new therapeutics to target nuclear aberrations in cancer.
Collapse
Affiliation(s)
- Ishita Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA,Department of Chemical Engineering, University of Florida, Gainesville, FL, USA,Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA
| |
Collapse
|
18
|
The Role of Emerin in Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms222011289. [PMID: 34681951 PMCID: PMC8537873 DOI: 10.3390/ijms222011289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/27/2022] Open
Abstract
It is commonly recognized in the field that cancer cells exhibit changes in the size and shape of their nuclei. These features often serve as important biomarkers in the diagnosis and prognosis of cancer patients. Nuclear size can significantly impact cell migration due to its incredibly large size. Nuclear structural changes are predicted to regulate cancer cell migration. Nuclear abnormalities are common across a vast spectrum of cancer types, regardless of tissue source, mutational spectrum, and signaling dependencies. The pervasiveness of nuclear alterations suggests that changes in nuclear structure may be crucially linked to the transformation process. The factors driving these nuclear abnormalities, and the functional consequences, are not completely understood. Nuclear envelope proteins play an important role in regulating nuclear size and structure in cancer. Altered expression of nuclear lamina proteins, including emerin, is found in many cancers and this expression is correlated with better clinical outcomes. A model is emerging whereby emerin, as well as other nuclear lamina proteins, binding to the nucleoskeleton regulates the nuclear structure to impact metastasis. In this model, emerin and lamins play a central role in metastatic transformation, since decreased emerin expression during transformation causes the nuclear structural defects required for increased cell migration, intravasation, and extravasation. Herein, we discuss the cellular functions of nuclear lamina proteins, with a particular focus on emerin, and how these functions impact cancer progression and metastasis.
Collapse
|
19
|
Ovsiannikova NL, Lavrushkina SV, Ivanova AV, Mazina LM, Zhironkina OA, Kireev II. Lamin A as a Determinant of Mechanical Properties of the Cell Nucleus in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1288-1300. [PMID: 34903160 DOI: 10.1134/s0006297921100102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 06/14/2023]
Abstract
One of the main factors associated with worse prognosis in oncology is metastasis, which is based on the ability of tumor cells to migrate from the primary source and to form secondary tumors. The search for new strategies to control migration of metastatic cells is one of the urgent issues in biomedicine. One of the strategies to stop spread of cancer cells could be regulation of the nuclear elasticity. Nucleus, as the biggest and stiffest cellular compartment, determines mechanical properties of the cell as a whole, and, hence, could prevent cell migration through the three-dimensional extracellular matrix. Nuclear rigidity is maintained by the nuclear lamina, two-dimensional network of intermediate filaments in the inner nuclear membrane (INM). Here we present the most significant factors defining nucleus rigidity, discuss the role of nuclear envelope composition in the cell migration, as well consider possible approaches to control lamina composition in order to change plasticity of the cell nucleus and ability of the tumor cells to metastasize.
Collapse
Affiliation(s)
- Natalia L Ovsiannikova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Svetlana V Lavrushkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Anastasia V Ivanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ludmila M Mazina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Oxana A Zhironkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Igor I Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Moscow, 117198, Russia
| |
Collapse
|
20
|
Gatti G, Vilardo L, Musa C, Di Pietro C, Bonaventura F, Scavizzi F, Torcinaro A, Bucci B, Saporito R, Arisi I, De Santa F, Raspa M, Guglielmi L, D’Agnano I. Role of Lamin A/C as Candidate Biomarker of Aggressiveness and Tumorigenicity in Glioblastoma Multiforme. Biomedicines 2021; 9:biomedicines9101343. [PMID: 34680461 PMCID: PMC8533312 DOI: 10.3390/biomedicines9101343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear lamina components have long been regarded as scaffolding proteins, forming a dense fibrillar structure necessary for the maintenance of the nucleus shape in all the animal kingdom. More recently, mutations, aberrant localisation and deregulation of these proteins have been linked to several diseases, including cancer. Using publicly available data we found that the increased expression levels of the nuclear protein Lamin A/C correlate with a reduced overall survival in The Cancer Genome Atlas Research Network (TCGA) patients affected by glioblastoma multiforme (GBM). We show that the expression of the LMNA gene is linked to the enrichment of cancer-related pathways, particularly pathways related to cell adhesion and cell migration. Mimicking the modulation of LMNA in a GBM preclinical cancer model, we confirmed both in vitro and in vivo that the increased expression of LMNA is associated with an increased aggressiveness and tumorigenicity. In addition, delving into the possible mechanism behind LMNA-induced GBM aggressiveness and tumorigenicity, we found that the mTORC2 component, Rictor, plays a central role in mediating these effects.
Collapse
Affiliation(s)
- Giuliana Gatti
- Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy;
| | - Laura Vilardo
- Institute for Biomedical Technologies (ITB), CNR, 20054 Segrate, Italy; (L.V.); (C.M.)
| | - Carla Musa
- Institute for Biomedical Technologies (ITB), CNR, 20054 Segrate, Italy; (L.V.); (C.M.)
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Fabrizio Bonaventura
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Alessio Torcinaro
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Barbara Bucci
- UOC Clinical Pathology, San Pietro Hospital FBF, 00189 Rome, Italy; (B.B.); (R.S.)
| | - Raffaele Saporito
- UOC Clinical Pathology, San Pietro Hospital FBF, 00189 Rome, Italy; (B.B.); (R.S.)
| | - Ivan Arisi
- Bioinformatics Facility, European Brain Research Institute (EBRI) “Rita Levi Montalcini”, 00161 Rome, Italy;
| | - Francesca De Santa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Loredana Guglielmi
- Institute for Biomedical Technologies (ITB), CNR, 20054 Segrate, Italy; (L.V.); (C.M.)
- Correspondence: (L.G.); (I.D.)
| | - Igea D’Agnano
- Institute for Biomedical Technologies (ITB), CNR, 20054 Segrate, Italy; (L.V.); (C.M.)
- Correspondence: (L.G.); (I.D.)
| |
Collapse
|
21
|
Aberrant nuclear lamina contributes to the malignancy of human gliomas. J Genet Genomics 2021; 49:132-144. [PMID: 34530169 DOI: 10.1016/j.jgg.2021.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 01/11/2023]
Abstract
Glioma is the most common type of tumor in the central nervous system, accounting for around 80% of all malignant brain tumors. Previous studies showed a significant association between nuclear morphology and the malignant progress of gliomas. By virtue of integrated proteomics and genomics analyses as well as experimental validations, we identify three nuclear lamin genes (LMNA, LMNB1 and LMNB2) that are significantly upregulated in glioma tissues compared with normal brain tissues. We show that elevated expressions of LMNB1, LMNB2 and LMNA in glioma cells are highly associated with the rapid progression of the disease and the knockdown of LMNB1, LMNB2 and LMNA dramatically suppresses glioma progression in both in vitro and in vivo mouse models. Moreover, the repression of glioma cell growth by lamin knockdown is mediated by the pRb-mediated G1-S inhibition. On the contrary, overexpression of lamins in normal human astrocytes dramatically induced nuclear morphological aberrations and accelerated cell growth. Together, our multi-omics-based analysis has revealed a previously unrecognized role of lamin genes in gliomagenesis, providing a strong support for the key link between aberrant tumor nuclear shape and the survival of glioma patients. Based on these findings, lamins are proposed to be potential oncogene targets for therapeutic treatments of brain tumors.
Collapse
|
22
|
Setti Boubaker N, Gurtner A, Trabelsi N, Manni I, Ayed H, Saadi A, Zaghbib S, Naimi Z, Sahraoui G, Zouari S, Meddeb K, Mrad K, Chebil M, Piaggio G, Ouerhani S. The diagnostic applicability of A-type Lamin in non-muscle invasive bladder cancer. Ann Diagn Pathol 2021; 54:151808. [PMID: 34438192 DOI: 10.1016/j.anndiagpath.2021.151808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Lamin A is a major component of the nuclear lamina maintaining nuclear integrity, regulation of gene expression, cell proliferation, and apoptosis. Its deregulation in cancer has been recently reported to be associated with its prognosis. However, its clinical significance in non-muscle invasive bladder cancer (NMIBC) remains to be defined. MATERIAL/METHODS Immunohistochemical staining and RT-qPCR were performed to screen the expression patterns of Lamin A/C protein and Lamin A mRNA respectively in 58 high and low grade NMIBC specimens. RESULTS Lamin A/C protein was expressed only in the nucleus and less exhibited in NMIBC tissues compared to non-tumoral ones. On the other side, Lamin A mRNA was up-regulated in NMIBC compared to controls. Nevertheless, both expression patterns (protein and mRNA) were not correlated to clinical prognosis factors and were not able to predict the overall survival of patients with high-grade NMIBC. CONCLUSIONS The deregulation of A-type Lamin is not associated with the prognosis of NMIBC, but it could serve as a diagnostic biomarker distinguishing NMIBC patients from healthy subjects suggesting its involvement as an initiator event of tumorigenesis in our cohort.
