1
|
Hintzen G, Dulat HJ, Rajkovic E. Engaging innate immunity for targeting the epidermal growth factor receptor: Therapeutic options leveraging innate immunity versus adaptive immunity versus inhibition of signaling. Front Oncol 2022; 12:892212. [PMID: 36185288 PMCID: PMC9518002 DOI: 10.3389/fonc.2022.892212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a key player in the normal tissue physiology and the pathology of cancer. Therapeutic approaches have now been developed to target oncogenic genetic aberrations of EGFR, found in a subset of tumors, and to take advantage of overexpression of EGFR in tumors. The development of small-molecule inhibitors and anti-EGFR antibodies targeting EGFR activation have resulted in effective but limited treatment options for patients with mutated or wild-type EGFR-expressing cancers, while therapeutic approaches that deploy effectors of the adaptive or innate immune system are still undergoing development. This review discusses EGFR-targeting therapies acting through distinct molecular mechanisms to destroy EGFR-expressing cancer cells. The focus is on the successes and limitations of therapies targeting the activation of EGFR versus those that exploit the cytotoxic T cells and innate immune cells to target EGFR-expressing cancer cells. Moreover, we discuss alternative approaches that may have the potential to overcome limitations of current therapies; in particular the innate cell engagers are discussed. Furthermore, this review highlights the potential to combine innate cell engagers with immunotherapies, to maximize their effectiveness, or with unspecific cell therapies, to convert them into tumor-specific agents.
Collapse
|
2
|
Golay J, Andrea AE, Cattaneo I. Role of Fc Core Fucosylation in the Effector Function of IgG1 Antibodies. Front Immunol 2022; 13:929895. [PMID: 35844552 PMCID: PMC9279668 DOI: 10.3389/fimmu.2022.929895] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of fucose on IgG1 Asn-297 N-linked glycan is the modification of the human IgG1 Fc structure with the most significant impact on FcɣRIII affinity. It also significantly enhances the efficacy of antibody dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells in vitro, induced by IgG1 therapeutic monoclonal antibodies (mAbs). The effect of afucosylation on ADCC or antibody dependent phagocytosis (ADCP) mediated by macrophages or polymorphonuclear neutrophils (PMN) is less clear. Evidence for enhanced efficacy of afucosylated therapeutic mAbs in vivo has also been reported. This has led to the development of several therapeutic antibodies with low Fc core fucose to treat cancer and inflammatory diseases, seven of which have already been approved for clinical use. More recently, the regulation of IgG Fc core fucosylation has been shown to take place naturally during the B-cell immune response: A decrease in α-1,6 fucose has been observed in polyclonal, antigen-specific IgG1 antibodies which are generated during alloimmunization of pregnant women by fetal erythrocyte or platelet antigens and following infection by some enveloped viruses and parasites. Low IgG1 Fc core fucose on antigen-specific polyclonal IgG1 has been linked to disease severity in several cases, such as SARS-CoV 2 and Dengue virus infection and during alloimmunization, highlighting the in vivo significance of this phenomenon. This review aims to summarize the current knowledge about human IgG1 Fc core fucosylation and its regulation and function in vivo, in the context of both therapeutic antibodies and the natural immune response. The parallels in these two areas are informative about the mechanisms and in vivo effects of Fc core fucosylation, and may allow to further exploit the desired properties of this modification in different clinical contexts.
Collapse
Affiliation(s)
- Josée Golay
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
- *Correspondence: Josée Golay,
| | - Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Irene Cattaneo
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
3
|
Sur D, Havasi A, Gorzo A, Burz C. A Critical Review of Second-Generation Anti-EGFR Monoclonal Antibodies in Metastatic Colorectal Cancer. Curr Drug Targets 2021; 22:1034-1042. [PMID: 32718285 DOI: 10.2174/1389450121666200727121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Anti-EGFR monoclonal antibodies (mAbs) have become a relevant solution for the treatment of patients with metastatic colorectal cancer. Current anti-EGFR monoclonal antibodies face a series of problems, including resistance and non-durable response, and RAS and BRAF mutations serve as exclusion criteria for treatment with anti-EGFR mAbs. Advances in molecular tumor profiling and information on subsequent pathways responsible for disease progression and drug resistance helped develop a new generation of anti-EGFR mAbs. These second-generation mAbs have been developed to overcome existing resistance mechanisms and to limit common side effects. For the moment, existing literature suggests that these novel anti-EGFR mAbs are far from finding their way to clinical practice soon. OBJECTIVE In this review, we summarize and evaluate current data regarding ongoing research and completed clinical trials for different second-generation anti-EGFR monoclonal antibodies. CONCLUSION Anti-EGFR mAbs exhibit efficacy in advanced colorectal cancer, but second-generation mAbs failed to prove their benefit in the treatment of metastatic colorectal cancer. Understanding the biological basis of primary and acquired drug resistance could allow scientists to design better clinical trials and develop improved second-generation mAbs.
