1
|
Safizadeh B, Sadeh M, Robati AK, Riahi T, Tavakoli-Yaraki M. Assessment of the circulating levels of immune system checkpoint selected biomarkers in patients with lung cancer. Mol Biol Rep 2024; 51:1036. [PMID: 39361074 DOI: 10.1007/s11033-024-09971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Lung cancer is recognized as one of the leading causes of cancer-related deaths globally, with a significant increase in incidence and intricate pathogenic mechanisms. This study examines the expression profiles of Programmed Cell Death Protein 1 (PD-1), PD-1 ligand (PDL-1), β-catenin, CD44, interleukin 6 (IL-6), and interleukin 10 (IL-10), as well as their correlations with the clinic-pathological features and diagnostic significance in lung cancer patients. METHODS AND RESULTS The research involved lung cancer patients exhibiting various pathological characteristics, alongside demographically matched healthy controls. The expression levels of PD-1, PDL-1, β-catenin, and CD44 were analyzed using Real-Time PCR, while circulating levels of IL-6 and IL-10 were assessed through ELISA assays. This investigation focused on peripheral blood mononuclear cells (PBMC) to evaluate these factors non-invasively. Findings indicated that levels of PD-1, PDL-1, and CD44 were significantly elevated in patients compared to controls, which coincided with a decrease in β-catenin levels. Additionally, a concurrent rise in IL-6 and IL-10, both pro-inflammatory cytokines, was observed in patients, suggesting a potential regulatory role for these cytokines on the PD-1/PDL-1 axis, which may help tumors evade immune system checkpoints. The predictive value of these factors concerning lung tumors and metastasis was significant (Regression analysis). Furthermore, these markers demonstrated diagnostic potential in differentiating between patients and healthy controls, as well as between individuals with metastatic and non-metastatic tumors (ROC curve analysis). CONCLUSIONS This study provides insights into the expression profiles of PD-1/PDL-1 immune system checkpoints and their regulatory factors in lung cancer, potentially paving the way for new therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Banafsheh Safizadeh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Maryam Sadeh
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Karami Robati
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Taghi Riahi
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
| |
Collapse
|
2
|
Nagasaki Y, Taki T, Nomura K, Tane K, Miyoshi T, Samejima J, Aokage K, Ohtani-Kim SJY, Kojima M, Sakashita S, Sakamoto N, Ishikawa S, Suzuki K, Tsuboi M, Ishii G. Spatial intratumor heterogeneity of programmed death-ligand 1 expression predicts poor prognosis in resected non-small cell lung cancer. J Natl Cancer Inst 2024; 116:1158-1168. [PMID: 38459590 DOI: 10.1093/jnci/djae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND We quantified the pathological spatial intratumor heterogeneity of programmed death-ligand 1 (PD-L1) expression and investigated its relevance to patient outcomes in surgically resected non-small cell lung carcinoma (NSCLC). METHODS This study enrolled 239 consecutive surgically resected NSCLC specimens of pathological stage IIA-IIIB. To characterize the spatial intratumor heterogeneity of PD-L1 expression in NSCLC tissues, we developed a mathematical model based on texture image analysis and determined the spatial heterogeneity index of PD-L1 for each tumor. The correlation between the spatial heterogeneity index of PD-L1 values and clinicopathological characteristics, including prognosis, was analyzed. Furthermore, an independent cohort of 70 cases was analyzed for model validation. RESULTS Clinicopathological analysis showed correlations between high spatial heterogeneity index of PD-L1 values and histological subtype (squamous cell carcinoma; P < .001) and vascular invasion (P = .004). Survival analysis revealed that patients with high spatial heterogeneity index of PD-L1 values presented a significantly worse recurrence-free rate than those with low spatial heterogeneity index of PD-L1 values (5-year recurrence-free survival [RFS] = 26.3% vs 47.1%, P < .005). The impact of spatial heterogeneity index of PD-L1 on cancer survival rates was verified through validation in an independent cohort. Additionally, high spatial heterogeneity index of PD-L1 values were associated with tumor recurrence in squamous cell carcinoma (5-year RFS = 29.2% vs 52.8%, P < .05) and adenocarcinoma (5-year RFS = 19.6% vs 43.0%, P < .01). Moreover, we demonstrated that a high spatial heterogeneity index of PD-L1 value was an independent risk factor for tumor recurrence. CONCLUSIONS We presented an image analysis model to quantify the spatial intratumor heterogeneity of protein expression in tumor tissues. This model demonstrated that the spatial intratumor heterogeneity of PD-L1 expression in surgically resected NSCLC predicts poor patient outcomes.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/surgery
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/metabolism
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/analysis
- Male
- Female
- Lung Neoplasms/pathology
- Lung Neoplasms/surgery
- Lung Neoplasms/mortality
- Lung Neoplasms/metabolism
- Prognosis
- Middle Aged
- Aged
- Biomarkers, Tumor/metabolism
- Neoplasm Recurrence, Local
- Neoplasm Staging
- Adult
- Carcinoma, Squamous Cell/surgery
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/metabolism
Collapse
Affiliation(s)
- Yusuke Nagasaki
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsuro Taki
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kotaro Nomura
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Kenta Tane
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Tomohiro Miyoshi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Joji Samejima
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Keiju Aokage
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Seiyu Jeong-Yoo Ohtani-Kim
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Motohiro Kojima
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Division of Pathology, National Cancer Center, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shingo Sakashita
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Division of Pathology, National Cancer Center, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Naoya Sakamoto
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Division of Pathology, National Cancer Center, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shumpei Ishikawa
- Division of Pathology, National Cancer Center, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Division of Innovative Pathology and Laboratory Medicine, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| |
Collapse
|
3
|
Krencz I, Sztankovics D, Sebestyén A, Pápay J, Dankó T, Moldvai D, Lutz E, Khoor A. RICTOR amplification is associated with Rictor membrane staining and does not correlate with PD-L1 expression in lung squamous cell carcinoma. Pathol Oncol Res 2024; 30:1611593. [PMID: 38706776 PMCID: PMC11066283 DOI: 10.3389/pore.2024.1611593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
RICTOR gene, which encodes the scaffold protein of mTORC2, can be amplified in various tumor types, including squamous cell carcinoma (SCC) of the lung. RICTOR amplification can lead to hyperactivation of mTORC2 and may serve as a targetable genetic alteration, including in lung SCC patients with no PD-L1 expression who are not expected to benefit from immune checkpoint inhibitor therapy. This study aimed to compare RICTOR amplification detected by fluorescence in situ hybridization (FISH) with Rictor and PD-L1 protein expression detected by immunohistochemistry (IHC) in SCC of the lung. The study was complemented by analysis of the publicly available Lung Squamous Cell Carcinoma (TCGA, Firehose legacy) dataset. RICTOR amplification was observed in 20% of our cases and 16% of the lung SCC cases of the TCGA dataset. Rictor and PD-L1 expression was seen in 74% and 44% of the cases, respectively. Rictor IHC showed two staining patterns: membrane staining (16% of the cases) and cytoplasmic staining (58% of the cases). Rictor membrane staining predicted RICTOR amplification as detected by FISH with high specificity (95%) and sensitivity (70%). We did not find any correlation between RICTOR amplification and PD-L1 expression; RICTOR amplification was detected in 18% and 26% of PD-L1 positive and negative cases, respectively. The TCGA dataset analysis showed similar results; RICTOR copy number correlated with Rictor mRNA and protein expression but showed no association with PD-L1 mRNA and protein expression. In conclusion, the correlation between RICTOR amplification and Rictor membrane staining suggests that the latter can potentially be used as a surrogate marker to identify lung SCC cases with RICTOR amplification. Since a significant proportion of PD-L1 negative SCC cases harbor RICTOR amplification, analyzing PD-L1 negative tumors by RICTOR FISH or Rictor IHC can help select patients who may benefit from mTORC2 inhibitor therapy.
Collapse
Affiliation(s)
- Ildikó Krencz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Dániel Sztankovics
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Judit Pápay
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Titanilla Dankó
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Dorottya Moldvai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Elmar Lutz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, United States
| | - Andras Khoor
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
4
|
Zheng S, He S, Liang Y, Tan Y, Liu Q, Liu T, Lu X. Understanding PI3K/Akt/mTOR signaling in squamous cell carcinoma: mutated PIK3CA as an example. MOLECULAR BIOMEDICINE 2024; 5:13. [PMID: 38616230 PMCID: PMC11016524 DOI: 10.1186/s43556-024-00176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/29/2024] [Indexed: 04/16/2024] Open
Abstract
Compared with those in adenocarcinoma, PIK3CA mutations are more common in squamous cell carcinoma (SCC), which arises from stratified squamous epithelia that are usually exposed to adverse environmental factors. Although hotspot mutations in exons 9 and 20 of PIK3CA, including E542K, E545K, H1047L and H1047R, are frequently encountered in the clinic, their clinicopathological meaning remains to be determined in the context of SCC. Considering that few reviews on PIK3CA mutations in SCC are available in the literature, we undertook this review to shed light on the clinical significance of PIK3CA mutations, mainly regarding the implications and ramifications of PIK3CA mutations in malignant cell behavior, prognosis, relapse or recurrence and chemo- or radioresistance of SCC. It should be noted that only those studies regarding SCC in which PIK3CA was mutated were cherry-picked, which fell within the scope of this review. However, the role of mutated PIK3CA in adenocarcinoma has not been discussed. In addition, mutations occurring in other main members of the PI3K-AKT-mTOR signaling pathway other than PIK3CA were also excluded.
Collapse
Affiliation(s)
- Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Shuo He
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Yan Liang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Yiyi Tan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, People's Republic of China.
| |
Collapse
|
5
|
Wang M, Krueger JB, Gilkey AK, Stelljes EM, Kluesner MG, Pomeroy EJ, Skeate JG, Slipek NJ, Lahr WS, Vázquez PNC, Zhao Y, Eaton EJ, Laoharawee K, Webber BR, Moriarity BS. Precision Enhancement of CAR-NK Cells through Non-Viral Engineering and Highly Multiplexed Base Editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.582637. [PMID: 38496503 PMCID: PMC10942345 DOI: 10.1101/2024.03.05.582637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Natural killer (NK) cells' unique ability to kill transformed cells expressing stress ligands or lacking major histocompatibility complexes (MHC) has prompted their development for immunotherapy. However, NK cells have demonstrated only moderate responses against cancer in clinical trials and likely require advanced genome engineering to reach their full potential as a cancer therapeutic. Multiplex genome editing with CRISPR/Cas9 base editors (BE) has been used to enhance T cell function and has already entered clinical trials but has not been reported in human NK cells. Here, we report the first application of BE in primary NK cells to achieve both loss-of-function and gain-of-function mutations. We observed highly efficient single and multiplex base editing, resulting in significantly enhanced NK cell function. Next, we combined multiplex BE with non-viral TcBuster transposon-based integration to generate IL-15 armored CD19 CAR-NK cells with significantly improved functionality in a highly suppressive model of Burkitt's lymphoma both in vitro and in vivo. The use of concomitant non-viral transposon engineering with multiplex base editing thus represents a highly versatile and efficient platform to generate CAR-NK products for cell-based immunotherapy and affords the flexibility to tailor multiple gene edits to maximize the effectiveness of the therapy for the cancer type being treated.
Collapse
Affiliation(s)
- Minjing Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Joshua B Krueger
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Alexandria K Gilkey
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Erin M Stelljes
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Mitchell G Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Molecular and Cellular Biology Graduate Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Emily J Pomeroy
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Walker S Lahr
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Patricia N Claudio Vázquez
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Yueting Zhao
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ella J Eaton
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Kanut Laoharawee
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
6
|
Yan N, Zhang H, Guo S, Zhang Z, Xu Y, Xu L, Li X. Efficacy of chemo-immunotherapy in metastatic BRAF-mutated lung cancer: a single-center retrospective data. Front Oncol 2024; 14:1353491. [PMID: 38357200 PMCID: PMC10865094 DOI: 10.3389/fonc.2024.1353491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Background The effectiveness of combining immune checkpoint inhibitors (ICIs) with chemotherapy in treating non-small cell lung cancers (NSCLCs) with BRAF mutations has not been sufficiently explored. Methods We compiled data from 306 NSCLC patients with identified BRAF mutations. We looked at efficacy by assessing the objective response rate (ORR) and disease control rate (DCR), as well as survival through measuring progression-free survival (PFS) and overall survival (OS). Results Out of the patient pool, 44 were treated with a regimen of immune-chemotherapy. Patients undergoing ICI in combination with chemotherapy had a median PFS of 4 months, and the median OS was recorded at 29 months. There was a notable increase in OS in patients receiving first-line treatment versus subsequent lines (29 vs 9.75 months, p=0.01); however, this was not the case with PFS (9 vs 4 months, p=0.46). The ORR for patients on ICIs was 36.3%. PFS and OS rates did not significantly differ between patients with the BRAF-V600E mutation and those with non-V600E mutations (p=0.75 and p=0.97, respectively). Additionally, we found a significant variation in PD-L1 expression between those who responded to treatment and those who didn't (p=0.04). Conclusion Our findings indicate that chemo-immunotherapy as an initial treatment may lead to improved OS in patients with BRAF-mutated NSCLC when compared to its use in subsequent lines of therapy. Further studies are needed to validate these results and to delve deeper into how specific types of BRAF mutations and PD-L1 expression levels might predict a patient's response to treatments in NSCLC.