Collapse
Affiliation(s)
- Nouha Setti Boubaker
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), INSAT, University of Tunis Carthage, Tunis, Tunisia; UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Aymone Gurtner
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy; Institute of Translational Pharmacology, National Research Council, Rome, Italy.
| | - Nesrine Trabelsi
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), INSAT, University of Tunis Carthage, Tunis, Tunisia.
| | - Isabella Manni
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Haroun Ayed
- Urology Department, Charles Nicolle Hospital, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Ahmed Saadi
- Urology Department, Charles Nicolle Hospital, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Selim Zaghbib
- Urology Department, Charles Nicolle Hospital, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Zeineb Naimi
- Medical Oncology Department, Salah Azaiez Institute, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Ghada Sahraoui
- Pathology Department, Salah Azaiez Institute, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Skander Zouari
- Urology Department, Charles Nicolle Hospital, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Khedija Meddeb
- Medical Oncology Department, Salah Azaiez Institute, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Karima Mrad
- Pathology Department, Salah Azaiez Institute, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Mohamed Chebil
- Urology Department, Charles Nicolle Hospital, Faculty of Medicine of Tunis, University of Tunis-El Manar, Tunis, Tunisia.
| | - Giulia Piaggio
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Slah Ouerhani
- Laboratory of Proteins Engineering and Bioactive Molecules (LIP-MB), INSAT, University of Tunis Carthage, Tunis, Tunisia.
| |
Collapse
|
23
|
Nishikawa T, Kuwano Y, Nakata M, Rokutan K, Nishida K. Multiple G-quadruplexes in the LMNA promoter regulate LMNA variant 6 transcription and promote colon cancer cell growth. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194746. [PMID: 34419630 DOI: 10.1016/j.bbagrm.2021.194746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Lamin A/C proteins, major components of the nuclear lamina, are encoded by the LMNA gene. These proteins have multiple cellular functions, including DNA transcription and replication, chromatin organization, regulation of the cell cycle, and apoptosis. Mutations in LMNA are associated with a variety of diseases called laminopathies. LMNA has implications in cancer; however, its mechanisms of dysregulation in cancer cells are not yet fully understood. In this study, among the LMNA transcript variants, we focused on a transcriptional variant 6 (termed LMNA-V6), which contains unique 3 exons upstream of exon 1 of LMNA. The promoter region of LMNA-V6 formed multiple G-quadruplexes and increased its transcriptional activity. Moreover, LMNA-V6 negatively regulated other LMNA mRNA variants, lamin A and lamin C, via direct interaction with their promoter. Knockdown of LMNA-V6 decreased the proliferation of colon cancer cells, whereas overexpression of the unique 3 exons of LMNA-V6 increased cell growth. Furthermore, microarray gene expression profiling showed that alteration of LMNA-V6 levels influenced the expression of p53 in colon cancer cells. Taken together, the results suggest that LMNA-V6 may be a novel functional RNA whose expression is regulated through multiple G-quadruplexes in colon cancer cells.
Collapse
Affiliation(s)
- Tatsuya Nishikawa
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Onco-cardiology, Osaka International Cancer Institute, Osaka, Japan
| | - Yuki Kuwano
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Mayu Nakata
- Student Lab, Tokushima University Faculty of Medicine, Tokushima, Japan
| | - Kazuhito Rokutan
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kensei Nishida
- Department of Pathophysiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
24
|
Patil S, Sengupta K. Role of A- and B-type lamins in nuclear structure-function relationships. Biol Cell 2021; 113:295-310. [PMID: 33638183 DOI: 10.1111/boc.202000160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Nuclear lamins are type V intermediate filament proteins that form a filamentous meshwork beneath the inner nuclear membrane. Additionally, a sub-population of A- and B-type lamins localizes in the nuclear interior. The nuclear lamina protects the nucleus from mechanical stress and mediates nucleo-cytoskeletal coupling. Lamins form a scaffold that partially tethers chromatin at the nuclear envelope. The nuclear lamina also stabilises protein-protein interactions involved in gene regulation and DNA repair. The lamin-based protein sub-complexes are implicated in both nuclear and cytoskeletal organisation, the mechanical stability of the nucleus, genome organisation, transcriptional regulation, genome stability and cellular differentiation. Here, we review recent research on nuclear lamins and unique roles of A- and B-type lamins in modulating various nuclear processes and their impact on cell function.
Collapse
Affiliation(s)
- Shalaka Patil
- Biology, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| | - Kundan Sengupta
- Biology, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
25
|
Quantitative analysis of CDX2 protein expression improves its clinical utility as a prognostic biomarker in stage II and III colon cancer. Eur J Cancer 2020; 144:91-100. [PMID: 33341450 DOI: 10.1016/j.ejca.2020.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 01/18/2023]
Abstract
AIM Better stratification of patients with stage II and stage III colon cancer for risk of recurrence is urgently needed. The present study aimed to validate the prognostic value of CDX2 protein expression in colon cancer tissue by routine immunohistochemistry and to evaluate its performance in a head-to-head comparison with tandem mass spectrometry-based proteomics. PATIENT AND METHODS CDX2 protein expression was evaluated in 386 stage II and III primary colon cancers by immunohistochemical staining of tissue microarrays and by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis using formalin-fixed paraffin-embedded tissue sections of a matched subset of 23 recurrent and 23 non-recurrent colon cancers. Association between CDX2 expression and disease-specific survival (DSS) was investigated. RESULTS Low levels of CDX2 protein expression in stage II and III colon cancer as determined by immunohistochemistry was associated with poor DSS (hazard ratio [HR] = 1.97 (95% confidence interval [CI]: 1.26-3.06); p = 0.002). Based on analysis of a selected sample subset, CDX2 prognostic value was more pronounced when detected by LC-MS/MS (HR = 7.56 (95% CI: 2.49-22.95); p < 0.001) compared to detection by immunohistochemistry (HR = 1.60 (95% CI: 0.61-4.22); p = 0.34). CONCLUSION This study validated CDX2 protein expression as a prognostic biomarker in stage II and III colon cancer, conform previous publications. CDX2 prognostic value appeared to be underestimated when detected by routine immunohistochemistry, probably due to the semiquantitative and subjective nature of this methodology. Quantitative analysis of CDX2 substantially improved its clinical utility as a prognostic biomarker. Therefore, development of routinely applicable quantitative assays for CDX2 expression is needed to facilitate its clinical implementation.
Collapse
|
26
|
Dubik N, Mai S. Lamin A/C: Function in Normal and Tumor Cells. Cancers (Basel) 2020; 12:cancers12123688. [PMID: 33316938 PMCID: PMC7764147 DOI: 10.3390/cancers12123688] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The aim of this review is to summarize lamin A/C’s currently known functions in both normal and diseased cells. Lamin A/C is a nuclear protein with many functions in cells, such as maintaining a cell’s structural stability, cell motility, mechanosensing, chromosome organization, gene regulation, cell differentiation, DNA damage repair, and telomere protection. Mutations of the lamin A/C gene, incorrect processing of the protein, and lamin A/C deregulation can lead to various diseases and cancer. This review touches on diseases caused by mutation and incorrect processing of lamin A/C, called laminopathies. The effect of lamin A/C deregulation in cancer is also reviewed, and lamin A/C’s potential in helping to diagnose prostate cancers more accurately is discussed. Abstract This review is focused on lamin A/C, a nuclear protein with multiple functions in normal and diseased cells. Its functions, as known to date, are summarized. This summary includes its role in maintaining a cell’s structural stability, cell motility, mechanosensing, chromosome organization, gene regulation, cell differentiation, DNA damage repair, and telomere protection. As lamin A/C has a variety of critical roles within the cell, mutations of the lamin A/C gene and incorrect processing of the protein results in a wide variety of diseases, ranging from striated muscle disorders to accelerated aging diseases. These diseases, collectively termed laminopathies, are also touched upon. Finally, we review the existing evidence of lamin A/C’s deregulation in cancer. Lamin A/C deregulation leads to various traits, including genomic instability and increased tolerance to mechanical insult, which can lead to more aggressive cancer and poorer prognosis. As lamin A/C’s expression in specific cancers varies widely, currently known lamin A/C expression in various cancers is reviewed. Additionally, Lamin A/C’s potential as a biomarker in various cancers and as an aid in more accurately diagnosing intermediate Gleason score prostate cancers is also discussed.