Collapse
Affiliation(s)
- Daniel Sur
- Department of Medical Oncology, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj- Napoca, Romania
| | - Andrei Havasi
- Department of Medical Oncology, "Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania
| | - Alecsandra Gorzo
- Department of Medical Oncology, "Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania
| | - Claudia Burz
- Department of Medical Oncology, "Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Prat M, Salon M, Allain T, Dubreuil O, Noël G, Preisser L, Jean B, Cassard L, Lemée F, Tabah-Fish I, Pipy B, Jeannin P, Prost JF, Barret JM, Coste A. Murlentamab, a Low Fucosylated Anti-Müllerian Hormone Type II Receptor (AMHRII) Antibody, Exhibits Anti-Tumor Activity through Tumor-Associated Macrophage Reprogrammation and T Cell Activation. Cancers (Basel) 2021; 13:cancers13081845. [PMID: 33924378 PMCID: PMC8070390 DOI: 10.3390/cancers13081845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary AMHRII, the anti-Müllerian hormone receptor, is selectively expressed in normal sexual organs in healthy adults but is also re-expressed in ovarian, colorectal and lung cancers. In this context, we developed murlentamab, a humanized glyco-engineered anti-AMHRII monoclonal antibody, currently in clinical trial. Preliminary data suggest that murlentamab anti-tumor activity involves immune response activation. Thus, in vitro experiments were performed to precisely characterize the murlentamab effect on the human immune system. We show that murlentamab treatment is associated with evidences of innate and adaptive immune cell activation in cancer patient samples. Moreover, we demonstrate that the murlentamab opsonization of AMHRII-expressing ovarian tumor cells promotes a polarization switch of both naïve and tumor-associated macrophages towards an anti-tumor M1-like phenotype. Our work also supports that, through macrophage reeducation, murlentamab activates an anti-tumor adaptive immune response. Finally, the combination of murlentamab with pembrolizumab confirmed novel clinical perspectives of murlentamab association with checkpoint inhibitors and other immuno-modulators. Abstract AMHRII, the anti-Müllerian hormone receptor, is selectively expressed in normal sexual organs but is also re-expressed in gynecologic cancers. Hence, we developed murlentamab, a humanized glyco-engineered anti-AMHRII monoclonal antibody currently in clinical trial. Low-fucosylated antibodies are known to increase the antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) potency of effector cells, but some preliminary results suggest a more global murlentamab-dependent activation of the immune system. In this context, we demonstrate here that the murlentamab opsonization of AMHRII-expressing ovarian tumor cells, in the presence of unstimulated- or tumor-associated macrophage (TAM)-like macrophages, significantly promotes macrophage-mediated ADCC and shifts the whole microenvironment towards a pro-inflammatory and anti-tumoral status, thus triggering anti-tumor activity. We also report that murlentamab orients both unstimulated- and TAM-like macrophages to an M1-like phenotype characterized by a strong expression of co-stimulation markers, pro-inflammatory cytokines and chemokines, favoring T cell recruitment and activation. Moreover, we show that murlentamab treatment shifts CD4+ Th1/Th2 balance towards a Th1 response and activates CD8+ T cells. Altogether, these results suggest that murlentamab, through naïve macrophage orientation and TAM reprogrammation, stimulates the anti-tumor adaptive immune response. Those mechanisms might contribute to the sustained clinical benefit observed in advanced cancer patients treated with murlentamab. Finally, the enhanced murlentamab activity in combination with pembrolizumab opens new therapeutic perspectives.
Collapse
Affiliation(s)
- Mélissa Prat
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31062 Toulouse, France; (M.P.); (M.S.); (T.A.); (B.P.)
| | - Marie Salon
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31062 Toulouse, France; (M.P.); (M.S.); (T.A.); (B.P.)
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, UPS, 31100 Toulouse, France
| | - Thibault Allain
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31062 Toulouse, France; (M.P.); (M.S.); (T.A.); (B.P.)
| | - Olivier Dubreuil
- GamaMabs Pharma, 31106 Toulouse, France; (O.D.); (B.J.); (F.L.); (J.-F.P.); (J.-M.B.)
| | - Grégory Noël
- Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium;
| | - Laurence Preisser
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, 49000 Angers, France; (L.P.); (P.J.)
| | - Bérangère Jean
- GamaMabs Pharma, 31106 Toulouse, France; (O.D.); (B.J.); (F.L.); (J.-F.P.); (J.-M.B.)
| | - Lydie Cassard
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, 94905 Villejuif, France;
| | - Fanny Lemée
- GamaMabs Pharma, 31106 Toulouse, France; (O.D.); (B.J.); (F.L.); (J.-F.P.); (J.-M.B.)
| | - Isabelle Tabah-Fish
- GamaMabs Pharma, 31106 Toulouse, France; (O.D.); (B.J.); (F.L.); (J.-F.P.); (J.-M.B.)
| | - Bernard Pipy
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31062 Toulouse, France; (M.P.); (M.S.); (T.A.); (B.P.)
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, UPS, 31100 Toulouse, France
| | - Pascale Jeannin
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, 49000 Angers, France; (L.P.); (P.J.)
| | - Jean-François Prost
- GamaMabs Pharma, 31106 Toulouse, France; (O.D.); (B.J.); (F.L.); (J.-F.P.); (J.-M.B.)
| | - Jean-Marc Barret
- GamaMabs Pharma, 31106 Toulouse, France; (O.D.); (B.J.); (F.L.); (J.-F.P.); (J.-M.B.)
| | - Agnès Coste
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31062 Toulouse, France; (M.P.); (M.S.); (T.A.); (B.P.)
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, UPS, 31100 Toulouse, France
- Correspondence: ; Tel.: +33-534-609-501
| |
Collapse
|
5
|
Shitara K, Satoh T, Iwasa S, Yamaguchi K, Muro K, Komatsu Y, Nishina T, Esaki T, Hasegawa J, Kakurai Y, Kamiyama E, Nakata T, Nakamura K, Sakaki H, Hyodo I. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the afucosylated, humanized anti-EPHA2 antibody DS-8895a: a first-in-human phase I dose escalation and dose expansion study in patients with advanced solid tumors. J Immunother Cancer 2019; 7:219. [PMID: 31412935 PMCID: PMC6694490 DOI: 10.1186/s40425-019-0679-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background Erythropoietin-producing hepatocellular receptor A2 (EPHA2) is overexpressed on the cell surface in many cancers and predicts poor prognosis. DS-8895a is a humanized anti-EPHA2 IgG1 monoclonal antibody afucosylated to enhance antibody-dependent cellular cytotoxicity activity. We conducted a two-step, phase I, multicenter, open-label study to determine the safety, tolerability, and pharmacokinetics of DS-8895a in patients with advanced solid tumors. Methods Step 1 was a dose escalation cohort in advanced solid tumor patients (six dose levels, 0.1–20 mg/kg) to determine Step 2 dosing. Step 2 was a dose expansion cohort in EPHA2-positive esophageal and gastric cancer patients. DS-8895a was intravenously administered every 2 weeks for the duration of the study, with a 28-day period to assess dose-limiting toxicity (DLT). Safety, pharmacokinetics, tumor response, and potential biomarkers were evaluated. Results Thirty-seven patients (Step 1: 22, Step 2: 15 [9: gastric cancer, 6: esophageal cancer]) were enrolled. Although one DLT (Grade 4 platelet count decreased) was observed in Step 1 (dose level 6, 20 mg/kg), the maximum tolerated dose was not reached; the highest dose (20 mg/kg) was used in Step 2. Of the 37 patients, 24 (64.9%) experienced drug-related adverse events (AEs) including three (8.1%) with Grade ≥ 3 AEs. Infusion-related reactions occurred in 19 patients (51.4%) but were manageable. All patients discontinued the study (evident disease progression, 33; AEs, 4). Maximum and trough serum DS-8895a concentrations increased dose-dependently. One gastric cancer patient achieved partial response and 13 patients achieved stable disease. Serum inflammatory cytokines transiently increased at completion of and 4 h after the start of DS-8895a administration. The proportion of CD16-positive natural killer (NK) cells (CD3−CD56+CD16+) decreased 4 h after the start of DS-8895a administration, and the ratio of CD3−CD56+CD137+ to CD3−CD56+CD16+ cells increased on day 3. Conclusions Twenty mg/kg DS-8895a infused intravenously every 2 weeks was generally safe and well tolerated in patients (n = 21) with advanced solid tumors. The exposure of DS-8895a seemed to increase dose-dependently and induce activated NK cells. Trial registration Phase 1 Study of DS-8895a in patients with advanced solid tumors (NCT02004717; 7 November 2013 to 2 February 2017); retrospectively registered on 9 December 2013. Electronic supplementary material The online version of this article (10.1186/s40425-019-0679-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kohei Shitara
- National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa City, Chiba, Japan.