Collapse
Affiliation(s)
- Ningning Yan
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huixian Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sanxing Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ziheng Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingchun Xu
- Department of Medical Oncology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liang Xu
- Prevention and Cure Center of Breast Disease, The Third Hospital of Nanchang City, Nanchang, Jiangxi, China
| | - Xingya Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Liu S, Wang W, Hu S, Jia B, Tuo B, Sun H, Wang Q, Liu Y, Sun Z. Radiotherapy remodels the tumor microenvironment for enhancing immunotherapeutic sensitivity. Cell Death Dis 2023; 14:679. [PMID: 37833255 PMCID: PMC10575861 DOI: 10.1038/s41419-023-06211-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Cancer immunotherapy has transformed traditional treatments, with immune checkpoint blockade being particularly prominent. However, immunotherapy has minimal benefit for patients in most types of cancer and is largely ineffective in some cancers (such as pancreatic cancer and glioma). A synergistic anti-tumor response may be produced through the combined application with traditional tumor treatment methods. Radiotherapy (RT) not only kills tumor cells but also triggers the pro-inflammatory molecules' release and immune cell infiltration, which remodel the tumor microenvironment (TME). Therefore, the combination of RT and immunotherapy is expected to achieve improved efficacy. In this review, we summarize the effects of RT on cellular components of the TME, including T cell receptor repertoires, different T cell subsets, metabolism, tumor-associated macrophages and other myeloid cells (dendritic cells, myeloid-derived suppressor cells, neutrophils and eosinophils). Meanwhile, non-cellular components such as lactate and extracellular vesicles are also elaborated. In addition, we discuss the impact of different RT modalities on tumor immunity and issues related to the clinical practice of combination therapy.
Collapse
Affiliation(s)
- Senbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Bin Jia
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Baojing Tuo
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China
| | - Qiming Wang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450001, Zhengzhou, China.
| | - Yang Liu
- Department of Radiotherapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 450001, Zhengzhou, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
8
|
Tian X, Li Y, Huang Q, Zeng H, Wei Q, Tian P. High PD-L1 Expression Correlates with an Immunosuppressive Tumour Immune Microenvironment and Worse Prognosis in ALK-Rearranged Non-Small Cell Lung Cancer. Biomolecules 2023; 13:991. [PMID: 37371571 PMCID: PMC10296689 DOI: 10.3390/biom13060991] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
High tumour programmed cell death-ligand 1 (PD-L1) expression is associated with poor progression-free survival (PFS) after tyrosine kinase inhibitor (TKI) therapy in ALK-rearranged non-small cell lung cancer (NSCLC). However, the characteristics of the tumour microenvironment (TME) and their prognostic values in ALK-rearranged NSCLC are unknown. Here, we collected tumour tissues from pretreated ALK-rearranged NSCLC patients, immunohistochemical staining was used to assess PD-L1 expression, and tumour-infiltrating immune cells were determined via multiplex immunofluorescence staining (mIF). Our data showed that the median values of PFS for the high PD-L1 group and low PD-L1 group who received ALK-TKI treatment were 4.4 and 16.4 months, respectively (p = 0.008). The median overall survival (OS) of the two groups was 24.0 months and not reached, respectively (p = 0.021). Via univariate and multivariate analyses, a high PD-L1 expression and a worse ECOG PS were determined to be independent prognostic factors of OS (HR = 3.35, 95% CI: 1.23-9.11, p = 0.018; HR = 6.42, 95% CI: 1.45-28.44, p = 0.014, respectively). In addition, the high PD-L1 group had increased Tregs and exhausted CD8+ T cells in both the tumour and stroma (all p < 0.05). High PD-L1 expression was an adverse predictive and prognostic biomarker for ALK-rearranged NSCLC. The characteristics of the TME in patients with high PD-L1 expression were shown to have an immunosuppressive status.
Collapse
Affiliation(s)
| | | | | | | | | | - Panwen Tian
- Department of Pulmonary and Critical Care Medicine, Lung Cancer Center, West China Hospital, Sichuan University, Precision Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China; (X.T.); (Y.L.); (Q.H.); (H.Z.); (Q.W.)
| |
Collapse
|
9
|
Gyulai M, Megyesfalvi Z, Reiniger L, Harko T, Ferencz B, Karsko L, Agocs L, Fillinger J, Dome B, Szallasi Z, Moldvay J. PD-1 and PD-L1 expression in rare lung tumors. Pathol Oncol Res 2023; 29:1611164. [PMID: 37274772 PMCID: PMC10232779 DOI: 10.3389/pore.2023.1611164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
Background: Our knowledge is still limited about the characteristics and treatment of rare lung tumors. The aim of our study was to determine programmed cell death ligand-1 (PD-L1) and programmed cell death-1 (PD-1) expression in rare pulmonary tumors to assess the potential role of immunotherapy. Methods: 66 pathologically confirmed rare lung tumors including 26 mucoepidermoid carcinomas (MECs), 27 adenoid cystic carcinomas (ACCs), and 13 tracheobronchial papillomas (TBPs) were collected retrospectively. Immunohistochemical (IHC) staining was performed on formalin fixed paraffin embedded (FFPE) tumor tissues, and PD-L1 expression on tumor cells (TCs) and immune cells (ICs), and PD-1 expression on ICs were determined. The cut off value for positive immunostaining was set at 1% for all markers. Results: PD-L1 expression on TCs was observed in two cases of MEC (7.7%), one case of ACC (3.7%), and was absent in TBP samples. PD-L1 expression on ICs could be demonstrated in nine cases of MEC (34.6%), four cases of ACC (14.8%), and was absent in TBPs. All PD-L1 TC positive tumors were also PD-L1 IC positive. Higher expression level than 5% of PD-L1 TC and/or IC was observed only in one ACC and in two MEC patients. Among them, strong PD-L1 immunopositivity of >50% on TCs and of >10% on ICs could be demonstrated in one MEC sample. PD-L1 expression of ≥1% on ICs was significantly more common in MEC, than in TBP (p < 0.001). In MEC ≥1% PD-L1 TC or IC expressions were significantly more common in patients aged 55 or older, than in younger patients (p = 0.046, and p = 0.01, respectively). PD-1 expression on ICs was found in five cases of MEC (19.2%), four cases of ACC (14.8%), and in two cases of TBP (15.4%). Only one MEC case showed a higher than 5% expression level of PD-1 on ICs. Conclusion: This retrospective study comprehensively demonstrated the rare expression of PD-L1 and PD-1 in pulmonary MEC, ACC, and TBP. However, we found very strong PD-L1 immunopositivity on both TCs and ICs in one MEC sample, which warrants further investigations in a larger cohort.
Collapse
Affiliation(s)
- Marton Gyulai
- County Institute of Pulmonology, Torokbalint, Hungary
- Károly Rácz Doctoral School of Clinical Medicine, Semmelweis University, Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Lilla Reiniger
- Institute of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Tunde Harko
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Bence Ferencz
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary
| | - Luca Karsko
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Laszlo Agocs
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary
| | - Janos Fillinger
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Balazs Dome
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology, Semmelweis University, Budapest, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Zoltan Szallasi
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Computational Health Informatics Program, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Judit Moldvay
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| |
Collapse
|
10
|
Chitapanarux T, Gumrai P, Kongkarnka S, Wannasai K, Lertprasertsuke N. Programmed death-ligand 1 expression and overall survival in Thai patients with gastric cancer. Sci Rep 2023; 13:7241. [PMID: 37142693 PMCID: PMC10160126 DOI: 10.1038/s41598-023-34434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) expression has now been implicated in gastric cancer (GC). This study was conducted to determine the impact of clinicopathological characteristics on PD-L1 expression and its association with survival in GC patients receiving standard-of-care. In total, 268 GC patients receiving upfront surgery were enrolled at Chiang Mai University Hospital. PD-L1 expression was assayed by immunohistochemistry staining using the Dako 22C3 pharmDx. The rates of PD-L1 positivity by combined positive score (CPS) at a cutoff value of 1 and 5 were 22% and 7%. PD-L1 positivity was significantly higher in patients younger than 55 than those older than 55 (32.6% vs. 16.5%, p = 0.003; 11.6% vs. 4.4%, p = 0.027). PD-L1 positivity was observed more frequently in GC with metastases than without (25.2% vs. 17.1%, p = 0.112; 7.2% vs. 6.7%, p = 0.673). Patients with PD-L1 positive had a significantly shorter median overall survival than those with PD-L1 negative (32.7 vs. 41.6 months, p = 0.042, 27.6 vs. 40.8 months, p = 0.038). In conclusion, PD-L1 expression has been associated with young age, short survival, and metastases, although unrelated to the tumor stage. For GC patients, PD-L1 testing is recommended, especially among young patients with metastases.
Collapse
Affiliation(s)
- Taned Chitapanarux
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Pawut Gumrai
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sarawut Kongkarnka
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Komson Wannasai
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nirush Lertprasertsuke
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
11
|
Edmonds NL, Flores SE, Mahmutovic A, Young SJ, Mauldin IS, Slingluff CL. CD103 and periplakin are potential biomarkers for response of metastatic melanoma to pembrolizumab. Melanoma Res 2022; 32:440-450. [PMID: 36169985 PMCID: PMC9633418 DOI: 10.1097/cmr.0000000000000855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study was designed to screen for preliminary evidence of predictive markers of melanoma response to PD-1 blockade. We hypothesized that the following immune markers would be positive predictors of response: increased densities of CD103 + CD8 + T cells or Th1 lineage T-bet + T cells, high expression of CXCL9-11 and presence of tertiary lymphoid structures. Conversely, we hypothesized that the high expression of barrier molecules would be a negative predictor of response. Patients with advanced melanoma treated with pembrolizumab were identified, and clinical response as well as overall survival data were collected. Tumor samples were evaluated by multiplex immunofluorescence histology. All statistical analyses were performed in R Studio and Microsoft Excel using the Mann-Whitney U test, chi-square test, Spearman's rank correlation and Kaplan-Meier survival curves. Sixty-five advanced melanoma patients were identified, of whom 46 met inclusion criteria and were included in this study. Increased densities ( P = 0.04) and proportions ( P = 0.02) of CD8 + T cells expressing CD103 + were associated with complete response (CR) to pembrolizumab. Improved survival was associated with increased proportions of CD8 + cells expressing CD103 ( P = 0.0085) as well as decreased density of periplakin + cells ( P = 0.012) and periplakin + SOX10 + cells ( P = 0.0012). The density and proportion of CD8 + T cells expressing CD103 + positively correlated with PD-L1 expression, though PD-L1 expression was not significantly correlated with outcomes. This screening study found that increased density and proportion of CD8 + T cells expressing CD103 and decreased density of periplakin were associated with positive outcomes in patients with melanoma metastases treated with pembrolizumab and may warrant further study.
Collapse
Affiliation(s)
| | | | - Adela Mahmutovic
- Department of Public Health Sciences, University of Virginia School of Medicine
| | - Samuel J Young
- Department of Surgery, University of Virginia Health System
| | - Ileana S Mauldin
- Department of Surgery, University of Virginia Health System
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Craig L Slingluff
- Department of Surgery, University of Virginia Health System
- Beirne B. Carter Center for Immunology Research, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Diagnostic Efficacy of CT Examination on Early Detection of Lung Cancer during Pandemic of COVID-19. Diagnostics (Basel) 2022; 12:diagnostics12102317. [PMID: 36292005 PMCID: PMC9601167 DOI: 10.3390/diagnostics12102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Since the outbreak of COVID-19 in 2020, routine CT examination was recommended to hospitalized patients at some hospitals and discovered lung cancer patients at an early stage. This study aimed to investigate the detection efficacy of routine CT examination on early diagnosis of lung cancer, especially on pathological characteristics. Methods: The epidemic of COVID-19 outbreak in January 2020 in China, and routine CT examination was recommended to hospitalized patients in June 2020 and ended in July 2021. Based on the time points, we compared the diagnosis efficacy between three periods: pre-period, peri-period, and the period of routine CT examination. Results: During the period of routine CT examination, more early stages of lung cancer were detected and the tumor size was reduced to 2.14 cm from 3.21 cm at pre-period (p = 0.03). The proportion of lung adenocarcinoma and early stage adenocarcinoma was increased by 12% and 30% in the period of routine CT examination, with referral to the pre-period of CT examination (p < 0.05). A total of 61% of diagnosed patients had the wild type of TP53 gene during the period of routine CT examination, compared to 45% of patients at the pre-period of CT examination (p = 0.001). The median Ki-67 index was 15% among patients diagnosed at the period of routine CT examination and increased to 35% at the pre-period of CT examination (p < 0.001). The period of routine CT examination was associated with a 78% higher probability of detecting an early stage of adenocarcinoma (OR = 1.78, 95%CI 1.03, 3.08) but no significant association was observed for squamous cell carcinoma. From the pre-period to the period of routine CT examination, the proportion of female patients and non-smoking patients increased by 57% and 44%, respectively (p < 0.001). Conclusion: Routine CT examination could detect more lung cancer at an early stage, especially for adenocarcinoma, and detect patients with less aggressive features. Further studies were warranted to confirm the findings.
Collapse
|
13
|
He B, Li B, Chen X, Zhang Q, Lu C, Yang S, Long J, Ning L, Chen H, Huang J. PDL1Binder: Identifying programmed cell death ligand 1 binding peptides by incorporating next-generation phage display data and different peptide descriptors. Front Microbiol 2022; 13:928774. [PMID: 35910615 PMCID: PMC9335124 DOI: 10.3389/fmicb.2022.928774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Monoclonal antibody drugs targeting the PD-1/PD-L1 pathway have showed efficacy in the treatment of cancer patients, however, they have many intrinsic limitations and inevitable drawbacks. Peptide inhibitors as alternatives might compensate for the drawbacks of current PD-1/PD-L1 interaction blockers. Identifying PD-L1 binding peptides by random peptide library screening is a time-consuming and labor-intensive process. Machine learning-based computational models enable rapid discovery of peptide candidates targeting the PD-1/PD-L1 pathway. In this study, we first employed next-generation phage display (NGPD) biopanning to isolate PD-L1 binding peptides. Different peptide descriptors and feature selection methods as well as diverse machine learning methods were then incorporated to implement predictive models of PD-L1 binding. Finally, we proposed PDL1Binder, an ensemble computational model for efficiently obtaining PD-L1 binding peptides. Our results suggest that predictive models of PD-L1 binding can be learned from deep sequencing data and provide a new path to discover PD-L1 binding peptides. A web server was implemented for PDL1Binder, which is freely available at http://i.uestc.edu.cn/pdl1binder/cgi-bin/PDL1Binder.pl.