Collapse
|
27
|
Parachini-Winter C, Bracha S, Ramsey SA, Yang L, Ho E, Leeper HJ, Curran KM. Prospective evaluation of the lymph node proteome in dogs with multicentric lymphoma supplemented with sulforaphane. J Vet Intern Med 2020; 34:2036-2047. [PMID: 32926463 PMCID: PMC7517837 DOI: 10.1111/jvim.15898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
Background Lymphoma (LSA) is a common malignancy in dogs. Epigenetic changes are linked to LSA pathogenesis and poor prognosis in humans, and LSA pathogenesis in dogs. Sulforaphane (SFN), an epigenetic‐targeting compound, has recently gained interest in relation to cancer prevention and therapy. Objective Examine the impact of oral supplementation with SFN on the lymph node proteome of dogs with multicentric LSA. Animals Seven client‐owned dogs with multicentric LSA. Methods Prospective, nonrandomized, noncontrolled study in treatment‐naïve dogs with intermediate or large cell multicentric LSA. Lymph node cell aspirates were obtained before and after 7 days of oral supplementation with SFN, and analyzed via label‐free mass spectrometry, immunoblots, and Gene Set Enrichment Analysis. Results There was no clinical response and no adverse events attributed to SFN. For individual dogs, the expression of up to 650 proteins changed by at least 2‐fold (range, 2‐100) after supplementation with SFN. When all dogs where analyzed together, 14 proteins were significantly downregulated, and 10 proteins were significantly upregulated after supplementation with SFN (P < .05). Proteins and gene sets impacted by SFN were commonly involved in immunity, response to oxidative stress, gene transcription, apoptosis, protein transport, maturation and ubiquitination. Conclusions and Clinical Importance Sulforaphane is associated with major changes in the proteome of neoplastic lymphocytes in dogs.
Collapse
Affiliation(s)
- Cyril Parachini-Winter
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Shay Bracha
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Stephen A Ramsey
- Department of Biomedical Sciences, School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Liping Yang
- Department of Chemistry, College of Science, Oregon State University, Corvallis, Oregon, USA
| | - Emily Ho
- Linus Pauling Institute and College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Haley J Leeper
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| | - Kaitlin M Curran
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
28
|
Liu H, Li D, Zhou L, Kan S, He G, Zhou K, Wang L, Chen M, Shu W. LMNA functions as an oncogene in hepatocellular carcinoma by regulating the proliferation and migration ability. J Cell Mol Med 2020; 24:12008-12019. [PMID: 32896989 PMCID: PMC7578910 DOI: 10.1111/jcmm.15829] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
The role of the LMNA gene in the development and progression of hepatocellular carcinoma (HCC) and the associated molecular mechanism is not yet clear. Therefore, the purpose of this study was to evaluate the relationship between LMNA and HCC. LMNA gene expression in normal tissues and corresponding tumours was evaluated and the Kaplan-Meier survival analysis was performed. Next, the LMNA gene was knocked out in the 293T and HepG2 cell lines using the CRISPR/Cas9 technique. Subsequently, the proliferation, migration and colony formation rate of the two LMNA knockout cell lines were analysed. Finally, the molecular mechanism affecting the tumorigenesis due to the loss of the LMNA gene was evaluated. The results showed that the LMNA gene was abnormally expressed in many tumours, and the survival rate of the HCC patients with a high expression of the LMNA gene was significantly reduced compared with the rate in patients with a low LMNA expression. The knockout of the LMNA gene in the HCC cell line HepG2 resulted in a decreased tumorigenicity, up-regulation of the P16 expression and down-regulation of the CDK1 expression. These findings suggested that LMNA might function as an oncogene in HCC and provided a potential new target for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Heng Liu
- College of Biotechnology, Guilin Medical University, Guilin, China.,College of Stomatology, Guangxi Medical University, Nanning, China
| | - Dongming Li
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning, China
| | - Ling Zhou
- Department of Cell Biology and Genetics, Guangxi Medical University, Nanning, China
| | - Shuang Kan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Guozhang He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Kun Zhou
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Liping Wang
- College of Biotechnology, Guilin Medical University, Guilin, China
| | - Ming Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Wei Shu
- College of Biotechnology, Guilin Medical University, Guilin, China
| |
Collapse
|
29
|
Structural and Mechanical Aberrations of the Nuclear Lamina in Disease. Cells 2020; 9:cells9081884. [PMID: 32796718 PMCID: PMC7464082 DOI: 10.3390/cells9081884] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear lamins are the major components of the nuclear lamina in the nuclear envelope. Lamins are involved in numerous functions, including a role in providing structural support to the cell and the mechanosensing of the cell. Mutations in the genes encoding for lamins lead to the rare diseases termed laminopathies. However, not only laminopathies show alterations in the nuclear lamina. Deregulation of lamin expression is reported in multiple cancers and several viral infections lead to a disrupted nuclear lamina. The structural and mechanical effects of alterations in the nuclear lamina can partly explain the phenotypes seen in disease, such as muscular weakness in certain laminopathies and transmigration of cancer cells. However, a lot of answers to questions about the relation between changes in the nuclear lamina and disease development remain elusive. Here, we review the current understandings of the contribution of the nuclear lamina in the structural support and mechanosensing of healthy and diseased cells.
Collapse
|
30
|
Khot M, Sreekumar D, Jahagirdar S, Kulkarni A, Hari K, Faseela EE, Sabarinathan R, Jolly MK, Sengupta K. Twist1 induces chromosomal instability (CIN) in colorectal cancer cells. Hum Mol Genet 2020; 29:1673-1688. [PMID: 32337580 PMCID: PMC7322571 DOI: 10.1093/hmg/ddaa076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Twist1 is a basic helix-loop-helix transcription factor, essential during early development in mammals. While Twist1 induces epithelial-to-mesenchymal transition (EMT), here we show that Twist1 overexpression enhances nuclear and mitotic aberrations. This is accompanied by an increase in whole chromosomal copy number gains and losses, underscoring the role of Twist1 in inducing chromosomal instability (CIN) in colorectal cancer cells. Array comparative genomic hybridization (array CGH) analysis further shows sub-chromosomal deletions, consistent with an increased frequency of DNA double strand breaks (DSBs). Remarkably, Twist1 overexpression downmodulates key cell cycle checkpoint factors-Bub1, BubR1, Mad1 and Mad2-that regulate CIN. Mathematical simulations using the RACIPE tool show a negative correlation of Twist1 with E-cadherin and BubR1. Data analyses of gene expression profiles of patient samples from The Cancer Genome Atlas (TCGA) reveal a positive correlation between Twist1 and mesenchymal genes across cancers, whereas the correlation of TWIST1 with CIN and DSB genes is cancer subtype-specific. Taken together, these studies highlight the mechanistic involvement of Twist1 in the deregulation of factors that maintain genome stability during EMT in colorectal cancer cells. Twist1 overexpression enhances genome instability in the context of EMT that further contributes to cellular heterogeneity. In addition, these studies imply that Twist1 downmodulates nuclear lamins that further alter spatiotemporal organization of the cancer genome and epigenome. Notwithstanding their genetic background, colorectal cancer cells nevertheless maintain their overall ploidy, while the downstream effects of Twist1 enhance CIN and DNA damage enriching for sub-populations of aggressive cancer cells.
Collapse
Affiliation(s)
- Maithilee Khot
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Dyuthi Sreekumar
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sanika Jahagirdar
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Apoorva Kulkarni
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Kishore Hari
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | | - Radhakrishnan Sabarinathan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Kundan Sengupta
- B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India
- To whom correspondence should be addressed at: B-216, Chromosome Biology Lab (CBL), Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pashan, Pune 411008, India. Tel: +91 20 25908071; Fax: +91-20-20251566;
| |
Collapse
|
31
|
Lamin A and Prelamin A Counteract Migration of Osteosarcoma Cells. Cells 2020; 9:cells9030774. [PMID: 32235738 PMCID: PMC7140691 DOI: 10.3390/cells9030774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
A type lamins are fundamental components of the nuclear lamina. Changes in lamin A expression correlate with malignant transformation in several cancers. However, the role of lamin A has not been explored in osteosarcoma (OS). Here, we wanted to investigate the role of lamin A in normal osteoblasts (OBs) and OS cells. Thus, we studied the expression of lamin A/C in OS cells compared to OBs and evaluated the effects of lamin A overexpression in OS cell lines. We show that, while lamin A expression increases during osteoblast differentiation, all examined OS cell lines express lower lamin A levels relative to differentiated OBs. The condition of low LMNA expression confers to OS cells a significant increase in migration potential, while overexpression of lamin A reduces migration ability of OS cells. Moreover, overexpression of unprocessable prelamin A also reduces cell migration. In agreement with the latter finding, OS cells which accumulate the highest prelamin A levels upon inhibition of lamin A maturation by statins, had significantly reduced migration ability. Importantly, OS cells subjected to statin treatment underwent apoptotic cell death in a RAS-independent, lamin A-dependent manner. Our results show that pro-apoptotic effects of statins and statin inhibitory effect on OS cell migration are comparable to those obtained by prelamin A accumulation and further suggest that modulation of lamin A expression and post-translational processing can be a tool to decrease migration potential in OS cells.