| | - Taroh Satoh
- Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Kensei Yamaguchi
- Cancer Institute Hospital of Japan Foundation for Cancer Research, Tokyo, Japan
| | - Kei Muro
- Aichi Cancer Center Hospital and Research Institute, Aichi, Japan
| | | | | | - Taito Esaki
- National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Santuray RT, Johnson DE, Grandis JR. New Therapies in Head and Neck Cancer. Trends Cancer 2018; 4:385-396. [PMID: 29709262 PMCID: PMC6226306 DOI: 10.1016/j.trecan.2018.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/05/2018] [Accepted: 03/09/2018] [Indexed: 01/04/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common malignancy with high rates of mortality and morbidity. Beginning with cetuximab, investigators continue to optimize antibody technology to target cell-surface receptors that promote HNSCC growth. Small molecules and oligonucleotides have also emerged as therapeutic inhibitors of key receptor-mediated signaling pathways. Although many such therapies have been disappointing in clinical trials as single agents, they continue to be studied in combination with standard therapies. Approvals of pembrolizumab and nivolumab opened a new era of immunotherapy that aims to stimulate antitumor immunity in the tumor microenvironment. Immunotherapies are being intensively investigated in new HNSCC clinical trials, with the goal of optimizing the therapeutic potential of this new class of anticancer agent.
Collapse
Affiliation(s)
- Rodell T Santuray
- School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
7
|
Moradi-Kalbolandi S, Hosseinzade A, Salehi M, Merikhian P, Farahmand L. Monoclonal antibody-based therapeutics, targeting the epidermal growth factor receptor family: from herceptin to Pan HER. J Pharm Pharmacol 2018; 70:841-854. [DOI: 10.1111/jphp.12911] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/25/2018] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
Monoclonal antibody-based of cancer therapy has been considered as one of the most successful therapeutic strategies for both haematologic malignancies and solid tumours in the last two decades. Epidermal growth factor receptor (EGFR) family signalling pathways play a key role in the regulation of cell proliferation, survival and differentiation. Hence, anti-EGFR family mAbs is one of the most promising approaches in cancer therapy.
Key findings
Here, recent advances in anti-EGFR mAb including approved or successfully tested in preclinical and clinical studies have been reviewed. Although we focus on monoclonal antibodies against the EGF receptor, but the mechanisms underlying the effects of EGFR-specific mAb in cancer therapy, to some extend the resistance to existing anti-EGFR therapies and some therapeutic strategies to overcome resistance such as combination of mAbs on different pathways are briefly discussed as well.
Summary
The EGFR family receptors, is considered as an attractive target for mAb development to inhibit their consecutive activities in tumour growth and resistance. However, due to resistance mechanisms, the combination therapies may become a good candidate for targeting EGFR family receptors.
Collapse
Affiliation(s)
- Shima Moradi-Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Aysooda Hosseinzade
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Parnaz Merikhian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Estupina P, Fontayne A, Barret JM, Kersual N, Dubreuil O, Le Blay M, Pichard A, Jarlier M, Pugnière M, Chauvin M, Chardès T, Pouget JP, Deshayes E, Rossignol A, Abache T, de Romeuf C, Terrier A, Verhaeghe L, Gaucher C, Prost JF, Pèlegrin A, Navarro-Teulon I. The anti-tumor efficacy of 3C23K, a glyco-engineered humanized anti-MISRII antibody, in an ovarian cancer model is mainly mediated by engagement of immune effector cells. Oncotarget 2018; 8:37061-37079. [PMID: 28427157 PMCID: PMC5513714 DOI: 10.18632/oncotarget.15715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/11/2017] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the leading cause of death in women with gynecological cancers and despite recent advances, new and more efficient therapies are crucially needed. Müllerian Inhibiting Substance type II Receptor (MISRII, also named AMHRII) is expressed in most ovarian cancer subtypes and is a novel potential target for ovarian cancer immunotherapy. We previously developed and tested 12G4, the first murine monoclonal antibody (MAb) against human MISRII. Here, we report the humanization, affinity maturation and glyco-engineering steps of 12G4 to generate the Fc-optimized 3C23K MAb, and the evaluation of its in vivo anti-tumor activity. The epitopes of 3C23K and 12G4 were strictly identical and 3C23K affinity for MISRII was enhanced by a factor of about 14 (KD = 5.5 × 10−11 M vs 7.9 × 10−10 M), while the use of the EMABling® platform allowed the production of a low-fucosylated 3C23K antibody with a 30-fold KD improvement of its affinity to FcγRIIIa. In COV434-MISRII tumor-bearing mice, 3C23K reduced tumor growth more efficiently than 12G4 and its combination with carboplatin was more efficient than each monotherapy with a mean tumor size of 500, 1100 and 100 mm3 at the end of treatment with 3C23K (10 mg/kg, Q3-4D12), carboplatin (60 mg/kg, Q7D4) and 3C23K+carboplatin, respectively. Conversely, 3C23K-FcKO, a 3C23K form without affinity for the FcγRIIIa receptor, did not display any anti-tumor effect in vivo. These results strongly suggested that 3C23K mechanisms of action are mainly Fc-related. In vitro, antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP) were induced by 3C23K, as demonstrated with human effector cells. Using human NK cells, 50% of the maximal lysis was obtained with a 46-fold lower concentration of low-fucosylated 3C23K (2.9 ng/ml) than of 3C23K expressed in CHO cells (133.35 ng/ml). As 3C23K induced strong ADCC with human PBMC but almost none with murine PBMC, antibody-dependent cell phagocytosis (ADCP) was then investigated. 3C23K-dependent (100 ng/ml) ADCP was more active with murine than human macrophages (only 10% of living target cells vs. about 25%). These in vitro results suggest that the reduced ADCC with murine effectors could be partially balanced by ADCP activity in in vivo experiments. Taken together, these preclinical data indicate that 3C23K is a new promising therapeutic candidate for ovarian cancer immunotherapy and justify its recent introduction in a phase I clinical trial.