Collapse
Affiliation(s)
- Bifang He
- Medical College, Guizhou University, Guiyang, China
| | - Bowen Li
- Medical College, Guizhou University, Guiyang, China
| | - Xue Chen
- Medical College, Guizhou University, Guiyang, China
| | | | - Chunying Lu
- Medical College, Guizhou University, Guiyang, China
| | | | - Jinjin Long
- Medical College, Guizhou University, Guiyang, China
| | - Lin Ning
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, China
| | - Heng Chen
- Medical College, Guizhou University, Guiyang, China
- *Correspondence: Heng Chen,
| | - Jian Huang
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
- Jian Huang,
| |
Collapse
|
14
|
Yang H, Zhu J, Xiao R, Liu Y, Yu F, Cai L, Qiu M, He F. EGFR mutation status in non-small cell lung cancer receiving PD-1/PD-L1 inhibitors and its correlation with PD-L1 expression: a meta-analysis. Cancer Immunol Immunother 2022; 71:1001-1016. [PMID: 34542660 DOI: 10.1007/s00262-021-03030-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/04/2021] [Indexed: 12/26/2022]
Abstract
Meta-analysis was performed on the Web of Science, PubMed, Embase, and Cochrane databases to evaluate the effect of epidermal growth factor receptor (EGFR) mutation status on programmed cell death protein 1/programmed death ligand 1 (PD-1/PD-L1) immune checkpoint inhibitors, and the association between EGFR mutation status and PD-L1 expression in non-small cell lung cancer (NSCLC) patients. Pooled effect (hazard ratio/odds ratio, HR/OR) with 95% confidence interval (CI) was calculated, and the source of heterogeneity was explored by subgroup analysis and meta-regression using Stata/SE 15.0. Meta-analysis of the association between EGFR mutation status and overall survival (OS) in NSCLC with immunotherapy was calculated from four randomized controlled trials. We found that immune checkpoint inhibitors significantly prolonged OS over docetaxel overall (HR 0.71, 95% CI 0.64-0.79) and in the EGFR wild type (HR = 0.67, 95% CI = 0.60-0.75), but not in the EGFR mutant subgroup (HR = 1.11, 95% CI = 0.80-1.52). Meta-analysis of the association between EGFR mutation status and PD-L1 expression in NSCLC included 32 studies. The pooled OR and 95% CI were 0.60 (0.46-0.80), calculated by random effects model. No source of heterogeneity was found in subgroup analysis. Sensitivity analysis was carried out with a fixed model, and the influence of a single study on the pooled results showed no significant change with robust meta-analysis methods. Harbord's weighted linear regression test (P = 0.956) and Peters regression test (P = 0.489) indicated no significant publication bias. The limited benefit of single-agent PD-1/PD-L1 inhibitors in the second-line or later setting for EGFR-mutated NSCLC may be partly due to the lower expression of PD-L1.
Collapse
Affiliation(s)
- Huimin Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350108, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China
| | - Jinxiu Zhu
- Department of Oncology, Fuzhou Pulmonary Hospital of Fujian, Fuzhou, 350001, China
| | - Rendong Xiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Yuhang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350108, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China
| | - Fanglin Yu
- Experiment Center, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Lin Cai
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350108, China
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China
| | - Minglian Qiu
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, China.
| | - Fei He
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350108, China.
- Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350108, China.
- Fujian Digital Institute of Tumor Big Data, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
15
|
Chen M, Wang Y, Wang L, Shen C, Chen C, Lee H. PD-L1 expressed from tumor cells promotes tumor growth and invasion in lung cancer via modulating TGF-β1/SMAD4 expression. Thorac Cancer 2022; 13:1322-1332. [PMID: 35373505 PMCID: PMC9058315 DOI: 10.1111/1759-7714.14388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Programmed death ligand-1 (PD-L1) has a known association with the prognosis of human cancers because of its ability to alter tumor immune surveillance via its interaction with PD-1. We questioned whether expression of PD-L1 in tumor cells could directly promote tumor growth and invasiveness in non-small cell lung cancer (NSCLC). METHODS Real-time reverse transcription-polymerase chain reaction (RT-PCR) was performed to evaluate PD-L1 messenger RNA (mRNA) expression in lung tumors. The prognostic value of PD-L1 mRNA was assessed by Cox regression model. Transcriptional regulation of PD-L1 by human papillomavirus (HPV) 16/18 E6 oncoprotein or by epidermal growth factor receptor (EGFR) mutation in lung cancer cells was examined by Western blot and luciferase reporter assay. The cell growth and invasion were evaluated by colony formation, soft agar growth, and Boyden chamber assay. RESULTS The PD-L1 mRNA levels showed a positive association with HPV 16/18 E6 oncoprotein and with EGFR mutation in 223 surgically resected NSCLC patients. The prognostic significance of PD-L1 was more commonly observed in patients with high PD-L1/E6 positive and high PD-L1/EGFR mutant tumors. Mechanistically, upregulation of PD-L1 transcription by E6 or mutant EGFR occurred largely through the ERK-C/EBPβ-TLR4-NF-κB cascade. PD-L1 promotes the efficacy of colony formation, soft agar growth, and cell invasion. PD-L1 upregulates BAG-1 to reduce transforming growth factor (TGF)-β1 expression, and the decrease in SMAD4 because of TGF-β1 occurs through the p53/microRNA (miR)-224 axis. The decreases in TGF-β1 and SMAD4 are responsible for PD-L1-mediated cell invasiveness. CONCLUSION Induction of PD-L1 by E6 oncoprotein or mutant EGFR through the ERK-C/EBPβ-TLR4-NF-κB cascade may promote tumor growth and invasiveness in NSCLC because of decreasing TGF-β1 and SMAD4 expression.
Collapse
Affiliation(s)
- Ming‐Jenn Chen
- Department of SurgeryChi Mei Medical CenterTainanTaiwan
- Department of Sports Management, College of Leisure and Recreation ManagementChia Nan University of Pharmacy and ScienceTainanTaiwan
| | - Yao‐Chen Wang
- Department of Internal Medicine, Chung Shan Medical University Hospital, School of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Lee Wang
- Department of Public HealthChung Shan Medical UniversityTaichungTaiwan
| | - Ching‐Ju Shen
- Department of Gynecology and Obstetrics, Kaohsiung Medical University Hospital, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Chih‐Yi Chen
- Department of SurgeryChung Shan Medical University HospitalTaichungTaiwan
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug DiscoveryTaipei Medical UniversityTaipeiTaiwan
| |
Collapse
|
16
|
Yan N, Guo S, Zhang H, Zhang Z, Shen S, Li X. BRAF-Mutated Non-Small Cell Lung Cancer: Current Treatment Status and Future Perspective. Front Oncol 2022; 12:863043. [PMID: 35433454 PMCID: PMC9008712 DOI: 10.3389/fonc.2022.863043] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022] Open
Abstract
V-Raf murine sarcoma viral oncogene homolog B (BRAF) kinase, which was encoded by BRAF gene, plays critical roles in cell signaling, growth, and survival. Mutations in BRAF gene will lead to cancer development and progression. In non-small cell lung cancer (NSCLC), BRAF mutations commonly occur in never-smokers, women, and aggressive histological types and accounts for 1%-2% of adenocarcinoma. Traditional chemotherapy presents limited efficacy in BRAF-mutated NSCLC patients. However, the advent of targeted therapy and immune checkpoint inhibitors (ICIs) have greatly altered the treatment pattern of NSCLC. However, ICI monotherapy presents limited activity in BRAF-mutated patients. Hence, the current standard treatment of choice for advanced NSCLC with BRAF mutations are BRAF-targeted therapy. However, intrinsic or extrinsic mechanisms of resistance to BRAF-directed tyrosine kinase inhibitors (TKIs) can emerge in patients. Hence, there are still some problems facing us regarding BRAF-mutated NSCLC. In this review, we summarized the BRAF mutation types, the diagnostic challenges that BRAF mutations present, the strategies to treatment for BRAF-mutated NSCLC, and resistance mechanisms of BRAF-targeted therapy.
Collapse
Affiliation(s)
- Ningning Yan
- Department of Medical Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | - Xingya Li
- Department of Medical Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Kujtan L, Kancha RK, Gustafson B, Douglass L, Ward CR, Buzard B, Subramanian J. Squamous cell carcinoma of the lung: Improving the detection and management of immune-related adverse events. Expert Rev Anticancer Ther 2022; 22:203-213. [PMID: 35034561 DOI: 10.1080/14737140.2022.2029414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have revolutionized treatment for patients with non-small lung cancer (NSCLC). Currently approved ICIs are monoclonal antibodies that target programmed death receptor 1 (PD-1), its ligand PD-L1, or CTLA-4. With ICIs comes a novel collection of toxicities: immune-related adverse events (IRAEs). Management of IRAEs requires multidisciplinary expertise. We review the biology of IRAEs and their management in patients with squamous NSCLC. AREAS COVERED We review the pathophysiology of ICIs and IRAEs. For IRAEs related to squamous NSCLC, Cochrane Central, EMBASE, and PubMed were queried for trials with patients with squamous cell carcinoma or adenocarcinoma histology, who were assessed for incidence rates of IRAEs. Thirteen trials met inclusion criteria. National guidelines are reviewed to outline management strategies for IRAEs. EXPERT OPINION IRAEs are unique compared to standard chemotherapy. As the role of ICIs expand across all stages of squamous cell NSCLC and with different combinations of antineoplastics, management of IRAEs will become crucial. Optimal management of IRAEs requires multidisciplinary teamwork. Further investigation into the pathophysiology of IRAEs can enhance current management strategies.
Collapse
Affiliation(s)
- Lara Kujtan
- University of Missouri-Kansas City, 2301 Holmes Street, MO 64108
| | - Rama Krishna Kancha
- Molecular Medicine and Therapeutics Laboratory -CPMB, Osmania University, Hyderabad -500007, India
| | - Beth Gustafson
- Saint Luke's Hospital of Kansas City, 4401 Wornall Road, Kansas City, MO 64111
| | - Lindsey Douglass
- Saint Luke's Hospital of Kansas City, 4401 Wornall Road, Kansas City, MO 64111
| | - Christopher Rh Ward
- Saint Luke's Hospital of Kansas City, 4401 Wornall Road, Kansas City, MO 64111
| | - Blake Buzard
- Saint Luke's Hospital of Kansas City, 4401 Wornall Road, Kansas City, MO 64111
| | - Janakiraman Subramanian
- Saint Luke's Cancer Institute/University of Missouri Kansas City, 4321 Washington St, Suite 4000, Kansas City, MO 64111
| |
Collapse
|
18
|
PD-L1: Can it be a biomarker for the prognosis or a promising therapeutic target in cervical cancer? Int Immunopharmacol 2021; 103:108484. [PMID: 34954558 DOI: 10.1016/j.intimp.2021.108484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
Cervical cancer is one of the most common in the female genital tract and remains a leading cause that threatens the health and lives of women worldwide, although preventive vaccines and early diagnosis have reduced mortality. While treatment by operation and chemoradiotherapy for early-stage patients achieve good outcomes, the great majority of cervical cancers caused by the human papilloma virus (HPV) make immunotherapy realizable for patients with advanced and recurrent cervical cancer. To date, some clinical trials of checkpoint immunotherapy in cervical cancer have indicated significant benefits of programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) inhibitors, providing strong evidence for PD-1/PD-L1 as a therapeutic target. In this review article, we discuss the role of PD-L1 and the application of PD-L1 inhibitors in cervical cancer, with the aim of providing direction for future research.