Collapse
|
32
|
Coll-Bonfill N, de Faria RC, Bhoopatiraju S, Gonzalo S. Calcitriol Prevents RAD51 Loss and cGAS-STING-IFN Response Triggered by Progerin. Proteomics 2020; 20:e1800406. [PMID: 31834988 PMCID: PMC7117971 DOI: 10.1002/pmic.201800406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/29/2019] [Indexed: 12/14/2022]
Abstract
Hutchinson Gilford progeria syndrome (HGPS) is a devastating accelerated aging disease caused by LMNA gene mutation. The truncated lamin A protein produced "progerin" has a dominant toxic effect in cells, causing disruption of nuclear architecture and chromatin structure, genomic instability, gene expression changes, oxidative stress, and premature senescence. It was previously shown that progerin-induced genomic instability involves replication stress (RS), characterized by replication fork stalling and nuclease-mediated degradation of stalled forks. RS is accompanied by activation of cGAS/STING cytosolic DNA sensing pathway and STAT1-regulated interferon (IFN)-like response. It is also found that calcitriol, the active hormonal form of vitamin D, rescues RS and represses the cGAS/STING/IFN cascade. Here, the mechanisms underlying RS in progerin-expressing cells and the rescue by calcitriol are explored. It is found that progerin elicits a marked downregulation of RAD51, concomitant with increased levels of phosphorylated-RPA, a marker of RS. Interestingly, calcitriol prevents RS and activation of the cGAS/STING/IFN response in part through maintenance of RAD51 levels in progerin-expressing cells. Thus, loss of RAD51 is one of the consequences of progerin expression that can contribute to RS and activation of the IFN response. Stabilization of RAD51 helps explain the beneficial effects of calcitriol in these processes.
Collapse
Affiliation(s)
- Nuria Coll-Bonfill
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St. Louis, MO 63104, USA
| | - Rafael Cancado de Faria
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St. Louis, MO 63104, USA
| | - Sweta Bhoopatiraju
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St. Louis, MO 63104, USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St. Louis, MO 63104, USA
| |
Collapse
|
33
|
Qiu C, Huang F, Zhang Q, Chen W, Zhang H. miR-205-3p promotes proliferation and reduces apoptosis of breast cancer MCF-7 cells and is associated with poor prognosis of breast cancer patients. J Clin Lab Anal 2019; 33:e22966. [PMID: 31578772 PMCID: PMC6805278 DOI: 10.1002/jcla.22966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background To study the expression of microribonucleic acid (miR)‐205 in breast cancer and its effects on the proliferation and apoptosis of breast cancer cells. Methods Breast cancer cell line MCF‐7 cells with stable expression of miR‐205‐3p were constructed. Cell proliferation, invasion, and apoptosis were detected via MTT assay, transwell assay, and flow cytometry, respectively. The expressions of Ezrin, LaminA/C, cleaved caspase‐3, Bcl‐2, and Bax were detected via Western blotting. The expressions of miR‐205‐3p in breast cancer tissues and para‐carcinoma tissues were detected via quantitative PCR (qPCR). Results In transfection group, cell proliferation and invasion capacities were increased significantly (P < 0.01), but apoptotic cells were significantly reduced (P < 0.01). In addition, the expressions of Ezrin, LaminA/C, and cleaved caspase‐3 in the transfection group were significantly decreased (P < 0.01), but the Bcl‐2/Bax ratio was significantly increased (P < 0.01). The miR‐205‐3p expression in tumor tissues of breast cancer patients was significantly higher than that in para‐carcinoma tissue, but Ezrin, LaminA/C, and cleaved caspase‐3 expressions in tumor tissues were remarkably declined (P < 0.01), while the Bcl‐2/Bax ratio was remarkably increased (P < 0.01). Moreover, the 5‐year survival of patients with high expression of miR‐205‐3p was significantly shorter than patients with normal or low expression (P < 0.01). Conclusion Highly expressed miR‐205‐3p can promote the proliferation and invasion and reduce the apoptosis of breast cancer cells, and the high expression of miR‐205‐3p can significantly reduce the survival time of patients.
Collapse
Affiliation(s)
- Changhong Qiu
- Department of General Surgery, The First People's Hospital of ZhaoQing, ZhaoQing, China
| | - Fei Huang
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University (Shen Zhen), Shen Zhen, China
| | - Qing Zhang
- Department of General Surgery, The First People's Hospital of ZhaoQing, ZhaoQing, China
| | - Wei Chen
- Department of General Surgery, The First People's Hospital of ZhaoQing, ZhaoQing, China
| | - Huiting Zhang
- Department of General Surgery, The First People's Hospital of ZhaoQing, ZhaoQing, China
| |
Collapse
|
34
|
Bianchi A, Manti PG, Lucini F, Lanzuolo C. Mechanotransduction, nuclear architecture and epigenetics in Emery Dreifuss Muscular Dystrophy: tous pour un, un pour tous. Nucleus 2019; 9:276-290. [PMID: 29619865 PMCID: PMC5973142 DOI: 10.1080/19491034.2018.1460044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The alteration of the several roles that Lamin A/C plays in the mammalian cell leads to a broad spectrum of pathologies that – all together – are named laminopathies. Among those, the Emery Dreifuss Muscular Dystrophy (EDMD) is of particular interest as, despite the several known mutations of Lamin A/C, the genotype–phenotype correlation still remains poorly understood; this suggests that the epigenetic background of patients might play an important role during the time course of the disease. Historically, both a mechanical role of Lamin A/C and a regulative one have been suggested as the driving force of laminopathies; however, those two hypotheses are not mutually exclusive. Recent scientific evidence shows that Lamin A/C sustains the correct gene expression at the epigenetic level thanks to the Lamina Associated Domains (LADs) reorganization and the crosstalk with the Polycomb Group of Proteins (PcG). Furthermore, the PcG-dependent histone mark H3K27me3 increases under mechanical stress, finally pointing out the link between the mechano-properties of the nuclear lamina and epigenetics. Here, we summarize the emerging mechanisms that could explain the high variability seen in Emery Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- Andrea Bianchi
- a CNR Institute of Cell Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy.,b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy
| | | | - Federica Lucini
- b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy
| | - Chiara Lanzuolo
- a CNR Institute of Cell Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy.,b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy.,c Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy
| |
Collapse
|
35
|
den Uil SH, van den Broek E, Coupé VMH, Vellinga TT, Delis-van Diemen PM, Bril H, Belt EJT, Kranenburg O, Stockmann HBAC, Belien JAM, Meijer GA, Fijneman RJA. Prognostic value of microvessel density in stage II and III colon cancer patients: a retrospective cohort study. BMC Gastroenterol 2019; 19:146. [PMID: 31420015 PMCID: PMC6698008 DOI: 10.1186/s12876-019-1063-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023] Open
Abstract
Background Microvessel density (MVD), as a derived marker for angiogenesis, has been associated with poor outcome in several types of cancer. This study aimed to evaluate the prognostic value of MVD in stage II and III colon cancer and its relation to tumour-stroma-percentage (TSP) and expression of HIF1A and VEGFA. Methods Formalin-fixed paraffin-embedded (FFPE) colon cancer tissues were collected from 53 stage II and 54 (5-fluorouracil-treated) stage III patients. MVD was scored by digital morphometric analysis of CD31-stained whole tumour sections. TSP was scored using haematoxylin-eosin stained slides. Protein expression of HIF1A and VEGFA was determined by immunohistochemical evaluation of tissue microarrays. Results Median MVD was higher in stage III compared to stage II colon cancers (11.1% versus 5.6% CD31-positive tissue area, p < 0.001). High MVD in stage II patients tended to be associated with poor disease free survival (DFS) in univariate analysis (p = 0.056). In contrast, high MVD in 5FU-treated stage III patients was associated with better DFS (p = 0.006). Prognostic value for MVD was observed in multivariate analyses for both cancer stages. Conclusions MVD is an independent prognostic factor associated with poor DFS in stage II colon cancer patients, and with better DFS in stage III colon cancer patients treated with adjuvant chemotherapy. Electronic supplementary material The online version of this article (10.1186/s12876-019-1063-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sjoerd H den Uil
- Department of Surgery, Spaarne Gasthuis, Boerhaavelaan 22, Haarlem, 2035 RC, The Netherlands.,Department of Pathology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Evert van den Broek
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands.,Department of Pathology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Veerle M H Coupé
- Department of Epidemiology and Biostatistics, VU University Medical Center, de Boelelaan 1089a, Amsterdam, 1081 HV, The Netherlands
| | - Thomas T Vellinga
- Department of Surgical Oncology, UMC Utrecht Cancer Center, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Pien M Delis-van Diemen
- Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Herman Bril
- Department of Pathology, Spaarne Gasthuis, Boerhaavelaan 22, Haarlem, 2035 RC, The Netherlands
| | - Eric J Th Belt
- Department of Surgery, Albert Schweitzer Ziekenhuis, Dordrecht, 3300 AK, The Netherlands
| | - Onno Kranenburg
- Department of Surgical Oncology, UMC Utrecht Cancer Center, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Hein B A C Stockmann
- Department of Surgery, Spaarne Gasthuis, Boerhaavelaan 22, Haarlem, 2035 RC, The Netherlands
| | - Jeroen A M Belien
- Department of Pathology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, de Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Gerrit A Meijer
- Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Remond J A Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.