Collapse
Affiliation(s)
- Pauline Estupina
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | | | | | - Nathalie Kersual
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | | | - Marion Le Blay
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Alexandre Pichard
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Marta Jarlier
- Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Martine Pugnière
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Maëva Chauvin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Thierry Chardès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Jean-Pierre Pouget
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Emmanuel Deshayes
- Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | | | | | | | | | | | | | | | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| | - Isabelle Navarro-Teulon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.,INSERM, U896, Montpellier, F-34298, France.,Université Montpellier, Montpellier, F-34298, France.,Institut Régional du Cancer de Montpellier, ICM, Montpellier, F-34298, France
| |
Collapse
|
9
|
Viala M, Vinches M, Alexandre M, Mollevi C, Durigova A, Hayaoui N, Homicsko K, Cuenant A, Gongora C, Gianni L, Tosi D. Strategies for clinical development of monoclonal antibodies beyond first-in-human trials: tested doses and rationale for dose selection. Br J Cancer 2018; 118:679-697. [PMID: 29438365 PMCID: PMC5846071 DOI: 10.1038/bjc.2017.473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Our previous survey on first-in-human trials (FIHT) of monoclonal antibodies (mAbs) showed that, due to their limited toxicity, the recommended phase II dose (RP2D) was only tentatively defined. METHODS We identified, by MEDLINE search, articles on single-agent trials of mAbs with an FIHT included in our previous survey. For each mAb, we examined tested dose(s) and dose selection rationale in non-FIHTs (NFIHTs). We also assessed the correlation between doses tested in the registration trials (RTs) of all FDA-approved mAbs and the corresponding FIHT results. RESULTS In the 37 dose-escalation NFIHTs, the RP2D indication was still poorly defined. In phase II-III NFIHTs (n=103 on 37 mAbs), the FIHT RP2D was the only dose tested for five mAbs. For 16 mAbs, only doses different from the FIHT RP2D or the maximum administered dose (MAD) were tested and the dose selection rationale infrequently indicated. In the 60 RTs on 27 FDA-approved mAbs with available FIHT, the FIHT RP2D was tested only for two mAbs, and RT doses were much lower than the FIHT MAD. CONCLUSIONS The rationale beyond dose selection in phase II and III trials of mAbs is often unclear in published articles and not based on FIHT data.
Collapse
Affiliation(s)
- Marie Viala
- Institut du Cancer de Montpellier, Montpellier, France
| | - Marie Vinches
- Institut du Cancer de Montpellier, Montpellier, France
| | | | | | | | - Nadia Hayaoui
- Institut du Cancer de Montpellier, Montpellier, France
| | | | - Alice Cuenant
- Institut du Cancer de Montpellier, Montpellier, France
| | - Céline Gongora
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Montpellier, France
| | - Luca Gianni
- San Raffaele – Scientific Institute, Milan, Italy
| | - Diego Tosi
- Institut du Cancer de Montpellier, Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Montpellier, France
| |
Collapse
|
10
|
Pool M, Kol A, Lub-de Hooge MN, Gerdes CA, de Jong S, de Vries EGE, Terwisscha van Scheltinga AGT. Extracellular domain shedding influences specific tumor uptake and organ distribution of the EGFR PET tracer 89Zr-imgatuzumab. Oncotarget 2018; 7:68111-68121. [PMID: 27602494 PMCID: PMC5356542 DOI: 10.18632/oncotarget.11827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/27/2016] [Indexed: 01/03/2023] Open
Abstract
Preclinical positron emission tomography (PET) imaging revealed a mismatch between in vivo epidermal growth factor receptor (EGFR) expression and EGFR antibody tracer tumor uptake. Shed EGFR ectodomain (sEGFR), which is present in cancer patient sera, can potentially bind tracer and therefore influence tracer kinetics. To optimize EGFR-PET, we examined the influence of sEGFR levels on tracer kinetics and tumor uptake of EGFR monoclonal antibody 89Zr-imgatuzumab in varying xenograft models. Human cancer cell lines A431 (EGFR overexpressing, epidermoid), A549 and H441 (both EGFR medium expressing, non-small cell lung cancer) were xenografted in mice. Xenografted mice received 10, 25 or 160 μg 89Zr-imgatuzumab, co-injected with equal doses 111In-IgG control. MicroPET scans were made 24, 72 and 144 h post injection, followed by biodistribution analysis. sEGFR levels in liver and plasma samples were determined by ELISA. 89Zr-imgatuzumab uptake in A431 tumors was highest (29.8 ± 5.4 %ID/g) in the 160 μg dose group. Contrary, highest uptake in A549 and H441 tumors was found at the lowest (10 μg) 89Zr-imgatuzumab dose. High 89Zr-imgatuzumab liver accumulation was found in A431 xenografted mice, which decreased with antibody dose increments. 89Zr-imgatuzumab liver uptake in A549 and H441 xenografted mice was low at all doses. sEGFR levels in liver and plasma of A431 bearing mice were up to 1000-fold higher than levels found in A549, H441 and non-tumor xenografted mice. 89Zr-imgatuzumab effectively visualizes EGFR-expressing tumors. High sEGFR levels can redirect 89Zr-imgatuzumab to the liver, in which case tumor visualization can be improved by increasing tracer antibody dose.