Collapse
|
19
|
Chang CH, Shih ACC, Chang YH, Chen HY, Chao YT, Hsu YC. The Prognostic Significance of PD1 and PDL1 Gene Expression in Lung Cancer: A Meta-Analysis. Front Oncol 2021; 11:759497. [PMID: 34868974 PMCID: PMC8639141 DOI: 10.3389/fonc.2021.759497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/20/2021] [Indexed: 01/03/2023] Open
Abstract
Background Immune checkpoint blockade therapy represents an extraordinary advance in lung cancer treatment. It is important to determine the expression of immune checkpoint genes, such as programmed cell death 1 (PD1) and programmed cell death-ligand 1 (PDL1), to develop immunotherapeutic strategies. The aim of this study was to explore the association between PD1 and PDL1 gene expression and prognoses and outcomes in lung cancer. Methods This meta-analysis analyzed 1,251 patients from eight different microarray gene expression datasets and were evaluated for their prognostic implications and verified using another independent research. Results The mean expression levels of PDL1 in adenocarcinoma (AD) and squamous cell carcinoma (SC) were significantly higher in patients who died than in patients who did not. There was a trend toward incremental increases in PD1 and PDL1 expression significantly decreasing the risk of relapse and death among AD patients (HR = 0.69; 95% CI = 0.53 ~ 0.91; HR = 0.68; 95% CI = 0.54 ~ 0.84, respectively) and SC patients (HR = 0.53; 95% CI = 0.32 ~ 0.89; HR = 0.78; 95% CI = 0.57 ~ 1.00 respectively), as early-stage patients in this study were more likely to have high expression of both PD1 and PDL1 than late-stage patients (P-trend < 0.05). In contrast, late-stage SC patients expressing one or more of the genes at a high level had a significantly elevated risk of relapse (HR = 1.51; 95% CI = 1.07 ~ 2.11) and death (HR = 1.41; 95% CI = 1.08 ~ 1.84). This result was consistent with the validation data set. Conclusion These findings indicate that high expression of PD1 and PDL1 is associated with superior outcome in early-stage lung cancer but an adverse outcome in late-stage lung cancer. The expression levels of PD1 and PDL1 individually or jointly are potential prognostic factors for predicting patient outcomes in lung cancer.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Arthur Chun-Chieh Shih
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan.,Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ying-Ting Chao
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| |
Collapse
|
20
|
Mao Z, Jiang P, Zhang Y, Li Y, Jia X, Wang Q, Jiao M, Jiang L, Shen Y, Guo H. First-line immune-based combination therapies for advanced non-small cell lung cancer: A Bayesian network meta-analysis. Cancer Med 2021; 10:9139-9155. [PMID: 34747149 PMCID: PMC8683544 DOI: 10.1002/cam4.4405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Immune-based combination therapies have revolutionized the first-line treatment for advanced non-small cell lung cancer (NSCLC). However, for the efficacy and safety, the best treatment option is still uncertain. METHODS We conducted a Bayesian network meta-analysis of randomized controlled trials (RCTs) to evaluate first-line immune-based combination therapies for advanced NSCLC. RESULTS Fourteen trials involving 8467 patients were included. For the programmed cell death-ligand 1 (PD-L1) expression non-selective patients, there were no significant differences among all the treatment modes for overall survival (OS), but the ranking profiles indicated that Immunotherapy + Immunotherapy + Chemotherapy (IO + IO + Chemo) was most likely to be the best mode (probability = 68%). Immunotherapy + Immunotherapy + Anti-angiogenic therapy + Chemotherapy (IO + Anti-angio + Chemo) was significantly better than most other treatment modes for progression-free survival (PFS) with better objective response rate (ORR) and more obvious grade ≥3 treatment-related adverse events (TRAEs). In PD-L1-high cohort, IO + Anti-angio + Chemo seemed to be the best mode for OS, PFS, and ORR according to the ranking profiles. In PD-L1-intermediate and PD-L1-negative cohort, IO + IO + Chemo was inclined to be ranked first for prolonging OS (probability = 78%; 37%) and IO + Anti-angio + Chemo was most likely to provide best PFS (probability = 96%; 100%). CONCLUSION IO + IO + Chemo has great potential to improve the OS regardless of histology type, especially in PD-L1-intermediate and PD-L1-negative cohort. IO + Anti-angio + Chemo shows great superiority in improving the short-term survival accompanied by increasing grade ≥3 TRAEs.
Collapse
Affiliation(s)
- Ziyang Mao
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiP.R. China
| | - Panpan Jiang
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiP.R. China
| | - Yajuan Zhang
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiP.R. China
| | - Yanlin Li
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiP.R. China
| | - Xiaohui Jia
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiP.R. China
| | - Qinyang Wang
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiP.R. China
| | - Min Jiao
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiP.R. China
| | - Lili Jiang
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiP.R. China
| | - Yuan Shen
- Department of Epidemiology and BiostatisticsSchool of Public HealthXi'an Jiaotong University Health Science CenterXi’anShaanxiP.R. China
| | - Hui Guo
- Department of Medical OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxiP.R. China
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong UniversityMinistry of Education of ChinaXi'anShaanxiP.R. China
- Centre for Translational MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiP.R. China
| |
Collapse
|
21
|
Peng JH, Tai Y, Zhao YX, Luo BJ, Ou QJ, Pan ZZ, Zhang L, Lu ZH. Programmed death-ligand 1 expression in the tumour stroma of colorectal liver oligometastases and its association with prognosis after liver resection. Gastroenterol Rep (Oxf) 2021; 9:443-450. [PMID: 34733530 PMCID: PMC8560040 DOI: 10.1093/gastro/goaa077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/09/2022] Open
Abstract
Background The clinical value of programmed death-ligand 1 (PD-L1) expression in colorectal liver oligometastases (CLOs) remains undefined. This study aimed to detect PD-L1 in the microenvironment of CLOs and determine its association with patient prognosis. Methods We collected 126 liver-resection specimens from CLO patients who underwent curative liver resection between June 1999 and December 2016. Immunohistochemistry (IHC) was performed to assess PD-L1 expression in paraffin-embedded specimens. Overall survival (OS) and recurrence-free survival (RFS) were analysed using the Kaplan–Meier method and log-rank test. Results PD-L1 was mainly expressed in the stroma of liver oligometastases. Patients with high PD-L1 expression had a higher proportion of clinical-risk scores (CRSs) of 2–4 (67.7% vs 40.4%; P = 0.004). With a median 58-month follow-up, patients with high PD-L1 expression had a significantly lower 3-year OS rate (65.5% vs 92.7%; P = 0.001) and 3-year RFS rate (34.7% vs 83.8%; P < 0.001) than patients with low PD-L1 expression. Multivariate Cox analysis demonstrated that high PD-L1 expression (hazard ratio [HR] = 3.581; 95% confidence interval [CI] 2.301–9.972; P = 0.015), CRS 2–4 (HR = 6.960; 95% CI 1.135–42.689; P = 0.036) and increased preoperative CA19-9 (HR = 2.843; 95% CI 1.229–6.576; P = 0.015) were independent risk factors for OS. High PD-L1 expression (HR = 4.815; 95% CI 2.139–10.837; P < 0.001) and lymph-node metastasis (HR = 2.115; 95% CI 1.041–4.297; P = 0.038) were independent risk factors for RFS. Conclusion This study found that PD-L1 was commonly expressed in the tumour stroma of CLOs and high PD-L1 expression was associated with poor prognosis.
Collapse
Affiliation(s)
- Jian-Hong Peng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou, Guangdong, P. R. China
| | - Yi Tai
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou, Guangdong, P. R. China
| | - Yi-Xin Zhao
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou, Guangdong, P. R. China
| | - Bao-Jia Luo
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou, Guangdong, P. R. China
| | - Qing-Jian Ou
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou, Guangdong, P. R. China
| | - Zhi-Zhong Pan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou, Guangdong, P. R. China
| | - Lin Zhang
- Department of Clinical Laboratory, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P. R. China
| | - Zhen-Hai Lu
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine Guangzhou, Guangdong, P. R. China
| |
Collapse
|
22
|
Chen Z, Zhao N, Wang Q, Xi Y, Tian X, Wu H, Xu Y. PD-L1 Protein Expression and Gene Amplification Correlate with the Clinicopathological Characteristics and Prognosis of Lung Squamous Cell Carcinoma. Cancer Manag Res 2021; 13:6365-6375. [PMID: 34408496 PMCID: PMC8366785 DOI: 10.2147/cmar.s309946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/10/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose To investigate PD-L1 protein expression and gene amplification in lung squamous cell carcinoma (LUSC) and analyse their correlation with the clinicopathological characteristics and prognosis of LUSC patients. Patients and Methods Tissue samples from 164 LUSC patients were collected. PD-L1 protein was detected by immunochemistry (IHC), and PD-L1 gene amplification was investigated by fluorescence in situ hybridization in LUSC patients. Results The positive expression rate of PD-L1 in LUSC was 47.6% (78/164), and the amplification rate of PD-L1 was 6.7% (11/164); both rates were higher than those of paratumor tissue. Both PD-L1 positive expression and gene amplification were correlated with clinical stage and lymph node metastasis (P<0.05). PD-L1 protein expression, PD-L1 gene amplification, late stage, lymph node metastasis and distant metastasis were significantly correlated with the prognosis of patients. Among these factors, late stage, lymph node metastasis, PD-L1 protein expression and PD-L1 gene amplification were independent prognostic factors for LUSC. Conclusion Positive PD-L1 protein expression and gene amplification are involved in the malignant progression and metastasis of LUSC. Both PD-L1 protein expression and gene amplification are associated with poor prognosis.
Collapse
Affiliation(s)
- Zhenwen Chen
- Department of Pathology, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi Province, People's Republic of China.,Department of Pathology, Shanxi Fenyang Hospital, Fenyang, Shanxi Province, People's Republic of China
| | - Ning Zhao
- Department of Pathology, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi Province, People's Republic of China
| | - Qi Wang
- Department of Pathology, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi Province, People's Republic of China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital (Shanxi Institute of Oncology), Taiyuan, Shanxi Province, People's Republic of China
| | - Xiaoai Tian
- Department of Pathology, Shanxi Fenyang Hospital, Fenyang, Shanxi Province, People's Republic of China
| | - Huiwen Wu
- Department of Pathology, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi Province, People's Republic of China
| | - Yirong Xu
- Department of Pathology, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi Province, People's Republic of China.,Department of Pathology, Shanxi Fenyang Hospital, Fenyang, Shanxi Province, People's Republic of China
| |
Collapse
|
23
|
Liu Y, Wu A, Li X, Wang S, Fang S, Mo Y. Retrospective analysis of eleven gene mutations, PD-L1 expression and clinicopathological characteristics in non-small cell lung cancer patients. Asian J Surg 2021; 45:367-375. [PMID: 34325991 DOI: 10.1016/j.asjsur.2021.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES To investigate the associations among expression of programmed cell death ligand 1 (PD-L1), eleven mutated genes, and clinicopathological characteristics in 273 patients with non-small cell lung cancer (NSCLC). METHODS We retrospectively examined tumor PD-L1 expression in 247 surgically resected primary and 26 advanced NSCLC patients by immunohistochemistry using SP263 antibody assay. Gene mutations of EGFR, TP53, KRAS, PIK3CA, ERBB2, MET, RET, ALK, BRAF, ROS1, and APC were examined by NGS sequence. Data analysis was carried out using SPSS 22.0. The associations among PD-L1 expression, eleven mutated genes and clinicopathological characteristics were assessed by univariate and multivariate analysis. RESULTS Among the total 273 patients, 68 (24.9%) patients were positive for PD-L1 expression. Data showed that mutated rate of EGFR gene was the highest with 63.0% (172/273), followed by TP53 (11.7%, 32/273) and KRAS (5.5%, 15/273). The female, non-smoker, and patients with adenocarcinoma (ADC) were more likely to have EGFR mutations. Multivariate logistic regression showed that PD-L1 expression was significantly associated with Non-ADC, lymphatic invasion, EGFR wild type and TP53 mutation (p = 0.041, <0.001, 0.004 and 0.014, respectively). Moreover, PD-L1 expression in adenocarcinoma was associated with lymphatic invasion, mutation of TP53 and KRAS gene (p = 0.012, <0.025 and 0.041, respectively). CONCLUSIONS Mutations of EGFR, KRAS and TP53 should be routinely detected in clinical practice to better guide the immunotherapy for NSCLC patients. Future investigations are warranted to illustrate the potential mechanisms between driver mutations and PD-L1 expression for guiding immunotherapy in patients with NSCLC.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, Zhejiang, China.
| | - Aihua Wu
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Xinjian Li
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Shanshan Wang
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Shuyu Fang
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yijun Mo
- Department of Clinical Laboratory, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
24
|
Xiao G, Liu Z, Gao X, Wang H, Peng H, Li J, Yang L, Duan H, Zhou R. Immune checkpoint inhibitors for brain metastases in non-small-cell lung cancer: from rationale to clinical application. Immunotherapy 2021; 13:1031-1051. [PMID: 34231370 DOI: 10.2217/imt-2020-0262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Brain metastases (BM) is common in non-small-cell lung cancer (NSCLC) patients. Immune checkpoint inhibitors (ICIs) have gradually become a routine treatment for NSCLC BM patients. Currently, three PD-1 inhibitors (pembrolizumab, nivolumab and cemiplimab), one PD-L1 inhibitor (atezolizumab) and one CTLA-4 inhibitor (ipilimumab) have been approved for the first-line treatment of metastatic NSCLC. It is still controversial whether PD-L1, tumor infiltrating lymphocytes, and tumor mutation burden can be used as predictive biomarkers for immune checkpoint inhibitors in NSCLC patients with BM. In addition, clinical data on NSCLC BM were inadequate. Here, we review the theoretical basis and clinical data for the application of ICIs in the therapy of NSCLC BM.
Collapse
Affiliation(s)
- Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhiyuan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xuan Gao
- Geneplus-Beijing, Beijing, 102205, China
| | - Han Wang
- Geneplus-Beijing, Beijing, 102205, China
| | - Haiqin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiahui Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lei Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Hexin Duan
- Department of Oncology Xiangxi Autonomous Prefecture People's Hospital, Jishou, 416000, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
25
|
Berele BA, Yang G, Wu T. Prognostic value of programmed cell death ligand-1 expression in the tumor-infiltrating immune cells of patients with lung cancer: A meta-analysis. Mol Clin Oncol 2021; 15:167. [PMID: 34194745 PMCID: PMC8237205 DOI: 10.3892/mco.2021.2329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/07/2021] [Indexed: 12/09/2022] Open
Abstract
Several studies have investigated the prognostic significance of programmed cell death ligand 1 (PD-L1)-positive expression in the tumor cells (TC) of patients with lung cancer. However, tumor-infiltrating immune cell (TIIC)-based PD-L1 expression and its prognostic value remain controversial. The present meta-analysis was performed on 11 studies comprising 2,685 patients, which were identified by a systematic search on the PubMed, PMC, Web of Science and Embase databases. The databases were searched for published articles up to October 30, 2020. The studies that evaluated overall survival (OS) or disease-free survival (DFS) expressed as hazard ratios (HRs) in the PD-L1 TIIC of patients with lung cancer were analyzed. All statistical analyses were conducted using Stata software, version 16.0. The results demonstrated that PD-L1 expression in TIICs was not associated with OS [HR=0.98; confidence interval (CI)=0.73-1.33; P=0.53] and DFS (HR=1.05; CI=0.63-1.77; P=0.42) for all the cohort included in the study. However, subgroup analysis revealed that PD-L1 TIICs were associated with improved OS in lung squamous cell carcinoma (HR=0.76; CI=0.58-0.99; P=0.04), while poorer DFS was observed in lung adenocarcinoma (HR=1.30; CI=1.19-1.43; P=0.008) and at the >1% staining cutoff value (HR=1.56; CI=1.12-2.16; P=0.03). However, poor OS (P=0.21) and DFS (P=0.14) were observed in Asian populations, while DFS (P=0.07) for only-membrane staining was not statistically significant. The results of the present study suggested that adding PD-L1 TIICs to the existing diagnostic algorithm may help to guide patient selection for anti-PD-1/PD-L1 therapy. Future large-scale studies are warranted for confirmation of the present findings.