| |
Collapse
|
36
|
Alhudiri IM, Nolan CC, Ellis IO, Elzagheid A, Rakha EA, Green AR, Chapman CJ. Expression of Lamin A/C in early-stage breast cancer and its prognostic value. Breast Cancer Res Treat 2019; 174:661-668. [DOI: 10.1007/s10549-018-05092-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|
37
|
Wang Y, Jiang J, He L, Gong G, Wu X. Effect of lamin-A expression on migration and nuclear stability of ovarian cancer cells. Gynecol Oncol 2018; 152:166-176. [PMID: 30384980 DOI: 10.1016/j.ygyno.2018.10.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Nuclear lamina plays important roles in nuclear shape and mechanical stability. Many studies demonstrated that defects of lamin-A were associated with several diseases, but little research was found on its potential roles in ovarian cancer. METHODS GEPIA and GEO database were used to analyze lamin-A in ovarian tissues, followed by assessing lamin-A and prognosis of ovarian cancer patients with Kaplan-Meier plotter. Then, transient transfected HO-8910 cells with shRNA to knockdown lamin-A. Knockdown efficiency was determined by western blot, qRT-PCR and immunofluorescence. Meanwhile, lamin-A was overexpressed in HO-8910 PM cells. Then, 2D migration, 3D migration through 3 μm and 8 μm pores were carried out, followed by immunofluorescence and TEM observation. RESULTS Lamin-A tended to be lower in ovarian cancer, and higher expression of lamin-A was associated with better survival. After lamin-A knockdown, 2D and 3D migration (3 μm, 8 μm) abilities of HO-8910 cells were significantly increased (p < 0.001), while overexpression of lamin-A in HO-8910PM impeded migration. Meanwhile, when HO-8910 cells migrated through 3 μm pores, nuclei became strikingly elongated, and down-regulation of lamin-A promoted nuclear plasticity, making the circularity of nucleus increased. Besides, further knockdown group had the highest proportion of γ-H2AX, with micronuclei forming. Furthermore, western blot showed that the expression of BRCA1, Ku80 and Rad50 decreased significantly after further knockdown, suggesting impairment of DNA damage repair. CONCLUSIONS Lamin-A was down-regulated in ovarian cancer, and higher lamin-A was associated with better prognosis. Nuclei with high lamin-A were severely deformed through constricted pores. Moderate lamin-A enhanced nuclear plasticity, so as to strengthen migration ability. When lamin-A was further knockdown, ovarian cancer cells that migrated through restricted pores decreased, with DNA damage, genomic instability and impairment of DNA damage repair.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Jiang
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Liuqing He
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Guanghui Gong
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiaoying Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
38
|
Komor MA, Bosch LJ, Bounova G, Bolijn AS, Delis-van Diemen PM, Rausch C, Hoogstrate Y, Stubbs AP, de Jong M, Jenster G, van Grieken NC, Carvalho B, Wessels LF, Jimenez CR, Fijneman RJ, Meijer GA. Consensus molecular subtype classification of colorectal adenomas. J Pathol 2018; 246:266-276. [PMID: 29968252 PMCID: PMC6221003 DOI: 10.1002/path.5129] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/08/2018] [Accepted: 06/20/2018] [Indexed: 01/15/2023]
Abstract
Consensus molecular subtyping is an RNA expression‐based classification system for colorectal cancer (CRC). Genomic alterations accumulate during CRC pathogenesis, including the premalignant adenoma stage, leading to changes in RNA expression. Only a minority of adenomas progress to malignancies, a transition that is associated with specific DNA copy number aberrations or microsatellite instability (MSI). We aimed to investigate whether colorectal adenomas can already be stratified into consensus molecular subtype (CMS) classes, and whether specific CMS classes are related to the presence of specific DNA copy number aberrations associated with progression to malignancy. RNA sequencing was performed on 62 adenomas and 59 CRCs. MSI status was determined with polymerase chain reaction‐based methodology. DNA copy number was assessed by low‐coverage DNA sequencing (n = 30) or array‐comparative genomic hybridisation (n = 32). Adenomas were classified into CMS classes together with CRCs from the study cohort and from The Cancer Genome Atlas (n = 556), by use of the established CMS classifier. As a result, 54 of 62 (87%) adenomas were classified according to the CMS. The CMS3 ‘metabolic subtype’, which was least common among CRCs, was most prevalent among adenomas (n = 45; 73%). One of the two adenomas showing MSI was classified as CMS1 (2%), the ‘MSI immune’ subtype. Eight adenomas (13%) were classified as the ‘canonical’ CMS2. No adenomas were classified as the ‘mesenchymal’ CMS4, consistent with the fact that adenomas lack invasion‐associated stroma. The distribution of the CMS classes among adenomas was confirmed in an independent series. CMS3 was enriched with adenomas at low risk of progressing to CRC, whereas relatively more high‐risk adenomas were observed in CMS2. We conclude that adenomas can be stratified into the CMS classes. Considering that CMS1 and CMS2 expression signatures may mark adenomas at increased risk of progression, the distribution of the CMS classes among adenomas is consistent with the proportion of adenomas expected to progress to CRC. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Malgorzata A Komor
- Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Linda Jw Bosch
- Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gergana Bounova
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anne S Bolijn
- Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Pien M Delis-van Diemen
- Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christian Rausch
- Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Youri Hoogstrate
- Department of Urology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Andrew P Stubbs
- Department of Bioinformatics, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Guido Jenster
- Department of Urology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Beatriz Carvalho
- Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lodewyk Fa Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Connie R Jimenez
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Remond Ja Fijneman
- Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gerrit A Meijer
- Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
39
|
Guinde J, Frankel D, Perrin S, Delecourt V, Lévy N, Barlesi F, Astoul P, Roll P, Kaspi E. Lamins in Lung Cancer: Biomarkers and Key Factors for Disease Progression through miR-9 Regulation? Cells 2018; 7:E78. [PMID: 30012957 PMCID: PMC6071028 DOI: 10.3390/cells7070078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 02/08/2023] Open
Abstract
Lung cancer represents the primary cause of cancer death in the world. Malignant cells identification and characterization are crucial for the diagnosis and management of patients with primary or metastatic cancers. In this context, the identification of new biomarkers is essential to improve the differential diagnosis between cancer subtypes, to select the most appropriate therapy, and to establish prognostic correlations. Nuclear abnormalities are hallmarks of carcinoma cells and are used as cytological diagnostic criteria of malignancy. Lamins (divided into A- and B-types) are localized in the nuclear matrix comprising nuclear lamina, where they act as scaffolding protein, involved in many nuclear functions, with regulatory effects on the cell cycle and differentiation, senescence and apoptosis. Previous studies have suggested that lamins are involved in tumor development and progression with opposite results concerning their prognostic role. This review provides an overview of lamins expression in lung cancer and the relevance of these findings for disease diagnosis and prognosis. Furthermore, we discuss the link between A-type lamins expression in lung carcinoma cells and nuclear deformability, epithelial to mesenchymal transition, and metastatic potential, and which mechanisms could regulate A-type lamins expression in lung cancer, such as the microRNA miR-9.