Collapse
Affiliation(s)
- Martin Pool
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Kol
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian A Gerdes
- Department of Roche Pharma Research and Early Development, Roche Innovation Center Zürich, Schlieren, Switzerland
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
11
|
Mimura Y, Katoh T, Saldova R, O'Flaherty R, Izumi T, Mimura-Kimura Y, Utsunomiya T, Mizukami Y, Yamamoto K, Matsumoto T, Rudd PM. Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy. Protein Cell 2018; 9:47-62. [PMID: 28597152 PMCID: PMC5777974 DOI: 10.1007/s13238-017-0433-3] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Glycosylation of the Fc region of IgG has a profound impact on the safety and clinical efficacy of therapeutic antibodies. While the biantennary complex-type oligosaccharide attached to Asn297 of the Fc is essential for antibody effector functions, fucose and outer-arm sugars attached to the core heptasaccharide that generate structural heterogeneity (glycoforms) exhibit unique biological activities. Hence, efficient and quantitative glycan analysis techniques have been increasingly important for the development and quality control of therapeutic antibodies, and glycan profiles of the Fc are recognized as critical quality attributes. In the past decade our understanding of the influence of glycosylation on the structure/function of IgG-Fc has grown rapidly through X-ray crystallographic and nuclear magnetic resonance studies, which provides possibilities for the design of novel antibody therapeutics. Furthermore, the chemoenzymatic glycoengineering approach using endoglycosidase-based glycosynthases may facilitate the development of homogeneous IgG glycoforms with desirable functionality as next-generation therapeutic antibodies. Thus, the Fc glycans are fertile ground for the improvement of the safety, functionality, and efficacy of therapeutic IgG antibodies in the era of precision medicine.
Collapse
Affiliation(s)
- Yusuke Mimura
- Department of Clinical Research, NHO Yamaguchi-Ube Medical Center, 685 Higashi-Kiwa, Ube, 755-0241, Japan.
| | - Toshihiko Katoh
- Laboratory of Molecular Biology and Bioresponse, Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Oiwake-Cho, Sakyo-Ku, Kyoto, 606-8502, Japan
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Dublin 4, Ireland
| | - Roisin O'Flaherty
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Dublin 4, Ireland
| | - Tomonori Izumi
- Center for Regenerative Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami Kogushi, Ube, 755-8505, Japan
| | - Yuka Mimura-Kimura
- Department of Clinical Research, NHO Yamaguchi-Ube Medical Center, 685 Higashi-Kiwa, Ube, 755-0241, Japan
| | - Toshiaki Utsunomiya
- Department of Clinical Research, NHO Yamaguchi-Ube Medical Center, 685 Higashi-Kiwa, Ube, 755-0241, Japan
| | - Yoichi Mizukami
- Center for Gene Research, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Kenji Yamamoto
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Tsuneo Matsumoto
- Department of Clinical Research, NHO Yamaguchi-Ube Medical Center, 685 Higashi-Kiwa, Ube, 755-0241, Japan
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Dublin 4, Ireland
| |
Collapse
|
12
|
Dermatologic Toxicity Occurring During Anti-EGFR Monoclonal Inhibitor Therapy in Patients With Metastatic Colorectal Cancer: A Systematic Review. Clin Colorectal Cancer 2017; 17:85-96. [PMID: 29576427 PMCID: PMC6773267 DOI: 10.1016/j.clcc.2017.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 11/13/2017] [Accepted: 12/07/2017] [Indexed: 12/22/2022]
Abstract
Monoclonal antibody inhibitors of the epidermal growth factor receptor (EGFR) have been shown to improve outcomes for patients with metastatic colorectal cancer (mCRC) without RAS gene mutations. However, treatment with anti-EGFR agents can be associated with toxicities of the skin, nails, hair, and eyes. Because these dermatologic toxicities can result in treatment discontinuation and affect patient quality of life, their management is an important focus when administering anti-EGFR monoclonal antibodies. The present systematic review describes the current data reporting the nature and incidence of, and management and treatment options for, dermatologic toxicities occurring during anti-EGFR treatment of mCRC. A search of the National Library of Medicine PubMed database from January 1, 2009, to August 18, 2016, identified relevant reports discussing dermatologic toxicity management among patients with mCRC receiving anti-EGFR therapy. The studies were grouped by type and rated by level of evidence using the GRADE approach developed by the Agency for Healthcare Research and Quality. Overall, 269 reports were reviewed (nonrandomized trials, n = 120; randomized trials, n = 31; retrospective studies, n = 15; reviews, n = 39). Dermatologic toxicity of any grade occurs in most patients who receive anti-EGFR therapy; approximately 10% to 20% of patients experienced grade 3/4 toxicity. The most common dermatologic toxicities include papulopustular/acneiform rash, xerosis, and pruritus; however, nail changes, hair abnormalities, and ocular conditions also occur. Guidance for managing these toxicities includes the use of inexpensive emollient ointments and moisturizers, avoidance of sun exposure, avoidance of irritants, and the use of short showers. Several studies also found that preemptive treatment was more effective than reactive treatment at limiting the incidence and severity of skin toxicity. With appropriate treatment, the dermatologic toxicities associated with anti-EGFR monoclonal antibody therapy can be managed, minimizing patient discomfort and the need for therapy interruption and/or discontinuation. Additionally, preemptive treatment can reduce dermatologic toxicity severity, ultimately yielding better quality of life.