Collapse
Affiliation(s)
- Birhanu Aberha Berele
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Guifang Yang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Ti Wu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
26
|
Brcic L, Klikovits T, Megyesfalvi Z, Mosleh B, Sinn K, Hritcu R, Laszlo V, Cufer T, Rozman A, Kern I, Mohorcic K, Jakopovic M, Samarzija M, Seiwerth S, Kolek V, Fischer O, Jakubec P, Škarda J, Gieszer B, Hegedus B, Fillinger J, Renyi-Vamos F, Buder A, Bilecz A, Berger W, Grusch M, Hoetzenecker K, Klepetko W, Hoda MA, Filipits M, Dome B. Prognostic impact of PD-1 and PD-L1 expression in malignant pleural mesothelioma: an international multicenter study. Transl Lung Cancer Res 2021; 10:1594-1607. [PMID: 34012777 PMCID: PMC8107750 DOI: 10.21037/tlcr-20-1114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/28/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Programmed cell death 1/programmed death ligand 1 (PD-1/PD-L1) immune-checkpoint blockade is a promising new therapeutic strategy in cancer. However, expression patterns and prognostic significance of PD-L1 and PD-1 are still controversial in human malignant pleural mesothelioma (MPM). METHODS Formalin-fixed paraffin-embedded (FFPE) tumor samples from 203 MPM patients receiving standard treatment without immunotherapy were collected from 5 European centers. PD-L1 and PD-1 expression of tumor cells (TCs) and tumor-infiltrating lymphocytes (TILs) were measured by immunohistochemistry and correlated with clinical parameters and long-term outcome. RESULTS High (>10%) PD-L1 TC and PD-1 TILs expressions were found in 18 (8%) and 39 (24%) patients, respectively. PD-L1 was rarely expressed by TILs [≥1%, n=13 (8%); >10%, n=1]. No significant associations were found between the PD-L1 or PD-1 expression of TCs or TILs and clinicopathological parameters such as stage or histological subtype. Notably, patients with high (>10%) TC-specific PD-L1 expression exhibited significantly worse median overall survival (OS) (6.3 vs. 15.1 months of those with low TC PD-L1 expression; HR: 2.51, P<0.001). In multivariate cox regression analysis adjusted for clinical parameters, high TC PD-L1 expression (>10%) proved to be an independent negative prognostic factor for OS (HR: 2.486, P=0.005). There was no significant correlation between PD-L1 or PD-1 expression of TILs and OS. CONCLUSIONS In this multicenter cohort study, we demonstrate that high (>10%) PD-L1 expression of TCs independently predicts worse OS in MPM. Further studies are warranted to investigate the value of PD-L1/PD-1 expression as a marker for treatment response in MPM patients receiving immunotherapy.
Collapse
Affiliation(s)
- Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Thomas Klikovits
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Berta Mosleh
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Katharina Sinn
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Richard Hritcu
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Viktoria Laszlo
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Tanja Cufer
- University Clinic for Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Ales Rozman
- University Clinic for Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Izidor Kern
- University Clinic for Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Katja Mohorcic
- University Clinic for Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Marko Jakopovic
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Miroslav Samarzija
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Vitezslav Kolek
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc, Olomouc, Czech Republic
| | - Ondřej Fischer
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc, Olomouc, Czech Republic
| | - Petr Jakubec
- Department of Respiratory Diseases and Tuberculosis, University Hospital Olomouc, Olomouc, Czech Republic
| | - Jozef Škarda
- Institute of Clinical and Molecular Pathology, Medical Faculty, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Pathology, University Hospital Ostrava and Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
| | - Balazs Gieszer
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| | - Balazs Hegedus
- Department of Thoracic Surgery, University Duisburg-Essen, Ruhrlandklinik, Essen, Germany
| | - Janos Fillinger
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Anna Buder
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Agnes Bilecz
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Martin Filipits
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| |
Collapse
|
27
|
Systemic Inflammation and Tumour-Infiltrating T-Cell Receptor Repertoire Diversity Are Predictive of Clinical Outcome in High-Grade B-Cell Lymphoma with MYC and BCL2 and/or BCL6 Rearrangements. Cancers (Basel) 2021; 13:cancers13040887. [PMID: 33672644 PMCID: PMC7924187 DOI: 10.3390/cancers13040887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary The current version of the World-Health-Organization (WHO) classification of tumors of hematopoietic and lymphoid tissues acknowledges the provisional entity of high-grade B-cell lymphoma, with MYC and BCL2 and/or BCL6 rearrangements (HGBL-DH/TH) which is associated with dire prognosis compared to triple-negative diffuse-large-B-cell-lymphoma (tnDLBCL). There is growing evidence for the essential prognostic role of the tumor-microenvironment (TME) and especially the extent of tumor-infiltration by the adaptive immune-system through tumor-infiltrating-lymphocytes (TIL) across a variety of cancers. More precisely, the clonal-architecture of the tumor-infiltrating T-cell-receptor (TCR)-repertoire has recently emerged as a key determinant of risk-stratification in patients with hematological malignancies. Moreover, inflammation-based prognostic-scores, such as the Glasgow-prognostic-score (GPS) were shown to reflect the TME. We therefore performed a large scale next-generation-sequencing (NGS) and clinicopathological study of the TCR-β-chain-repertoire in HGBL-DH/TH revealing several entity-exclusive clonotypes distinct from tnDLBCL, suggestive of tumor-neoantigen-selection and correlate our findings with the GPS in context of clinical outcome in HGBL-DH/TH. Abstract High-grade B-cell lymphoma, with MYC and BCL2 and/or BCL6 rearrangements (double/triple-hit high grade B-cell lymphoma, HGBL-DH/TH) constitutes a provisional entity among B-cell malignancies with an aggressive behavior and dire prognosis. While evidence for the essential prognostic role of the composition of the tumor-microenvironment (TME) in hematologic malignancies is growing, its prognostic impact in HGBL-DH/TH remains unknown. In this study, we outline the adaptive immune response in a cohort of 47 HGBL-DH/TH and 27 triple-negative diffuse large B-cell lymphoma (tnDLBCL) patients in a large-scale, next-generation sequencing (NGS) investigation of the T-cell receptor (TCR) β-chain repertoire and supplement our findings with data on the Glasgow-Prognostic Score (GPS) at diagnosis, as a score-derived measure of systemic inflammation. We supplement these studies with an immunophenotypic investigation of the TME. Our findings demonstrate that the clonal architecture of the TCR repertoire of HGBL-DH/TH differs significantly from tnDLBCL. Moreover, several entity-exclusive clonotypes, suggestive of tumor-neoantigen selection are identified. Additionally, both productive clonality and percentage of maximum frequency clone as measures of TCR repertoire diversity and tumor-directed activity of the adaptive immune system had significant impact on overall survival (OS; productive clonality: p = 0.0273; HR: 2.839; CI: 1.124–7.169; maximum productive frequency: p = 0.0307; HR: 2.167; CI: 1.074–4.370) but not PFS (productive clonality: p = 0.4459; maximum productive frequency: p = 0.5567) in HGBL-DH/TH patients, while GPS was a significant predictor of both OS and PFS (OS: p < 0.0001; PFS: p = 0.0002). Subsequent multivariate analysis revealed GPS and the revised international prognostic index (R-IPI) to be the only prognosticators holding significant impact for OS (GPS: p = 0.038; R-IPI: p = 0.006) and PFS (GPS: p = 0.029; R-IPI: p = 0.006) in HGBL-DH/TH. Through the identification of expanded, recurrent and entity-exclusive TCR-clonotypes we provide indications for a distinct subset of tumor-neoantigenic elements exclusively shared among HGBL-DH/TH. Further, we demonstrate an adverse prognostic role for both systemic inflammation and uniform adaptive immune response.
Collapse
|
28
|
Lee IH, Chen GY, Chien CR, Cheng JCH, Chen JLY, Yang WC, Chen JS, Hsu FM. A retrospective study of clinicopathologic and molecular features of inoperable early-stage non-small cell lung cancer treated with stereotactic ablative radiotherapy. J Formos Med Assoc 2021; 120:2176-2185. [PMID: 33451864 DOI: 10.1016/j.jfma.2020.12.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/04/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND/PURPOSE Stereotactic ablative radiotherapy (SABR) is the treatment of choice for medically inoperable, early-stage non-small cell lung cancer (ES-NSCLC). The influence of oncogenic driver alterations and comorbidities are not well known. Here we present treatment outcomes based on clinicopathologic features and molecular profiles. METHODS We retrospectively analyzed patients treated with SABR for inoperable ES-NSCLC. Molecular features of oncogenic driver alterations included EGFR, ALK, and ROS1. Comorbidities were assessed using the age-adjusted Charlson Comorbidity Index (ACCI). Survival was calculated using the Kaplan-Meier method. The Cox regression model was performed for univariate and multivariate analyses of prognostic factors. Competing risk analysis was used to evaluate the cumulative incidence of disease progression. RESULTS From 2008 to 2020, 100 patients (median age: 82 years) were enrolled. The majority of patients were male (64%), ever-smokers (60%), and had adenocarcinoma (65%). With a median follow-up of 21.5 months, the median overall survival (OS) and real-world progression-free survival were 37.7 and 25.1 months, respectively. The competing-risk-adjusted 3-year cumulative incidences of local, regional, and disseminated failure were 8.2%, 14.5%, and 31.2%, respectively. An ACCI ≥7 was independently associated with inferior OS (hazard ratio [HR] 2.45, p = 0.03). Tumor size ≥4 cm (HR 4.16, p < 0.001) was the most important independent prognostic factor predicting real-world progression. EGFR mutation status had no impact on the outcomes. CONCLUSION SABR provides excellent local control in ES-NSCLC, although disseminated failures remains a major concern. ACCI is the best indicator for OS, while tumor sizes ≥4 cm predicts poor disease control.
Collapse
Affiliation(s)
- I-Han Lee
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Guann-Yiing Chen
- Department of Medical Imaging, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan
| | - Chun-Ru Chien
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Department of Radiation Oncology, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Jason Chia-Hsien Cheng
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jenny Ling-Yu Chen
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Chi Yang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Shing Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
29
|
Cardona AF, Ruiz-Patiño A, Arrieta O, Ricaurte L, Zatarain-Barrón ZL, Rodriguez J, Avila J, Rojas L, Recondo G, Barron F, Archila P, Sotelo C, Bravo M, Zamudio N, Corrales L, Martín C, Rolfo C, Viola L, Carranza H, Vargas C, Otero J, Bermudez M, Gamez T, Pino LE, Rosell R. Genotyping Squamous Cell Lung Carcinoma in Colombia (Geno1.1-CLICaP). Front Oncol 2021; 10:588932. [PMID: 33384957 PMCID: PMC7771515 DOI: 10.3389/fonc.2020.588932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/10/2020] [Indexed: 11/29/2022] Open
Abstract
Background Lung cancer is a public health problem, and squamous cell carcinoma (SCC) is the second most prevalent subtype of this neoplasm. Compared to other subtypes, including adenocarcinoma, SCC is less well understood in terms of molecular pathogenesis, limiting therapeutic options among targeted agents approved for other disease subgroups. In this study, we sought to characterize the SCC genomic profile using a validated Next Generation Sequencing (NGS) platform. Methods The comprehensive NGS assay (TruSight Tumor 170) was used in order to target the full coding regions of 170 cancer-related genes on SCC samples. PD-L1 expression in tumor cells (TCs) was assessed using clone 22C3 (Dako). Clinical outcomes were correlated with molecular profile, including progression free survival (PFS), overall response rate (ORR), and overall survival (OS). Results A total of 26 samples were included, median age was 67 years (r, 33–83) and 53.8% were men. Tobacco consumption was identified in all subjects (mean 34-year package). For first-line treatment 80.8% of patients received cisplatin or carboplatin plus gemcitabine. In terms of molecular profile, we identified a high prevalence of inactivating mutations in TP53 (61.5%), PIK3CA (34.6%), MLL2 (34.6%), KEAP1 (38.4%), and NOTCH1 (26.9%). PD-L1 expression ranged from negative, 1, 2–49, and ≥50% in 23.1, 38.5, 26.9, and 11.5%, respectively. Interestingly, the genetic alterations did not have an effect in PFS, OS or ORR in this study. However, PDL1 expression was higher among those who had mutations in TP53 (p = 0.037) and greater expression of PDL1 was related to PIK3CA alterations (p = 0.05). Conclusions The genomic profile of SCC encompasses important genes including TP53, PIK3CA and KEAP1. TP53 mutations could be associated with PDL1 expression, generating hypothesis regarding specific treatment options.