Collapse
Affiliation(s)
- Julien Guinde
- Aix Marseille Université, INSERM, MMG, 13385 Marseille, France.
- APHM, Hôpital Nord, Department of Thoracic Oncology-Pleural Diseases-Interventional Pulmonology, CEDEX 5, 13385 Marseille, France.
| | - Diane Frankel
- Aix Marseille Université, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, 13385 Marseille, France.
| | - Sophie Perrin
- Aix Marseille Université, INSERM, MMG, 13385 Marseille, France.
- ProGeLife, 13385 Marseille, France.
| | | | - Nicolas Lévy
- Aix Marseille Université, APHM, INSERM, MMG, Hôpital la Timone, Département de Génétique Médicale, 13385 Marseille, France.
| | - Fabrice Barlesi
- Aix Marseille Université, APHM, CNRS, INSERM, CRCM, Multidisciplinary Oncology & Therapeutic Innovations Department, 13385 Marseille, France.
| | - Philippe Astoul
- APHM, Hôpital Nord, Department of Thoracic Oncology-Pleural Diseases-Interventional Pulmonology, CEDEX 5, 13385 Marseille, France.
| | - Patrice Roll
- Aix Marseille Université, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, 13385 Marseille, France.
| | - Elise Kaspi
- Aix Marseille Université, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, 13385 Marseille, France.
| |
Collapse
|
40
|
van den Broek E, den Uil SH, Coupé VMH, Delis-van Diemen PM, Bolijn AS, Bril H, Stockmann HBAC, van Grieken NCT, Meijer GA, Fijneman RJA. MACROD2 expression predicts response to 5-FU-based chemotherapy in stage III colon cancer. Oncotarget 2018; 9:29445-29452. [PMID: 30034629 PMCID: PMC6047676 DOI: 10.18632/oncotarget.25655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/01/2018] [Indexed: 01/01/2023] Open
Abstract
Background Colorectal cancer (CRC) is caused by genetic aberrations. MACROD2 is commonly involved in somatic focal DNA copy number losses, in more than one-third of CRCs. In this study, we aimed to investigate the association of MACROD2 protein expression with clinical outcome in stage II and stage III colon cancer. Methods Tissue microarrays (TMA) containing formalin-fixed paraffin-embedded tissue cores from 386 clinically well-annotated primary stage II and III colon cancers were stained by immunohistochemistry and evaluated for MACROD2 protein expression. Disease-free survival (DFS) analysis was performed to estimate association with clinical outcome. Results Loss of nuclear MACROD2 protein expression in epithelial neoplastic cells of stage III microsatellite stable (MSS) colon cancers was associated with poor DFS within the subgroup of 59 patients who received 5-fluorouracil (5-FU)-based adjuvant chemotherapy (p=0.005; HR=3.8, 95% CI 1.4-10.0). Conclusion These data indicate that low nuclear expression of MACROD2 is associated with poor prognosis of patients with stage III MSS primary colon cancer who were treated with 5-FU-based adjuvant chemotherapy.
Collapse
Affiliation(s)
- Evert van den Broek
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjoerd H den Uil
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Surgery, Spaarne Gasthuis, Haarlem, The Netherlands
| | - Veerle M H Coupé
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Pien M Delis-van Diemen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anne S Bolijn
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Herman Bril
- Department of Pathology, Spaarne Gasthuis, Haarlem, The Netherlands
| | | | | | - Gerrit A Meijer
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Remond J A Fijneman
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Brady GF, Kwan R, Cunha JB, Elenbaas JS, Omary MB. Lamins and Lamin-Associated Proteins in Gastrointestinal Health and Disease. Gastroenterology 2018; 154:1602-1619.e1. [PMID: 29549040 PMCID: PMC6038707 DOI: 10.1053/j.gastro.2018.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
Abstract
The nuclear lamina is a multi-protein lattice composed of A- and B-type lamins and their associated proteins. This protein lattice associates with heterochromatin and integral inner nuclear membrane proteins, providing links among the genome, nucleoskeleton, and cytoskeleton. In the 1990s, mutations in EMD and LMNA were linked to Emery-Dreifuss muscular dystrophy. Since then, the number of diseases attributed to nuclear lamina defects, including laminopathies and other disorders, has increased to include more than 20 distinct genetic syndromes. Studies of patients and mouse genetic models have pointed to important roles for lamins and their associated proteins in the function of gastrointestinal organs, including liver and pancreas. We review the interactions and functions of the lamina in relation to the nuclear envelope and genome, the ways in which its dysfunction is thought to contribute to human disease, and possible avenues for targeted therapies.
Collapse
Affiliation(s)
- Graham F. Brady
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,To whom correspondence should be addressed: University of Michigan Medical School, Division of Gastroenterology, Department of Internal Medicine, 1137 Catherine St., Ann Arbor, MI 48109-5622.
| | - Raymond Kwan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Juliana Bragazzi Cunha
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jared S. Elenbaas
- Medical Scientist Training Program, Washington University, St Louis, Missouri
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,Ǻbo Akademi University, Turku, Finland
| |
Collapse
|
42
|
Cicchillitti L, Manni I, Mancone C, Regazzo G, Spagnuolo M, Alonzi T, Carlomosti F, Dell'Anna ML, Dell'Omo G, Picardo M, Ciana P, Capogrossi MC, Tripodi M, Magenta A, Rizzo MG, Gurtner A, Piaggio G. The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation. Oncotarget 2018; 8:2628-2646. [PMID: 27793050 PMCID: PMC5356829 DOI: 10.18632/oncotarget.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/10/2016] [Indexed: 12/02/2022] Open
Abstract
Lamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA. By this screening we identified lamin A as a novel putative NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed the interaction between the two endogenous proteins. Interestingly, this association occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y transcriptional activity. Taking advantage of a recently generated transgenic reporter mouse, called MITO-Luc, in which an NF-Y–dependent promoter controls luciferase expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity not only in culture cells but also in living animals. Altogether, our data demonstrate the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein complex in regulation of NF-Y function in cell proliferation.
Collapse
Affiliation(s)
- Lucia Cicchillitti
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Isabella Manni
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carmine Mancone
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Department of Epidemiology and Preclinical Research, 00149 Rome, Italy.,Department of Cellular Biotechnologies and Haematology, Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | - Giulia Regazzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Manuela Spagnuolo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Tonino Alonzi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Department of Epidemiology and Preclinical Research, 00149 Rome, Italy
| | - Fabrizio Carlomosti
- Fondazione Luigi Maria Monti, Istituto Dermopatico dell'Immacolata-IRCCS, Laboratorio di Patologia Vascolare, 00167 Rome, Italy
| | - Maria Lucia Dell'Anna
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, 00144 Rome, Italy
| | - Giulia Dell'Omo
- Department of Oncology and Hemato-Oncology and Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatologic Institute, IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Paolo Ciana
- Center of Excellence on Neurodegenerative Diseases, Department of Oncology and Hemato-Oncology, University of Milan, 20133 Milan, Italy
| | - Maurizio C Capogrossi
- Fondazione Luigi Maria Monti, Istituto Dermopatico dell'Immacolata-IRCCS, Laboratorio di Patologia Vascolare, Via dei Monti di Creta 104, Rome 00167, Italy Rome, Italy
| | - Marco Tripodi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Department of Epidemiology and Preclinical Research, 00149 Rome, Italy.,Department of Cellular Biotechnologies and Haematology, Istituto Pasteur Italia, Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandra Magenta
- Fondazione Luigi Maria Monti, Istituto Dermopatico dell'Immacolata-IRCCS, Laboratorio di Patologia Vascolare, Via dei Monti di Creta 104, Rome 00167, Italy Rome, Italy
| | - Maria Giulia Rizzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Aymone Gurtner
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Giulia Piaggio
- Department of Research, Advanced Diagnostics and Technological Innovation, SAFU Unit, Translational Research Area, Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
43
|
van den Broek E, Krijgsman O, Sie D, Tijssen M, Mongera S, van de Wiel MA, Belt EJT, den Uil SH, Bril H, Stockmann HBAC, Ylstra B, Carvalho B, Meijer GA, Fijneman RJA. Genomic profiling of stage II and III colon cancers reveals APC mutations to be associated with survival in stage III colon cancer patients. Oncotarget 2018; 7:73876-73887. [PMID: 27729614 PMCID: PMC5342020 DOI: 10.18632/oncotarget.12510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 10/01/2016] [Indexed: 01/05/2023] Open
Abstract
Tumor profiling of DNA alterations, i.e. gene point mutations, somatic copy number aberrations (CNAs) and structural variants (SVs), improves insight into the molecular pathology of cancer and clinical outcome. Here, associations between genomic aberrations and disease recurrence in stage II and III colon cancers were investigated. A series of 114 stage II and III microsatellite stable colon cancer samples were analyzed by high-resolution array-comparative genomic hybridization (array-CGH) to detect CNAs and CNA-associated chromosomal breakpoints (SVs). For 60 of these samples mutation status of APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, BRAF and NRAS was determined using targeted massive parallel sequencing. Loss of chromosome 18q12.1-18q12.2 occurred more frequently in tumors that relapsed than in relapse-free tumors (p < 0.001; FDR = 0.13). In total, 267 genes were recurrently affected by SVs (FDR < 0.1). CNAs and SVs were not associated with disease-free survival (DFS). Mutations in APC and TP53 were associated with increased CNAs. APC mutations were associated with poor prognosis in (5-fluorouracil treated) stage III colon cancers (p = 0.005; HR = 4.1), an effect that was further enhanced by mutations in MAPK pathway (KRAS, NRAS, BRAF) genes. We conclude that among multiple genomic alterations in CRC, strongest associations with clinical outcome were observed for common mutations in APC.