Collapse
|
13
|
Temam S, Spicer J, Farzaneh F, Soria JC, Oppenheim D, McGurk M, Hollebecque A, Sarini J, Hussain K, Soehrman Brossard S, Manenti L, Evers S, Delmar P, Di Scala L, Mancao C, Feuerhake F, Andries L, Ott MG, Passioukov A, Delord JP. An exploratory, open-label, randomized, multicenter study to investigate the pharmacodynamics of a glycoengineered antibody (imgatuzumab) and cetuximab in patients with operable head and neck squamous cell carcinoma. Ann Oncol 2017; 28:2827-2835. [PMID: 28950289 PMCID: PMC5834084 DOI: 10.1093/annonc/mdx489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In addition to inhibiting epidermal growth factor receptor (EGFR) signaling, anti-EGFR antibodies of the IgG1 'subtype' can induce a complementary therapeutic effect through the induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Glycoengineering of therapeutic antibodies increases the affinity for the Fc-gamma receptor, thereby enhancing ADCC. PATIENTS AND METHODS We investigated the changes in immune effector cells and EGFR pathway biomarkers in 44 patients with operable, advanced stage head and neck squamous cell carcinoma treated with two preoperative doses of either glycoengineered imgatuzumab (GA201; 700 or 1400 mg) or cetuximab (standard dosing) in a neoadjuvant setting with paired pre- and post-treatment tumor biopsies. RESULTS Significant antitumor activity was observed with both antibodies after just two infusions. Metabolic responses were seen in 23 (59.0%) patients overall. One imgatuzumab-treated patient (700 mg) achieved a 'pathological' complete response. An immediate and sustained decrease in peripheral natural killer cells was consistently observed with the first imgatuzumab infusion but not with cetuximab. The functionality of the remaining peripheral natural killer cells was maintained. Similarly, a pronounced increase in circulating cytokines was seen following the first infusion of imgatuzumab but not cetuximab. Overall, tumor-infiltrating CD3+ cell counts increased following treatment with both antibodies. A significant increase from baseline in CD3+/perforin+ cytotoxic T cells occurred only in the 700-mg imgatuzumab group (median 95% increase, P < 0.05). The most prominent decrease of EGFR-expressing cells was recorded after treatment with imgatuzumab (700 mg, -34.6%; 1400 mg, -41.8%). The post-treatment inflammatory tumor microenvironment was strongly related to baseline tumor-infiltrating immune cell density, and baseline levels of EGFR and pERK in tumor cells most strongly predicted therapeutic response. CONCLUSIONS These pharmacodynamic observations and relationship with efficacy are consistent with the proposed mode of action of imgatuzumab combining efficient EGFR pathway inhibition with ADCC-related immune antitumor effects. CLINICAL TRIAL REGISTRATION NUMBER NCT01046266 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- S Temam
- Department of Head and Neck Surgical Oncology, Institut Gustave Roussy, Villejuif, France.
| | | | - F Farzaneh
- Department of Haematological Medicine, King's College London, London, UK
| | - J C Soria
- DITEP (Drug Development Department), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - D Oppenheim
- Department of Haematological Medicine, King's College London, London, UK
| | - M McGurk
- Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - A Hollebecque
- DITEP (Drug Development Department), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - J Sarini
- Department of Surgery, Institut Claudius Regaud, Toulouse, France
| | - K Hussain
- Head and Neck Surgery, King's College London, Guy's Hospital Campus, London, UK
| | | | - L Manenti
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - S Evers
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - P Delmar
- Roche Innovation Center Basel, Basel
| | | | - C Mancao
- Roche Innovation Center Basel, Basel
| | - F Feuerhake
- Institute for Pathology, Hannover Medical School, Hannover; Institute for Neuropathology, University Hospital Freiburg, Freiburg im Breisgau, Germany
| | | | - M G Ott
- Roche Innovation Center Basel, Basel
| | - A Passioukov
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - J P Delord
- Clinical Research Unit, Institut Claudius Regaud, Toulouse, France
| |
Collapse
|
14
|
Veluchamy JP, Kok N, van der Vliet HJ, Verheul HMW, de Gruijl TD, Spanholtz J. The Rise of Allogeneic Natural Killer Cells As a Platform for Cancer Immunotherapy: Recent Innovations and Future Developments. Front Immunol 2017; 8:631. [PMID: 28620386 PMCID: PMC5450018 DOI: 10.3389/fimmu.2017.00631] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells are critical immune effector cells in the fight against cancer. As NK cells in cancer patients are highly dysfunctional and reduced in number, adoptive transfer of large numbers of cytolytic NK cells and their potential to induce relevant antitumor responses are widely explored in cancer immunotherapy. Early studies from autologous NK cells have failed to demonstrate significant clinical benefit. In this review, the clinical benefits of adoptively transferred allogeneic NK cells in a transplant and non-transplant setting are compared and discussed in the context of relevant NK cell platforms that are being developed and optimized by various biotech industries with a special focus on augmenting NK cell functions.
Collapse
Affiliation(s)
- John P Veluchamy
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands.,Glycostem Therapeutics, Oss, Netherlands
| | - Nina Kok
- Glycostem Therapeutics, Oss, Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
15
|
Antibody-dependent cell cytotoxicity: immunotherapy strategies enhancing effector NK cells. Immunol Cell Biol 2017; 95:347-355. [PMID: 28138156 DOI: 10.1038/icb.2017.6] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) is a set of mechanisms that target cells coated with IgG antibodies of the proper subclasses (IgG1 in the human) to be the prey of cell-to-cell cytolysis executed by immune cells expressing FcRIIIA (CD16A). These effectors include not only natural killer (NK) cells but also other CD16+ subsets such as monocyte/macrophages, NKT cells or γδ T cells. In cancer therapy, ADCC is exploited by antibodies that selectively recognize proteins on the surface of malignant cells. An approach to enhance antitumor activity is to act on effector cells so they are increased in their numbers or enhanced in their individual (on a cell per cell basis) ADCC performance. This enhancement can be therapeutically attained by cytokines (that is, interleukin (IL)-15, IL-21, IL-18, IL-2); immunostimulatory monoclonal antibodies (that is, anti-CD137, anti-CD96, anti-TIGIT, anti-KIR, anti-PD-1); TLR agonists or by adoptive infusions of ex vivo expanded NK cells which can be genetically engineered to become more efficient effectors. In conjunction with approaches optimizing IgG1 Fc affinity to CD16, acting on effector cells offers hope to achieve synergistic immunotherapy strategies.