Collapse
Affiliation(s)
- Andrés F Cardona
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia.,Department of Medical Oncology, Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia
| | - Alejandro Ruiz-Patiño
- Department of Medical Oncology, Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), México City, México
| | - Luisa Ricaurte
- Department of Medical Oncology, Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia
| | | | - July Rodriguez
- Department of Medical Oncology, Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Jenny Avila
- Department of Medical Oncology, Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Leonardo Rojas
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia.,Oncology Department, Clínica Colsanitas, Bogotá, Colombia
| | - Gonzalo Recondo
- Thoracic Oncology Section, Centro de Educación Médica e Investigaciones Clínicas - CEMIC, Buenos Aires, Argentina
| | - Feliciano Barron
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), México City, México
| | - Pilar Archila
- Department of Medical Oncology, Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia
| | - Carolina Sotelo
- Department of Medical Oncology, Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Melissa Bravo
- Department of Medical Oncology, Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia
| | - Nataly Zamudio
- Department of Medical Oncology, Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia
| | - Luis Corrales
- Oncology Department, Hospital San Juan de Dios, San José Costa Rica, Costa Rica
| | - Claudio Martín
- Medical Oncology Group, Fleming Institute, Buenos Aires, Argentina
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Lucia Viola
- Thoracic Oncology Unit, Fundación Neumológica Colombiana, Bogotá, Colombia
| | - Hernán Carranza
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia.,Department of Medical Oncology, Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Carlos Vargas
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia.,Department of Medical Oncology, Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Jorge Otero
- Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia.,Department of Medical Oncology, Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Maritza Bermudez
- Department of Medical Oncology, Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Tatiana Gamez
- Department of Medical Oncology, Foundation for Clinical and Applied Cancer Research - FICMAC, Bogotá, Colombia.,Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá, Colombia
| | - Luis Eduardo Pino
- Department of Medical Oncology, Fundación Santa Fé de Bogotá, Bogotá, Colombia
| | - Rafael Rosell
- Department of Medical Oncology, Catalan Institute of Oncology, Barcelona, Spain
| |
Collapse
|
30
|
Yue Y, Zhao X. Melanin-Like Nanomedicine in Photothermal Therapy Applications. Int J Mol Sci 2021; 22:E399. [PMID: 33401518 PMCID: PMC7795111 DOI: 10.3390/ijms22010399] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Photothermal therapy (PTT) mediated by nanomaterial has become an attractive tumor treatment method due to its obvious advantages. Among various nanomaterials, melanin-like nanoparticles with nature biocompatibility and photothermal conversion properties have attracted more and more attention. Melanin is a natural biological macromolecule widely distributed in the body and displays many fascinating physicochemical properties such as excellent biocompatibility and prominent photothermal conversion ability. Due to the similar properties, Melanin-like nanoparticles have been extensively studied and become promising candidates for clinical application. In this review, we give a comprehensive introduction to the recent advancements of melanin-like nanoparticles in the field of photothermal therapy in the past decade. In this review, the synthesis pathway, internal mechanism and basic physical and chemical properties of melanin-like nanomaterials are systematically classified and evaluated. It also summarizes the application of melanin-like nanoparticles in bioimaging and tumor photothermal therapy (PTT)in detail and discussed the challenges they faced in clinical translation rationally. Overall, melanin-like nanoparticles still have significant room for development in the field of biomedicine and are expected to applied in clinical PTT in the future.
Collapse
Affiliation(s)
- Yale Yue
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiao Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China;
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Auliac JB, Guisier F, Bizieux A, Assouline P, Bernardini M, Lamy R, Justeau G, François G, Damotte D, Chouaïd C. Impact of Programmed Death Ligand 1 Expression in Advanced Non-Small-Cell Lung Cancer Patients, Treated by Chemotherapy (GFPC 06-2015 Study). Onco Targets Ther 2020; 13:13299-13305. [PMID: 33408480 PMCID: PMC7779294 DOI: 10.2147/ott.s288825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/17/2020] [Indexed: 11/23/2022] Open
Abstract
Background Few data have been published on the clinical and histopathological characteristics of advanced non-small–cell lung cancer (NSCLC) patients with high PD-L1 expression versus intermediate or none and the prognostic value of PD-L1 expression for patients treated with chemotherapy is unknown. This study was undertaken to prospectively assess the prognostic value of tumor-cell (TC) and immune-cell (IC) PD-L1 expressions for advanced NSCLC patients. Methods It was a prospective, multicenter study on advanced NSCLC patients, with performance status 0/1, scheduled, consecutively, to receive first-line platin-based chemotherapy. PD-L1 expression was determined immunochemically (Dako Autostainer and monoclonal antibody 22C3) and its impact on progression-free survival (PFS) and overall survival (OS) assessed. Results Among 198 patients screened in 19 centers, 140 were included median age: 66.5 ± 10 years; 76.4% men; 79.3% Caucasians; 10.7% nonsmokers; 63.6% adenocarcinomas; <1%, 1–50% and ≥50% TC PD-L1–expression rates were 47.1%, 25.7% and 27.2% of patients, respectively; respective null, intermediate and high rates on ICs were 35.7%, 38.6% and 25.7%. Second- and third-line chemotherapies were administered to 58.6% and 26.4% of the patients, respectively. None received immunotherapy. First-, second- and third-line median (95% CI) PFS lasted 4.6 (3.6–5.2), 3.7 (2.3–4.7) and 2.2 (1.5–4.3) months, respectively; median OS was 16.9 (11.4–19.9) months. No significant PFS and OS differences were observed according to TC or IC PD-L1 expression. Conclusion According to the results of this prospective, multicenter study, neither TC nor IC PD-L1 expression appears to be prognostic for chemotherapy-managed advanced NSCLC patients.
Collapse
Affiliation(s)
- Jean-Bernard Auliac
- Pneumology Department, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Florian Guisier
- Pulmonology, Thoracic Oncology and Respiratory Department, Rouen University Hospital, Rouen, France
| | - Acya Bizieux
- Pneumology Department, Centre Hospitalier de Vendée, La Roche-sur-Yon, France
| | - Pascal Assouline
- Pneumology Department, Centre Hospitalier de Bligny, Bligny, France
| | - Marie Bernardini
- Pneumology Department, Centre Hospitalier d'Aix-En-Provence, Aix-en-Provence, France
| | - Régine Lamy
- Pneumology Department, Centre Hospitalier de Bretagne-Sud, Lorient, France
| | - Grégoire Justeau
- Pneumology Department, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Geraldine François
- Pneumology Department, Centre Hospitalier Universitaire d'Amiens, Amiens, France
| | - Diane Damotte
- Department of Pathology, Hôpital Cochin, APHP, Paris, France.,University Paris Descartes, Paris, France
| | - Christos Chouaïd
- Pneumology Department, Centre Hospitalier Intercommunal de Créteil, Créteil, France.,Inserm U955, UPEC, IMRB, Équipe CEpiA, Créteil, France
| |
Collapse
|
32
|
Sahinli H, Akyürek N, Yılmaz M, Kandemir O, Duran AO, Kulaçoğlu S, Uçar G, Acar E, Özet A, Gümüş M, Ç Öksüzoğlu ÖB, Özdemir NY. PD-L1 expression in immune cells is a favorable prognostic factor for nasopharyngeal carcinoma. Indian J Cancer 2020; 58:561-566. [PMID: 33402600 DOI: 10.4103/ijc.ijc_459_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Programmed death-ligand 1 (PD-L1) has been determined as a reliable prognostic factor for various malignancies. In this study, we aimed to determine the prognostic effect of PD-L1 expression in tumor-infiltrating immune cells (TIICs) of nasopharyngeal carcinoma (NPC) patients. Methods Seventy patients diagnosed with non-metastatic NPC were included in the study. PD-L1 expression on immune cells was analyzed by immunohistochemical method. Patients were categorized into two groups according to the PD-L1 expression level in TIICs (level of PD-L1 staining ≥5% positive vs <5% negative). Results Median follow-up period was 34 months (range = 1 - 188). 1 and 2 years survival rate were found as 75% and 63% in PD-L1 negative TIICs group (47%), and 85% and 83% in PD-L1 positive TIICs group (53%), respectively. PD-L1 positivity in immune cells (ICs) was detected in 53% of the patients. The survival rate was found better in the PD- L1 positive group compared to the negative group (P = 0.049). Discussion In conclusion, the survival rate was found significantly better in the PD-L1 positive TIICs group, compared to the negative group.
Collapse
Affiliation(s)
- Hayriye Sahinli
- Department of Oncology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Nalan Akyürek
- Department of Pathology, Gazi University Medical Hospital, Ankara, Turkey
| | - Mukaddes Yılmaz
- Department of Oncology, Gazi University Medical University Hospital, Ankara, Turkey
| | - Olcay Kandemir
- Department of Pathology, Dr. Abdurrahman Yurtaslan Ankara Oncology Hospital, Ankara, Turkey
| | - Ayşe Ocak Duran
- Department of Oncology, Dr. Abdurrahman Yurtaslan Ankara Oncology Hospital, Ankara, Turkey
| | - Sezer Kulaçoğlu
- Department of Pathology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Gökhan Uçar
- Department of Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Elif Acar
- Department of Pathology, Gazi University Medical Hospital, Ankara, Turkey
| | - Ahmet Özet
- Department of Oncology, Gazi University Medical University Hospital, Ankara, Turkey
| | - Mahmut Gümüş
- Department of Oncology, Medical School of Istanbul Medipol University, Istanbul, Turkey
| | - Ö Berna Ç Öksüzoğlu
- Department of Oncology, Dr. Abdurrahman Yurtaslan Ankara Oncology Hospital, Ankara, Turkey
| | - Nuriye Y Özdemir
- Department of Oncology, Ankara Numune Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
33
|
Tian Y, Zhai X, Yan W, Zhu H, Yu J. Clinical outcomes of immune checkpoint blockades and the underlying immune escape mechanisms in squamous and adenocarcinoma NSCLC. Cancer Med 2020; 10:3-14. [PMID: 33230935 PMCID: PMC7826453 DOI: 10.1002/cam4.3590] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint blockades (ICBs) have changed the standard of care of squamous and adenocarcinoma non‐small cell lung cancer (NSCLC). Whereas detailed researches regarding ICBs in the two major histological subtypes are rare. In order to uncover the clinical efficacy differences between squamous and adenocarcinoma NSCLC and better understand the underlying immune‐regulatory mechanisms, we compared the survival benefits of ICBs between the two subtypes by revealing phase 3 randomized trials and attempted to uncover the immune‐regulatory discrepancy. Generally, compared with nonsquamous NSCLC, squamous NSCLC benefited more from ICBs in Keynote 024, CheckMate 026, CheckMate 227 and CheckMate 017 and similar in OAK, but less in Keynote 010 and PACIFIC. We revealed that the tumor mutation burden (TMB) level, the programmed cell death ligand 1 (PD‐L1) expression, tumor infiltrating lymphocytes (TILs) in the tumor microenvironment (TME), chemokines, and oncogenic driver alterations within the two subtypes may contributed to the clinical outcomes of ICBs. We prospected that the combinations of ICBs with chemotherapy, radiation therapy, and antiangiogenic therapy could be promising strategies to re‐immunize the less immunogenic tumors and further enhance the efficacy of ICBs.
Collapse
Affiliation(s)
- Yaru Tian
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Xiaoyang Zhai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Weiwei Yan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, China
| |
Collapse
|
34
|
Zhao Y, Shi F, Zhou Q, Li Y, Wu J, Wang R, Song Q. Prognostic significance of PD-L1 in advanced non-small cell lung carcinoma. Medicine (Baltimore) 2020; 99:e23172. [PMID: 33158004 PMCID: PMC7647545 DOI: 10.1097/md.0000000000023172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study aimed to investigate the prognostic value of PD-L1 in Chinese patients with non-small cell lung carcinoma (NSCLC).In this retrospective study, 97 patients with NSCLC were consecutively recruited. The expression profiling of PD-1, PD-L1, p53 and Ki-67 was detected by immunohistochemistry. Median survival time was estimated by Kaplan-Meier survival curve with log-rank test. Risk factors were evaluated by Cox Proportional Hazards regression models.The median tumor size was larger (3.5 cm) among patients with positive PD-L1 expression, compared to those with negative expression (2.0 cm; P < .01). Compared to those with negative PD-L1 expression, patients with positive PD-L1 expression had significantly higher rates of nerve invasion (26.3% vs 5.0%; P < .01), blood vessel invasion (47.4% vs 20.0%; P < .01) and lymph node metastasis (64.9% vs 27.5%; P < .01), more advanced tumor stage (P < .01) and Ki-67 index (P < .01). PD-L1 expression status was not significantly associated with disease-free (DFS) or overall survival (OS). However, for patients with advanced disease, PD-L1 positive expression was related to worse outcome (HR: 4.13; 95% CI: 1.06-16.12).Positive PD-L1 expression is associated with more aggressive pathological features and poorer prognosis in advanced stage NSCLC.
Collapse
Affiliation(s)
- Yanjie Zhao
- Department of Medical Oncology
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC
| | - Feng Shi
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University
| | - Quan Zhou
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yuchen Li
- Beijing Key Laboratory of Therapeutic Vaccines
| | | | | | - Qingkun Song
- Department of Clinical Epidemiology and Evidence-based Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Teramoto K, Igarashi T, Kataoka Y, Ishida M, Hanaoka J, Sumimoto H, Daigo Y. Biphasic prognostic significance of PD-L1 expression status in patients with early- and locally advanced-stage non-small cell lung cancer. Cancer Immunol Immunother 2020; 70:1063-1074. [PMID: 33113005 DOI: 10.1007/s00262-020-02755-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) expression on tumor cells is induced by interferon-gamma, suggesting the induction of an anti-tumor immune response. In turn, binding of PD-L1 to programmed cell death 1 (PD-1) triggers an immune checkpoint pathway that contributes to tumor growth. Though it remains to be elucidated, the clinical significance of PD-L1 expression might vary with tumor progression in non-small-cell lung cancer (NSCLC). Immunohistochemical analysis of PD-L1 was done in tumor specimens from patients who underwent radical surgery for stage I-IIIA NSCLC (n = 228). Tumor PD-L1 expression intensity was semi-quantitatively scored and its correlation with various clinicopathological features and postoperative relapse-free survival (RFS) was assessed relative to pathological stage. In stage I, postoperative RFS was significantly prolonged in patients with a high PD-L1 score compared with a low PD-L1 score, exhibiting 5-year relapse-free probabilities of 94.1% and 75.1%, respectively (P = 0.031). A multivariate analysis revealed that a high PD-L1 score was a prognostic factor of longer postoperative RFS (hazard ratio: 0.111, P = 0.033). Conversely, in stages II and IIIA, patients with a high PD-L1 score tended to suffer from postoperative tumor recurrence. In early-stage NSCLC, high tumor PD-L1 expression status represents a biomarker to predict good prognosis after radical surgery and may reflect the induction of an antitumor immune response. However, in locally advanced stage NSCLC, tumor PD-L1 expression status may reflect the execution of an immune checkpoint pathway and predicts the incidence of postoperative tumor recurrence.