Collapse
Affiliation(s)
- Evert van den Broek
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Daoud Sie
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Marianne Tijssen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sandra Mongera
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Mark A van de Wiel
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands.,Department of Mathematics, VU University, Amsterdam, The Netherlands
| | - Eric J Th Belt
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Surgery, VU University, Amsterdam, The Netherlands
| | - Sjoerd H den Uil
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Surgery, VU University, Amsterdam, The Netherlands
| | - Herman Bril
- Department of Pathology, Spaarne Gasthuis, Haarlem, The Netherlands
| | | | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Beatriz Carvalho
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gerrit A Meijer
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Remond J A Fijneman
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Setijono SR, Park M, Kim G, Kim Y, Cho KW, Song SJ. miR-218 and miR-129 regulate breast cancer progression by targeting Lamins. Biochem Biophys Res Commun 2018; 496:826-833. [PMID: 29378184 DOI: 10.1016/j.bbrc.2018.01.146] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/23/2018] [Indexed: 01/15/2023]
Abstract
Breast cancer is the most frequently diagnosed life-threatening cancer in women. Triple-negative breast cancer (TNBC) has an aggressive clinical behavior, but the treatment of TNBC remains challenging. MicroRNAs (miRNAs) have emerged as a potential target for the diagnosis, therapy and prognosis of breast cancer. However, the precise role of miRNAs and their targets in breast cancer remain to be elucidated. Here we show that miR-218 is downregulated and miR-129 is upregulated in TNBC samples and their expressions confer prognosis to patients. Gain-of-function and loss-of-function analysis reveals that miR-218 has a tumor suppressive activity, while miR-129 acts as an oncomir in breast cancer. Notably, miR-218 and miR-129 directly target Lamin B1 and Lamin A, respectively, which are also found to be deregulated in human breast tumors. Finally, we demonstrate Lamins as the major factors in reliable miR-218 and miR-129 functions for breast cancer progression. Our findings uncover a new miRNA-mediated regulatory network for different Lamins and provide a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Stephanie Rebecca Setijono
- Soonchunhyang Institute of Medi-Bioscience (SIMS), Soonchunhyang University, 25 Bongjeong-ro Dongnam-gu, Chungcheongnam-do, 31151, South Korea
| | - Mikyung Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Goeun Kim
- Soonchunhyang Institute of Medi-Bioscience (SIMS), Soonchunhyang University, 25 Bongjeong-ro Dongnam-gu, Chungcheongnam-do, 31151, South Korea
| | - Yongjo Kim
- Soonchunhyang Institute of Medi-Bioscience (SIMS), Soonchunhyang University, 25 Bongjeong-ro Dongnam-gu, Chungcheongnam-do, 31151, South Korea
| | - Kae Won Cho
- Soonchunhyang Institute of Medi-Bioscience (SIMS), Soonchunhyang University, 25 Bongjeong-ro Dongnam-gu, Chungcheongnam-do, 31151, South Korea.
| | - Su Jung Song
- Soonchunhyang Institute of Medi-Bioscience (SIMS), Soonchunhyang University, 25 Bongjeong-ro Dongnam-gu, Chungcheongnam-do, 31151, South Korea.
| |
Collapse
|
45
|
Khan ZS, Santos JM, Hussain F. Aggressive prostate cancer cell nuclei have reduced stiffness. BIOMICROFLUIDICS 2018; 12:014102. [PMID: 29333204 PMCID: PMC5750055 DOI: 10.1063/1.5019728] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 12/15/2017] [Indexed: 05/25/2023]
Abstract
It has been hypothesized that highly metastatic cancer cells have softer nuclei and hence would travel faster through confining environments. Our goal was to prove this untested hypothesis for prostate cells. Our nuclear creep experiments using a microfluidic channel with a narrow constriction show that stiffness of aggressive immortalized prostate cancer nuclei is significantly lower than that of immortalized normal cell nuclei and hence can be a convenient malignancy marker. Nuclear stiffness is found to be the highest for cells expressing high levels of lamin A/C but lowest for cells expressing low lamin A/C levels. Decreased chromatin condensation found in softer nuclei suggests that the former can also be a marker for aggressive cancers.
Collapse
Affiliation(s)
- Zeina S Khan
- Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Julianna M Santos
- Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Fazle Hussain
- Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
46
|
Hu S, Wang R, Tsang CM, Tsao SW, Sun D, Lam RH. Revealing elasticity of largely deformed cells flowing along confining microchannels. RSC Adv 2018; 8:1030-1038. [PMID: 35538956 PMCID: PMC9076943 DOI: 10.1039/c7ra10750a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
Deformability is a hallmark of malignant tumor cells. Characterizing cancer cell deformation can reveal how cancer cell metastasizes through tiny gaps in tissues. However, many previous reports only focus on the cancer cell behaviors under small deformation regimes, which may not be representative for the behaviors under large deformations as in the in vivo metastatic processes. Here, we investigate a wide range of cell elasticity using our recently developed confining microchannel arrays. We develop a relation between the elastic modulus and cell shape under different deformation levels based on a modified contact theory and the hyperelastic Tatara theory. We demonstrate good agreements between the model prediction and experimental results. Strikingly, we discover a clear ‘modulus jump’ of largely deformed cells compared to that of small deformed cells, offering further biomechanical properties of the cells. Likely, such a modulus jump can be considered as a label-free marker reflecting the elasticity of intracellular components including the nucleus during cell translocation in capillaries and tissue constrictions. In essence, we perform cell classification based on the distinct micromechanical properties of four cell lines, i.e. one normal cell line (MCF-10A) and three cancer cell lines (MCF-7, MDA-MB-231 and PC3) and achieved reasonable efficiencies (efficiency >65%). Finally, we study the correlation between large-deformational elasticity and translocation rates of the floating cells in the microchannels. Together, our results demonstrate the quantitative analysis of the biomechanical properties of single floating cells, which provide an additional label-free physical biomarker toward more effective cancer diagnosis. Deformability is a hallmark of malignant tumor cells.![]()
Collapse
Affiliation(s)
- Shuhuan Hu
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- Hong Kong
| | - Ran Wang
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- Hong Kong
| | - Chi Man Tsang
- School of Biomedical Sciences
- University of Hong Kong
- Hong Kong
| | - Sai Wah Tsao
- School of Biomedical Sciences
- University of Hong Kong
- Hong Kong
| | - Dong Sun
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- Hong Kong
- City University of Hong Kong Shenzhen Research Institute
- Shenzhen
| | - Raymond H. W. Lam
- Department of Mechanical and Biomedical Engineering
- City University of Hong Kong
- Hong Kong
- City University of Hong Kong Shenzhen Research Institute
- Shenzhen
| |
Collapse
|
47
|
Leśniak W, Wilanowski T, Filipek A. S100A6 - focus on recent developments. Biol Chem 2017; 398:1087-1094. [PMID: 28343163 DOI: 10.1515/hsz-2017-0125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/21/2017] [Indexed: 01/08/2023]
Abstract
The Ca2+-binding protein, S100A6, belongs to the S100 family. Binding of Ca2+ induces a conformational change, which causes an increase in the overall S100A6 hydrophobicity and allows it to interact with many targets. S100A6 is expressed in different normal tissues and in many tumors. Up to now it has been shown that S100A6 is involved in cell proliferation, cytoskeletal dynamics and tumorigenesis, and that it might have some extracellular functions. In this review, we summarize novel discoveries concerning S100A6 targets, its involvement in cellular signaling pathways, and presence in stem/progenitor cells, extracellular matrix and body fluids of diseased patients.