Collapse
|
16
|
Novel Immunotherapeutic Approaches for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2016; 8:cancers8100087. [PMID: 27669306 PMCID: PMC5082377 DOI: 10.3390/cancers8100087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/16/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022] Open
Abstract
The immune system plays a key role in preventing tumor formation by recognizing and destroying malignant cells. For over a century, researchers have attempted to harness the immune response as a cancer treatment, although this approach has only recently achieved clinical success. Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is associated with cigarette smoking, alcohol consumption, betel nut use, and human papillomavirus infection. Unfortunately, worldwide mortality from HNSCC remains high, partially due to limits on therapy secondary to the significant morbidity associated with current treatments. Therefore, immunotherapeutic approaches to HNSCC treatment are attractive for their potential to reduce morbidity while improving survival. However, the application of immunotherapies to this disease has been challenging because HNSCC is profoundly immunosuppressive, resulting in decreased absolute lymphocyte counts, impaired natural killer cell function, reduced antigen-presenting cell function, and a tumor-permissive cytokine profile. Despite these challenges, numerous clinical trials testing the safety and efficacy of immunotherapeutic approaches to HNSCC treatment are currently underway, many of which have produced promising results. This review will summarize immunotherapeutic approaches to HNSCC that are currently undergoing clinical trials.
Collapse
|
17
|
Kjær I, Lindsted T, Fröhlich C, Olsen JV, Horak ID, Kragh M, Pedersen MW. Cetuximab Resistance in Squamous Carcinomas of the Upper Aerodigestive Tract Is Driven by Receptor Tyrosine Kinase Plasticity: Potential for mAb Mixtures. Mol Cancer Ther 2016; 15:1614-26. [PMID: 27196767 DOI: 10.1158/1535-7163.mct-15-0565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 04/28/2016] [Indexed: 11/16/2022]
Abstract
Squamous cell carcinomas (SCC) arising in upper parts of the aerodigestive tract are among the leading causes of death worldwide. EGFR has been found to play an essential role in driving the malignancy of SCC of the upper aerodigestive tract (SCCUAT), but, despite this, clinical results using a range of different EGFR-targeted agents have been disappointing. Cetuximab is currently the only EGFR-targeted agent approved by the FDA for treatment of SCCUAT. However, intrinsic and acquired cetuximab resistance is a major problem for effective therapy. Thus, a better understanding of the mechanisms responsible for cetuximab resistance is valuable for development of the next generation of antibody therapeutics. In order to better understand the underlying mechanisms of cetuximab resistance in SCCUAT, we established from cetuximab-sensitive models cell lines with acquired resistance to cetuximab by continuous selective pressure in vitro and in vivo Our results show that resistant clones maintain partial dependency on EGFR and that receptor tyrosine kinase plasticity mediated by HER3 and IGF1R plays an essential role. A multitarget mAb mixture against EGFR, HER3, and IGF1R was able to overcome cetuximab resistance in vitro To our surprise, these findings could be extended to include SCCUAT cell lines with intrinsic resistance to cetuximab, suggesting that the triad consisting of EGFR, HER3, and IGF1R plays a key role in SCCUAT. Our results thus provide a rationale for simultaneous targeting of EGFR, HER3, and IGF1R in SCCUAT. Mol Cancer Ther; 15(7); 1614-26. ©2016 AACR.
Collapse
Affiliation(s)
- Ida Kjær
- Symphogen A/S, Ballerup, Denmark. The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Jesper Velgaard Olsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
18
|
Schanzer JM, Wartha K, Moessner E, Hosse RJ, Moser S, Croasdale R, Trochanowska H, Shao C, Wang P, Shi L, Weinzierl T, Rieder N, Bacac M, Ries CH, Kettenberger H, Schlothauer T, Friess T, Umana P, Klein C. XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer. MAbs 2016; 8:811-27. [PMID: 26984378 PMCID: PMC4966845 DOI: 10.1080/19420862.2016.1160989] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the "knobs-into-holes" technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2-3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Juergen M Schanzer
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Katharina Wartha
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Ekkehard Moessner
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Ralf J Hosse
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Samuel Moser
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Rebecca Croasdale
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Halina Trochanowska
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Cuiying Shao
- c Pharma Research and Early Development, Roche Innovation Center Shanghai , Cai Lun Road, Shanghai , China
| | - Peng Wang
- c Pharma Research and Early Development, Roche Innovation Center Shanghai , Cai Lun Road, Shanghai , China
| | - Lei Shi
- c Pharma Research and Early Development, Roche Innovation Center Shanghai , Cai Lun Road, Shanghai , China
| | - Tina Weinzierl
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Natascha Rieder
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Marina Bacac
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Carola H Ries
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Hubert Kettenberger
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Tilman Schlothauer
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Thomas Friess
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Pablo Umana
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Christian Klein
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| |
Collapse
|
19
|
Gonzalez-Nicolini V, Herter S, Lang S, Waldhauer I, Bacac M, Roemmele M, Bommer E, Freytag O, van Puijenbroek E, Umaña P, Gerdes CA. Premedication and Chemotherapy Agents do not Impair Imgatuzumab (GA201)-Mediated Antibody-Dependent Cellular Cytotoxicity and Combination Therapies Enhance Efficacy. Clin Cancer Res 2015; 22:2453-61. [PMID: 26581243 DOI: 10.1158/1078-0432.ccr-14-2579] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/20/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Imgatuzumab (GA201) is a novel anti-EGFR mAb that is glycoengineered for enhanced antibody-dependent cellular cytotoxicity (ADCC). Future treatment schedules for imgatuzumab will likely involve the use of potentially immunosuppressive drugs, such as premedication therapies, to mitigate infusion reactions characteristic of mAb therapy and chemotherapy combination partners. Because of the strong immunologic component of mode of action of imgatuzumab, it is important to understand whether these drugs influence imgatuzumab-mediated ADCC and impact efficacy. EXPERIMENTAL DESIGN We performed a series of ADCC assays using human peripheral blood mononuclear cells that were first preincubated in physiologically relevant concentrations of commonly used premedication drugs and cancer chemotherapies. The ability of common chemotherapy agents to enhance the efficacy of imgatuzumab in vivo was then examined using orthotopic xenograft models of human cancer. RESULTS A majority of premedication and chemotherapy drugs investigated had no significant effect on the ADCC activity of imgatuzumab in vitro Furthermore, enhanced in vivo efficacy was seen with imgatuzumab combination regimens compared with single-agent imgatuzumab, single-agent chemotherapy, or cetuximab combinations. CONCLUSIONS These data indicate that medications currently coadministered with anti-EGFR therapies are unlikely to diminish the ADCC capabilities of imgatuzumab. Further studies using syngeneic models with functional adaptive T-cell responses are now required to fully understand how chemotherapy agents will influence a long-term response to imgatuzumab therapy. Thus, this study and future ones can provide a framework for designing imgatuzumab combination regimens with enhanced efficacy for investigation in phase II trials. Clin Cancer Res; 22(10); 2453-61. ©2015 AACR.