Collapse
Affiliation(s)
- Koji Teramoto
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan. .,Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan. .,Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Tomoyuki Igarashi
- Department of Surgery, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Yoko Kataoka
- Department of Surgery, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Mitsuaki Ishida
- Department of Pathology and Laboratory Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Jun Hanaoka
- Department of Surgery, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Hidetoshi Sumimoto
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan.,Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan. .,Center for Advanced Medicine Against Cancer, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga, 520-2192, Japan. .,Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
36
|
Tang L, Chen N, He W, Zhou J, Zhang J, Lin Z, Wang Z, Hao J, Lin F. The clinicopathological features and prognosis of primary pulmonary lymphoepithelioma-like carcinoma: A systematic review and meta-analysis. PLoS One 2020; 15:e0240729. [PMID: 33064745 PMCID: PMC7567369 DOI: 10.1371/journal.pone.0240729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/02/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Primary pulmonary lymphoepithelioma-like carcinoma (PPLELC) was a sparse subtype of unclassified lung cancer. The clinicopathologic features, prognostic factors and multimodality treatment regimens of LELC remain inconclusive. We conducted this systematic review and meta-analysis to address this deficit in current knowledge. METHODS We searched PubMed, Embase, and Web of Science to filtrate studies investigating on clinical features and prognostic factors of LELC up to Sep 9th, 2020. Fixed and random effect models were generated to present the incorporated hazard ratios (HR) and odds ratios (OR) with 95% confidence intervals (CI). The quality and heterogeneity of the included studies were also evaluated carefully. RESULTS This systematic review and meta-analysis included 13 retrospective studies with a total of 1294 patients. The incidence of programmed cell death-ligand 1 (PD-L1) expression in PPLELC varied from 63.3% to 75.8%. Positive PD-L1 expression was more likely to be found in patients under 60 years old (OR = 2.16, 95%CI: 1.19-3.89, P = 0.01) and was associated with worse disease-free survival (DFS) compared with negative PD-L1 expression (HR = 2.99, 95%CI: 1.23-7.28, P = 0.02). The pooled results showed that stage was the prognostic factor for both overall survival (OS) and DFS. Moreover, a significantly better outcome of PPLELC was observed in men (HR = 0.56, 95%CI: 0.33-0.95, P = 0.03) and patients who received radiation (HR = 0.46, 95%CI: 0.22-0.96, P = 0.04). CONCLUSION PD-L1 expression was high in PPLELC patients. It was significantly associated with age under 60 and the unfavorable DFS. Stage and gender could be the prognostic factor for OS. Radiation could be the effective therapy for PPLELC.
Collapse
Affiliation(s)
- Liansha Tang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Nan Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenbo He
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jian Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jinjue Zhang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zhangyu Lin
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zihuai Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jianqi Hao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Lin
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
37
|
Rieken J, Bernard V, Witte HM, Peter W, Merz H, Olschewski V, Hertel L, Lehnert H, Biersack H, von Bubnoff N, Feller AC, Gebauer N. Exhaustion of tumour-infiltrating T-cell receptor repertoire diversity is an age-dependent indicator of immunological fitness independently predictive of clinical outcome in Burkitt lymphoma. Br J Haematol 2020; 193:138-149. [PMID: 32945554 DOI: 10.1111/bjh.17083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022]
Abstract
Burkitt lymphoma (BL) is an aggressive B-cell-malignancy derived from germinal-centre B-cells. Curative therapy traditionally requires intensive immunochemotherapy. Recently, immuno-oncological approaches, modulating the T-cell tumour response, were approved for the treatment of a variety of malignancies. The architecture of the tumour-infiltrating T-cell receptor (TCR) repertoire in BL remains insufficiently characterized. We therefore performed a large-scale, next-generation sequencing study of the complimentary-determining region (CDR)-3 region of the TCRβ chain repertoire in a large cohort of all epidemiological subtypes of BL (n = 82) and diffuse large B-cell lymphoma (DLBCL; n = 34). Molecular data were subsequently assessed for correlation with clinical outcome. Our investigations revealed an age-dependent immunoprofile in BL as in DLBCL. Moreover, we found several public clonotypes in numerous patients suggestive of shared tumour neoantigen selection exclusive to BL and distinct from DLBCL regardless of Epstein-Barr virus and/or human immunodeficiency virus status. Compared with baseline, longitudinal analysis unveiled significant repertoire restrictions upon relapse (P = 0·0437) while productive TCR repertoire clonality proved to be a useful indicator of both overall and progression-free-survival [OS: P = 0·0001; hazard ratio (HR): 6·220; confidence interval (CI): 2·263-11·78; PFS: P = 0·0025; HR: 3·086; CI: 1·555-7·030]. Multivariate analysis confirmed its independence from established prognosticators, including age at diagnosis and comorbidities. Our findings establish the clinical relevance of the architecture and clonality of the TCR repertoire and its age-determined dynamics in BL.
Collapse
Affiliation(s)
- Johannes Rieken
- Department of Haematology and Oncology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Veronica Bernard
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Haematopathology, Lübeck, Germany
| | - Hanno M Witte
- Department of Haematology and Oncology, University Hospital of Schleswig-Holstein, Luebeck, Germany.,Department of Haematology and Oncology, Federal Armed Hospital Ulm, Ulm, Germany
| | - Wolfgang Peter
- HLA Typing Laboratory of the Stefan-Morsch-Foundation, Birkenfeld, Germany
| | - Hartmut Merz
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Haematopathology, Lübeck, Germany
| | - Vito Olschewski
- Department of Haematology and Oncology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Lars Hertel
- Department of Neuro- and Bioinformatics, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Harald Biersack
- Department of Haematology and Oncology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Nikolas von Bubnoff
- Department of Haematology and Oncology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Alfred C Feller
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Haematopathology, Lübeck, Germany
| | - Niklas Gebauer
- Department of Haematology and Oncology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| |
Collapse
|
38
|
Tuminello S, Sikavi D, Veluswamy R, Gamarra C, Lieberman-Cribbin W, Flores R, Taioli E. PD-L1 as a prognostic biomarker in surgically resectable non-small cell lung cancer: a meta-analysis. Transl Lung Cancer Res 2020; 9:1343-1360. [PMID: 32953509 PMCID: PMC7481631 DOI: 10.21037/tlcr-19-638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background PD-L1 tumor expression has been associated with poor prognosis in a variety of solid tumors, including lung cancer, and represents a validated target for immune checkpoint inhibition in advanced malignances. It remains unknown, however, if PD-L1 can be used to predict survival in early stage, surgically treated cancers. This meta-analysis compares PD-L1 tumor expression and long term survival after surgical resection in early non-small cell lung cancer (NSCLC). Methods PubMed was searched to identify eligible studies that compared survival of surgically resected stage I–III NSCLC patients according to PD-L1 tumor expression. Included studies were grouped according to measurement criteria of PD-L1 expression: 1%, 5%, 50% cutoffs or H-score. Meta-analysis was performed using a linear mixed-effects model to determine overall survival (OS). I2 was used as a measure of heterogeneity. Results There were 40 eligible studies, including 10,380 patients. Regardless of cut-off used, higher PD-L1 tumor expression was associated with worse OS [hazard ratio (HR)1%: 1.59, 95% confidence interval (CI), 1.17–2.17; HR5%: 1.44, 95% CI, 1.03–2.00; HR50%: 1.52, 95% CI, 1.02–2.25, HRH-score: 1.34, 95% CI, 1.04–1.73]. Study heterogeneity was low and not statistically significant under all PD-L1 cutoffs. Conclusions PD-L1 expression is consistently associated with worse survival, regardless of how it is quantified. In addition to acting as a prognostic biomarker, PD-L1 may also be used in future as a predictive biomarker for patients most likely to benefit from adjuvant immunotherapy.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Rajwanth Veluswamy
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cesar Gamarra
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wil Lieberman-Cribbin
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raja Flores
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
39
|
Variation of Programmed Death Ligand 1 Expression After Platinum-based Neoadjuvant Chemotherapy in Lung Cancer. J Immunother 2020; 42:215-220. [PMID: 31145232 PMCID: PMC6587215 DOI: 10.1097/cji.0000000000000275] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The effect of chemotherapy on programmed cell death-ligand 1 (PD-L1) expression has been previously studied in lung cancer, while the results remain controversial. The aim of this study was to investigate the variation of PD-L1 expression after neoadjuvant chemotherapy and explore the association between chemotherapy response, prognosis and the variation of PD-L1 expression in lung cancer patients. A total of 63 lung cancer patients who received platinum-based neoadjuvant chemotherapy and subsequently underwent surgical resection were selected. PD-L1 expression on tumor cells (TC) and tumor-infiltrating immune cells (IC) was assessed by immunohistochemistry using 22C3 monoclonal antibody in these 63 matched lung cancer specimens before and after neoadjuvant chemotherapy. The positivity of PD-L1 on TC changed from 17.5% to 39.7% after neoadjuvant chemotherapy and the positivity of PD-L1 on IC changed from 19.0% to 71.4% after neoadjuvant chemotherapy. The elevation of PD-L1 expression on TC after neoadjuvant chemotherapy was more frequently observed in patients achieving stable disease or progressive disease than in patients achieving partial response (P=0.026). Patients with elevated PD-L1 expression on TC after neoadjuvant chemotherapy showed a trend to have a shorter progression-free survival than patients without elevated PD-L1 expression on TC, although the difference was not statistically significant in multivariate analysis (hazard ratio=2.38, 95% confidence interval=0.99-5.73, P=0.053). PD-L1 expression can be elevated by chemotherapy in lung cancer. Furthermore, elevation of PD-L1 expression on TC after neoadjuvant chemotherapy was associated with reduced chemotherapy response and inferior progression-free survival in patients with lung cancer.
Collapse
|
40
|
Mandarano M, Bellezza G, Belladonna ML, Vannucci J, Gili A, Ferri I, Lupi C, Ludovini V, Falabella G, Metro G, Mondanelli G, Chiari R, Cagini L, Stracci F, Roila F, Puma F, Volpi C, Sidoni A. Indoleamine 2,3-Dioxygenase 2 Immunohistochemical Expression in Resected Human Non-small Cell Lung Cancer: A Potential New Prognostic Tool. Front Immunol 2020; 11:839. [PMID: 32536910 PMCID: PMC7267213 DOI: 10.3389/fimmu.2020.00839] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 2 (IDO2) is an analog of the tryptophan degrading and immunomodulating enzyme indoleamine 2,3-dioxygenase 1 (IDO1). Although the role of IDO1 is largely understood, the function of IDO2 is not yet well-elucidated. IDO2 overexpression was documented in some human tumors, but the linkage between IDO2 expression and cancer progression is still unclear, in particular in non-small cell lung cancer (NSCLC). Immunohistochemical expression and cellular localization of IDO2 was evaluated on 191 formalin-fixed and paraffin-embedded resected NSCLC. Correlations between IDO2 expression, clinical-pathological data, tumor-infiltrating lymphocytes (TILs), immunosuppressive tumor molecules (IDO1 and programmed cell death ligand-1 - PD-L1 -) and patients' prognosis were evaluated. IDO2 high expression is strictly related to high PD-L1 level among squamous cell carcinomas group (p = 0.012), to either intratumoral or mixed localization of TILs (p < 0.001) and to adenocarcinoma histotype (p < 0.001). Furthermore, a significant correlation between IDO2 high expression and poor non-small cell lung cancer prognosis was detected (p = 0.011). The current study reaches interesting knowledge about IDO2 in non-small cell lung cancer. The close relationship between IDO2 expression, PD-L1 increased levels, TILs localization and NSCLC poor prognosis, assumed IDO2 as a potential prognostic biomarker to be exploited for optimizing innovative combined therapies with immune checkpoint inhibitors.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adenocarcinoma/surgery
- Adult
- Aged
- Aged, 80 and over
- B7-H1 Antigen/metabolism
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/surgery
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/surgery
- Disease Progression
- Female
- Follow-Up Studies
- Humans
- Immunohistochemistry/methods
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/surgery
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Middle Aged
- Prognosis
Collapse
Affiliation(s)
- Martina Mandarano
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Guido Bellezza
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Maria Laura Belladonna
- Section of Pharmacology, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Jacopo Vannucci
- Department of Thoracic Surgery, Medical School, University of Perugia, Perugia, Italy
| | - Alessio Gili
- Section of Public Health, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Ivana Ferri
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| | | | - Vienna Ludovini
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Giulia Falabella
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| | - Giulio Metro
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Giada Mondanelli
- Section of Pharmacology, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Rita Chiari
- Medical Oncology, Ospedali Riuniti Padova sud, Padova, Italy
| | - Lucio Cagini
- Department of Thoracic Surgery, Medical School, University of Perugia, Perugia, Italy
| | - Fabrizio Stracci
- Section of Public Health, Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Umbria Cancer Registry, Perugia, Italy
| | - Fausto Roila
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Francesco Puma
- Department of Thoracic Surgery, Medical School, University of Perugia, Perugia, Italy
| | - Claudia Volpi
- Section of Pharmacology, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Angelo Sidoni
- Section of Anatomic Pathology and Histology, Department of Experimental Medicine, Medical School, University of Perugia, Perugia, Italy
| |
Collapse
|
41
|
Togo M, Yokobori T, Shimizu K, Handa T, Kaira K, Sano T, Tsukagoshi M, Higuchi T, Yokoo S, Shirabe K, Oyama T. Diagnostic value of 18F-FDG-PET to predict the tumour immune status defined by tumoural PD-L1 and CD8 +tumour-infiltrating lymphocytes in oral squamous cell carcinoma. Br J Cancer 2020; 122:1686-1694. [PMID: 32238919 PMCID: PMC7250916 DOI: 10.1038/s41416-020-0820-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/24/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lately, immune checkpoint proteins, such as programmed death 1 (PD-1) and its ligand-1 (PD-L1), have garnered attention as a new target in oral squamous cell carcinoma (OSCC). Reportedly, fluoro-D-glucose (FDG)-uptake alteration by anti-PD-1 antibody treatment depicts the response in patients with lung cancer. This study aims to elucidate the correlations between tumour immune status, clinicopathological factors, 18F-FDG-uptake and cold tumour phenotypes as low PD-L1 expression/low CD8+tumour-infiltrating lymphocytes (TILs) in OSCC. METHODS We performed immunohistochemical analysis of PD-L1, hypoxia-inducible factor 1 A (HIF-1A), glucose transporter type 1 (GLUT1), CD8, E-cadherin and Ki-67 on 59 operable OSCC samples. We assessed the correlations between these factors and preoperative 18F-FDG-uptake, clinicopathological characteristics and prognosis. RESULTS Low expression of PD-L1 in OSCC correlated with cancer aggressiveness, poor prognosis, high 18F-FDG-uptake with HIF-1A/GLUT1 and low E-cadherin expression and low CD8. Cold tumour phenotypes as low PD-L1 tumour cells and low stromal CD8 correlated with the poor prognosis, high 18F-FDG-uptake and E-cadherin suppression. Furthermore, the high level of preoperative 18F-FDG-uptake in OSCC was an independent predictor of the cold tumour immune status. CONCLUSIONS 18F-FDG-uptake is an independent predictor of cold tumour in OSCC. 18F-FDG-PET imaging could be a promising diagnostic tool to estimate tumour immune status.