Collapse
|
48
|
Zhang X, Lv Y. Suspension state increases reattachment of breast cancer cells by up-regulating lamin A/C. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2272-2282. [PMID: 28919351 DOI: 10.1016/j.bbamcr.2017.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/27/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022]
Abstract
Extravasation is a rate-limiting step of tumor metastasis, for which adhesion to endothelium of circulating tumor cells (CTCs) is the prerequisite. The suspension state of CTCs undergoing detachment from primary tumor is a persistent biomechanical cue, which potentially regulates the biophysical characteristics and cellular behaviors of tumor cells. In this study, breast tumor cells MDA-MB-231 in suspension culture condition were used to investigate the effect of suspension state on reattachment of CTCs. Our study demonstrated that suspension state significantly increased the adhesion ability of breast tumor cells. In addition, suspension state markedly promoted the formation of stress fibers and focal adhesions and reduced the motility in reattached breast cancer cells. Moreover, lamin A/C was reversibly accumulated at posttranscriptional level under suspension state, improving the cell stiffness of reattached breast cancer cells. Disruption of actin cytoskeleton by cytochalasin D caused lamin A/C accumulation. Conversely, decreasing actomyosin contraction by ROCK inhibitor Y27632 reduced lamin A/C level. Knocking down lamin A/C weakened the suspension-induced increase of adhesion, and also abolished the suspension-induced decrease of motility and increase of stress fibers and focal adhesion in reattaching tumor cells, suggesting a crucial role of lamin A/C. In conclusion, it was demonstrated that suspension state promoted the reattachment of breast tumor cells by up-regulating lamin A/C via cytoskeleton disruption. These findings highlight the important role of suspension state for tumor cells in tumor metastasis.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
49
|
Ma Y, Fei L, Zhang M, Zhang W, Liu X, Wang C, Luo Y, Zhang H, Han Y. Lamin B2 binding to minichromosome maintenance complex component 7 promotes non-small cell lung carcinogenesis. Oncotarget 2017; 8:104813-104830. [PMID: 29285216 PMCID: PMC5739603 DOI: 10.18632/oncotarget.20338] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022] Open
Abstract
We investigated the role of lamin B2 in non-small cell lung cancer (NSCLC). We detected higher lamin B2 expression in 20 NSCLC tumor tissues obtained from The Cancer Genome Atlas than in adjacent normal lung tissues. LMNB2-RNAi knockdown in A549 and H1299 NSCLC cells inhibited colony formation, cell proliferation and G1-S cell cycle progression while increasing apoptosis. LMNB2 overexpression had the opposite effects. Tumor xenograft experiments showed diminished tumor growth with LMNB2 knockdown H1299 cells than with controls. Yeast two-hybrid studies revealed minichromosome maintenance complex component 7 (MCM7) to be a binding partner of lamin B2, which was confirmed by co-immunoprecipitation and co-localization studies. Lamin B2 binding enhanced DNA binding and helicase activities of MCM7. Deletion analysis with MCM7-N, MCM7-M or MCM7-C mutant proteins showed that lamin B2 binds to the C-terminus of MCM7, and competes with the binding of the tumor suppressor retinoblastoma (RB) protein. Immunohistochemical analysis of 150 NSCLC patient samples revealed that both lamin B2 and MCM7 levels positively correlated with histological grade and tumor TNM stage. Moreover, high lamin B2 and MCM7 levels correlated with shorter overall survival of NSCLC patients. In sum, these results show that lamin B2 interaction with MCM7 promotes NSCLC progression.
Collapse
Affiliation(s)
- Yinan Ma
- Departments of Pathology, School of Basic Medical Sciences, China Medical University, Liaoning, China
| | - Liangru Fei
- Departments of Pathology, School of Basic Medical Sciences, China Medical University, Liaoning, China
| | - Meiyu Zhang
- Departments of Pathology, School of Basic Medical Sciences, China Medical University, Liaoning, China
| | - Wenzhu Zhang
- Departments of Pathology, School of Basic Medical Sciences, China Medical University, Liaoning, China
| | - Xiaofang Liu
- Department of Pathology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Congcong Wang
- Department of Pathology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Yuan Luo
- Departments of Pathology, School of Basic Medical Sciences, China Medical University, Liaoning, China
| | - Haiyan Zhang
- Department of Pathology, The First People's Hospital of Jining, Shandong, China
| | - Yuchen Han
- Departments of Pathology, School of Basic Medical Sciences, China Medical University, Liaoning, China.,Department of Pathology, The First Affiliated Hospital of China Medical University, Liaoning, China.,Department of Pathology, Shanghai Chest Hospital, Shanghai, China
| |
Collapse
|
50
|
Kaspi E, Frankel D, Guinde J, Perrin S, Laroumagne S, Robaglia-Schlupp A, Ostacolo K, Harhouri K, Tazi-Mezalek R, Micallef J, Dutau H, Tomasini P, De Sandre-Giovannoli A, Lévy N, Cau P, Astoul P, Roll P. Low lamin A expression in lung adenocarcinoma cells from pleural effusions is a pejorative factor associated with high number of metastatic sites and poor Performance status. PLoS One 2017; 12:e0183136. [PMID: 28806747 PMCID: PMC5555706 DOI: 10.1371/journal.pone.0183136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 07/31/2017] [Indexed: 11/29/2022] Open
Abstract
The type V intermediate filament lamins are the principal components of the nuclear matrix, including the nuclear lamina. Lamins are divided into A-type and B-type, which are encoded by three genes, LMNA, LMNB1, and LMNB2. The alternative splicing of LMNA produces two major A-type lamins, lamin A and lamin C. Previous studies have suggested that lamins are involved in cancer development and progression. A-type lamins have been proposed as biomarkers for cancer diagnosis, prognosis, and/or follow-up. The aim of the present study was to investigate lamins in cancer cells from metastatic pleural effusions using immunofluorescence, western blotting, and flow cytometry. In a sub-group of lung adenocarcinomas, we found reduced expression of lamin A but not of lamin C. The reduction in lamin A expression was correlated with the loss of epithelial membrane antigen (EMA)/MUC-1, an epithelial marker that is involved in the epithelial to mesenchymal transition (EMT). Finally, the lamin A expression was inversely correlated with the number of metastatic sites and the WHO Performance status, and association of pleural, bone and lung metastatic localizations was more frequent when lamin A expression was reduced. In conclusion, low lamin A but not lamin C expression in pleural metastatic cells could represent a major actor in the development of metastasis, associated with EMT and could account for a pejorative factor correlated with a poor Performance status.
Collapse
Affiliation(s)
- Elise Kaspi
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | - Diane Frankel
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | - Julien Guinde
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital Nord, Department of Thoracic Oncology–Pleural diseases–Interventional pulmonology, Marseille, France
| | | | - Sophie Laroumagne
- APHM, Hôpital Nord, Department of Thoracic Oncology–Pleural diseases–Interventional pulmonology, Marseille, France
| | - Andrée Robaglia-Schlupp
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
- APHM, Hôpital la Timone, Département de Génétique Médicale et Centre de Ressources Biologiques, Marseille, France
| | | | | | - Rachid Tazi-Mezalek
- APHM, Hôpital Nord, Department of Thoracic Oncology–Pleural diseases–Interventional pulmonology, Marseille, France
| | - Joelle Micallef
- APHM, Hôpital la Timone, Service de Pharmacologie Clinique & Centre d’Investigation Clinique—CPCET, Marseille, France
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Hervé Dutau
- APHM, Hôpital Nord, Department of Thoracic Oncology–Pleural diseases–Interventional pulmonology, Marseille, France
| | - Pascale Tomasini
- Aix Marseille Univ, APHM, Marseille Early Phases Cancer Trials Center CLIP, Marseille, France
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Département de Génétique Médicale et Centre de Ressources Biologiques, Marseille, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Département de Génétique Médicale et Centre de Ressources Biologiques, Marseille, France
| | - Pierre Cau
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
| | - Philippe Astoul
- APHM, Hôpital Nord, Department of Thoracic Oncology–Pleural diseases–Interventional pulmonology, Marseille, France
- Aix Marseille Univ, Marseille, France
| | - Patrice Roll
- Aix Marseille Univ, INSERM, GMGF, Marseille, France
- APHM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
- * E-mail:
| |
Collapse
|