Collapse
Affiliation(s)
| | - Sylvia Herter
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Sabine Lang
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Inja Waldhauer
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Marina Bacac
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Michaela Roemmele
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Esther Bommer
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Olivier Freytag
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Erwin van Puijenbroek
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Pablo Umaña
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christian A Gerdes
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| |
Collapse
|
20
|
Acquired resistance to anti-EGFR mAb ICR62 in cancer cells is accompanied by an increased EGFR expression, HER-2/HER-3 signalling and sensitivity to pan HER blockers. Br J Cancer 2015; 113:1010-9. [PMID: 26372697 PMCID: PMC4651123 DOI: 10.1038/bjc.2015.319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/15/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The human epidermal growth factor receptor (EGFR) is an important target for cancer treatment. Currently, only the EGFR antibodies cetuximab and panitumumab are approved for the treatment of patients with colorectal cancer. However, a major clinical challenge is a short-term response owing to development of acquired resistance during the course of the treatment. METHODS In this study, we investigated the molecular mechanisms underlying development of acquired resistance in DiFi colorectal cancer cells to the anti-EGFR mAb ICR62 (termed DiFi62) and to the small molecule tyrosine kinase inhibitor (TKI) gefitinib (termed DiFiG) using a range of techniques. RESULTS Compared with the findings from parental DiFi and DiFiG cells, development of acquired resistance to anti-EGFR mAb ICR62 in DiFi62 cells was accompanied by an increase in cell surface EGFR and increased phosphorylation of HER-2 and HER-3. Interestingly, DiFi62 cells also acquired resistance to treatment with anti-EGFR mAbs cetuximab and ICR61, which bind to other distinct epitopes on the extracellular domain of EGFR, but these cells remained equally sensitive as the parental cells to treatment with pan-HER inhibitors such as afatinib. CONCLUSIONS Our results provide a novel mechanistic insight into the development of acquired resistance to EGFR antibody-based therapy in colorectal cancer cells and justify further investigations on the therapeutic benefits of pan-HER family inhibitors in the treatment of colorectal cancer patients once acquired resistance to EGFR antibody-based therapy is developed.
Collapse
|
21
|
Current controversies in the management of metastatic colorectal cancer. Cancer Chemother Pharmacol 2015; 76:659-77. [DOI: 10.1007/s00280-015-2808-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/12/2015] [Indexed: 12/16/2022]
|
22
|
New Targets and New Drug Development in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Optimization of the Development of Old and New EGFR and MAP Kinase Inhibitors for Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Imamura Y, Lochhead P, Yamauchi M, Kuchiba A, Qian ZR, Liao X, Nishihara R, Jung S, Wu K, Nosho K, Wang YE, Peng S, Bass AJ, Haigis KM, Meyerhardt JA, Chan AT, Fuchs CS, Ogino S. Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review. Mol Cancer 2014; 13:135. [PMID: 24885062 PMCID: PMC4051153 DOI: 10.1186/1476-4598-13-135] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/07/2014] [Indexed: 12/14/2022] Open
Abstract
Background KRAS mutations in codons 12 and 13 are established predictive biomarkers for anti-EGFR therapy in colorectal cancer. Previous studies suggest that KRAS codon 61 and 146 mutations may also predict resistance to anti-EGFR therapy in colorectal cancer. However, clinicopathological, molecular, and prognostic features of colorectal carcinoma with KRAS codon 61 or 146 mutation remain unclear. Methods We utilized a molecular pathological epidemiology database of 1267 colon and rectal cancers in the Nurse’s Health Study and the Health Professionals Follow-up Study. We examined KRAS mutations in codons 12, 13, 61 and 146 (assessed by pyrosequencing), in relation to clinicopathological features, and tumor molecular markers, including BRAF and PIK3CA mutations, CpG island methylator phenotype (CIMP), LINE-1 methylation, and microsatellite instability (MSI). Survival analyses were performed in 1067 BRAF-wild-type cancers to avoid confounding by BRAF mutation. Cox proportional hazards models were used to compute mortality hazard ratio, adjusting for potential confounders, including disease stage, PIK3CA mutation, CIMP, LINE-1 hypomethylation, and MSI. Results KRAS codon 61 mutations were detected in 19 cases (1.5%), and codon 146 mutations in 40 cases (3.2%). Overall KRAS mutation prevalence in colorectal cancers was 40% (=505/1267). Of interest, compared to KRAS-wild-type, overall, KRAS-mutated cancers more frequently exhibited cecal location (24% vs. 12% in KRAS-wild-type; P < 0.0001), CIMP-low (49% vs. 32% in KRAS-wild-type; P < 0.0001), and PIK3CA mutations (24% vs. 11% in KRAS-wild-type; P < 0.0001). These trends were evident irrespective of mutated codon, though statistical power was limited for codon 61 mutants. Neither KRAS codon 61 nor codon 146 mutation was significantly associated with clinical outcome or prognosis in univariate or multivariate analysis [colorectal cancer-specific mortality hazard ratio (HR) = 0.81, 95% confidence interval (CI) = 0.29-2.26 for codon 61 mutation; colorectal cancer-specific mortality HR = 0.86, 95% CI = 0.42-1.78 for codon 146 mutation]. Conclusions Tumors with KRAS mutations in codons 61 and 146 account for an appreciable proportion (approximately 5%) of colorectal cancers, and their clinicopathological and molecular features appear generally similar to KRAS codon 12 or 13 mutated cancers. To further assess clinical utility of KRAS codon 61 and 146 testing, large-scale trials are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave,, Room M422, 02215 Boston, MA, USA.
| |
Collapse
|