Collapse
Affiliation(s)
- Maria Togo
- 0000 0000 9269 4097grid.256642.1Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma Japan
| | - Takehiko Yokobori
- 0000 0000 9269 4097grid.256642.1Department of Innovative Cancer Immunotherapy, Gunma University, Maebashi, Gunma Japan
| | - Kimihiro Shimizu
- 0000 0000 9269 4097grid.256642.1Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma Japan
| | - Tadashi Handa
- 0000 0000 9269 4097grid.256642.1Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma Japan
| | - Kyoichi Kaira
- 0000 0001 2216 2631grid.410802.fDepartment of Respiratory Medicine, Comprehensive Cancer Center, International Medical Center, Saitama Medical University, Hidaka, Saitama Japan
| | - Takaaki Sano
- 0000 0000 9269 4097grid.256642.1Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma Japan
| | - Mariko Tsukagoshi
- 0000 0000 9269 4097grid.256642.1Department of Innovative Cancer Immunotherapy, Gunma University, Maebashi, Gunma Japan
| | - Tetsuya Higuchi
- 0000 0000 9269 4097grid.256642.1Department of Diagnostic Radiology and Nuclear Medicine, Gunma University, Maebashi, Gunma Japan
| | - Satoshi Yokoo
- 0000 0000 9269 4097grid.256642.1Department of Oral and Maxillofacial Surgery and Plastic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma Japan
| | - Ken Shirabe
- 0000 0000 9269 4097grid.256642.1Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma Japan
| | - Tetsunari Oyama
- 0000 0000 9269 4097grid.256642.1Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma Japan
| |
Collapse
|
42
|
Zhou F, Wang X, Liu F, Meng Q, Yu Y. FAM83A drives PD-L1 expression via ERK signaling and FAM83A/PD-L1 co-expression correlates with poor prognosis in lung adenocarcinoma. Int J Clin Oncol 2020; 25:1612-1623. [PMID: 32430734 DOI: 10.1007/s10147-020-01696-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE The purpose of this research was to explore the correlation and prognostic significance of FAM83A and programmed cell death-ligand 1 (PD-L1) protein expression in patients with lung adenocarcinoma (LUAD). METHODS A total of 130 LUAD specimens and 50 normal lung tissue specimens were analyzed for both FAM83A and PD-L1 expression by immunohistochemistry (IHC) analysis. The effect of FAM83A on PD-L1 and ERK pathway was evaluated by RT-PCR and western blot in vitro. RESULTS Both FAM83A and PD-L1 were upregulated in patients with LUAD and co-expression of them was significantly associated with tumor stage, metastasis and worse survival in LUAD. Multivariate cox regression analysis revealed that co-expression of FAM83A and PD-L1 was an independent prognostic factor impacting survival. Moreover, experiments in vitro showed FAM83A could promote the expression of PD-L1 through the ERK pathway. CONCLUSION FAM83A and PD-L1 may be potential therapeutic targets for LUAD. Co-expression of FAM83A and PD-L1 in tumor cells was a credible biomarker predictor for worse survival in resected cases. FAM83A may promote the expression of PD-L1 through ERK signaling pathway, thus causing immune escape of tumor.
Collapse
Affiliation(s)
- Fengrui Zhou
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Xin Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
43
|
Qin T, Xia J, Liu S, Wang J, Liu H, Zhang Y, Jia Y, Li K. Clinical importance of VEGFC and PD-L1 co-expression in lung adenocarcinoma patients. Thorac Cancer 2020; 11:1139-1148. [PMID: 32154654 PMCID: PMC7180596 DOI: 10.1111/1759-7714.13354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/20/2020] [Accepted: 01/24/2020] [Indexed: 12/25/2022] Open
Abstract
Background Vascular endothelial growth factor C (VEGFC), an activator of lymphangiogenesis, is newly identified as an immunomodulator which can regulate the immune system so that tumor cells more easily escape immune surveillance. Evidence has shown programmed cell death‐ligand 1 (PD‐L1) can also suppress the immune response. Nevertheless, the clinical significance of co‐expression of VEGFC and PD‐L1 for predicting outcomes in patients with lung adenocarcinoma has not yet been determined. Methods A total of 114 patients with lung adenocarcinoma who underwent surgeries at Tianjin Medical University Cancer Institute and Hospital between December 2011 and September 2016 were retrospectively reviewed. Tissue specimens were collected for immunohistochemistry of VEGFC and PD‐L1 which were analyzed with an H‐score system. Results In this study, 57 (50.0%) and 47 (41.2%) patients were classified as VEGFC high expression and PD‐L1 high expression. Co‐expression was observed in 33 (28.9%) patients. In addition, a positive correlation was found between VEGFC and PD‐L1 (P = 0.0398, r = 0.1937). In a univariate analysis, both progression‐free survival (PFS) and overall survival (OS) were significantly worse in the VEGFC high expression group and the PD‐L1 high expression group, respectively. Furthermore, VEGFC/PD‐L1 co‐expression showed a worse OS (P = 0.03) and PFS survival (P = 0.01) than the other groups. Conclusions Taken together, these results indicate that VEGFC/PD‐L1 co‐expression can forecast both poor OS and PFS in patients with resected lung adenocarcinoma. Co‐expression of VEGFC and PD‐L1 may serve as a significant prognostic factor for patients with lung adenocarcinoma. Key points VEGFC/PD‐L1 co‐expression forecasts poor survival in patients with resected lung adenocarcinoma. VEGFC/PD‐L1 co‐expression may be used as a prognostic indicator and provide the theoretical possibility to screen the optimal population with a combination of anti‐VEGFC and anti‐PD‐L1 therapy in the clinical treatment.
Collapse
Affiliation(s)
- Tingting Qin
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Junling Xia
- Department of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Shaochuan Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Jing Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Hailin Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Yan Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Yanan Jia
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| | - Kai Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
44
|
Shima T, Shimoda M, Shigenobu T, Ohtsuka T, Nishimura T, Emoto K, Hayashi Y, Iwasaki T, Abe T, Asamura H, Kanai Y. Infiltration of tumor-associated macrophages is involved in tumor programmed death-ligand 1 expression in early lung adenocarcinoma. Cancer Sci 2020; 111:727-738. [PMID: 31821665 PMCID: PMC7004546 DOI: 10.1111/cas.14272] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) is an immune modulator that promotes immunosuppression by binding to programmed death-1 of T-lymphocytes. Although tumor cell PD-L1 expression has been shown to be associated with the clinical response to anti-PD-L1 antibodies, its concise regulatory mechanisms remain elusive. In this study, we evaluated the associations of tumor PD-L1 expression and immune cell infiltrating patterns in 146 cases of early lung adenocarcinoma (AC) to investigate the possible extrinsic regulation of tumor PD-L1 by immune cells. Using immunohistochemistry, cell surface PD-L1 expression in tumor cells was observed in 18.5% of stage 0-IA lung AC patients. Tumor PD-L1 positivity was significantly associated with stromal invasion, which was accompanied by increased tumor-associated macrophages (TAM), CD8+ cytotoxic T cells and FoxP3+ regulatory T cells. Among these immune cells, TAM and CD8+ T cells significantly accumulated in PD-L1-positive carcinoma cell areas, which showed a tumor cell nest-infiltrating pattern. Although CD8+ T cells are known to induce tumor PD-L1 expression via interferon-ɣ production, the increased TAM within tumors were also associated with tumor cell PD-L1 positivity, independently of CD8+ T cell infiltration. Our in vitro experiments revealed that PD-L1 expression in lung cancer cell lines was significantly upregulated by co-culture with M2-differentiated macrophages; expression of PD-L1 was reduced to baseline levels following treatment with a transforming growth factor-β inhibitor. These results demonstrated that tumor-infiltrating TAM are extrinsic regulators of tumor PD-L1 expression, indicating that combination therapy targeting both tumor PD-L1 and stromal TAM might be a possible strategy for effective treatment of lung cancer.
Collapse
Affiliation(s)
- Toshiyuki Shima
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.,Division of Thoracic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takao Shigenobu
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.,Division of Thoracic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Ohtsuka
- Division of Thoracic Surgery, Department of Surgery, Jikei University School of Medicine, Tokyo, Japan
| | | | - Katsura Emoto
- Division of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Yuichiro Hayashi
- Division of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Tatsuro Iwasaki
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takayuki Abe
- School of Data Science, Yokohama City University, Yokohama, Japan
| | - Hisao Asamura
- Division of Thoracic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
45
|
Li W, Qie J, Zhang Y, Chang J. Spatiotemporal Changes in Checkpoint Molecule Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:167-200. [PMID: 32185711 DOI: 10.1007/978-981-15-3266-5_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immune checkpoint inhibitors (ICIs), particularly PD-1/PD-L1 blockade, have led to therapeutic breakthrough in patients with advanced malignancy, covering the lung, breast, gastrointestinal, head and neck, urinary system, lymphoma, and solid tumor harboring MSI/dMMR. In certain cancer types, the expression level of immune checkpoint molecule will be required if the immune-based approaches are considered, especially the PD-L1 expression. However, in other types, survival benefit has been proven regardless of PD-L1 expression. It raises a question of how to select patients for immune therapy and whether the expression of immune checkpoint molecules will be optimal biomarkers. Before answering this question, a comprehensive map for the expression of immune checkpoint molecules is needed. In this chapter, we describe our current knowledge on the spatiotemporal changes in the expression of checkpoint molecules. We discuss the different frequencies of expression depending on tumor types and stages, the different patterns between primary and metastatic tumors, as well as the change of expression before and after treatment. The expression of PD-L1 has been most studied, but the threshold that separate "positive" and "negative" PD-L1 expressions and the consistency of testing platform remain under debate. Better understanding on the tumor microenvironment and expression of checkpoint molecules will help to identify patients who will benefit from checkpoint blockade therapy.
Collapse
Affiliation(s)
- Wenhua Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Jingbo Qie
- Institutes of Biomedical Sciences, Fudan University, 130 Dongan Road, Shanghai, 200032, China
| | - Yao Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jinjia Chang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| |
Collapse
|
46
|
Tuminello S, Veluswamy R, Lieberman-Cribbin W, Gnjatic S, Petralia F, Wang P, Flores R, Taioli E. Prognostic value of immune cells in the tumor microenvironment of early-stage lung cancer: a meta-analysis. Oncotarget 2019; 10:7142-7155. [PMID: 31903172 PMCID: PMC6935257 DOI: 10.18632/oncotarget.27392] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/05/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Early-stage non-small cell lung cancer (NSCLC) patients carry significant risk of recurrence post-surgery. In-depth characterization of the immune tumor microenvironment (TME) can have prognostic value. This study aimed to evaluate the association of individual immune cell types in the TME with clinical outcomes in surgically resected, early-stage NSCLC. METHODS We performed a systematic literature search of the National Library of Medicine database through November 2019, investigating predefined biomarkers (CD3+ T cells, CD4+ T helper cells, CD8+ cytotoxic T cells, CD20+ B cells, CD56+ & CD57+ Natural Killer (NK) cells, CD68+ Tissue Associated Macrophages (TAMS), FoxP3+ T regulatory cells, and Mast Cells (MC)), and their association with survival following PRISMA guidelines. RESULTS Studies that adjusted for important clinical covariates (such as stage and age) showed that higher levels of CD8+ cytotoxic T cells were associated with improved OS (HR = 0.68; 95% CI, 0.50-0.93) and DFS (HR = 0.60; 95% CI, 0.41-0.87), while increased CD20+ B cells (HR = 0.16; 95% CI, 0.04-0.64) and CD 56/57+ NK cells (HR = 0.50; 95% CI, 0.26-0.95) were associated with improved OS; lung cancers with increased FoxP3+ T regulatory cells (HR = 2.22; 95% CI, 1.47-3.34) had worse OS. CONCLUSIONS Immune cell components of the TME have prognostic value in early-stage, surgically resected NSCLC, and may reveal which patients are more likely to need additional systemic treatment, including immunotherapy. Clinical covariates need to be considered when evaluating the prognostic value of immune cells in the TME.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rajwanth Veluswamy
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wil Lieberman-Cribbin
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pei Wang
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raja Flores
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
47
|
Zhi X, Li W, Wang S, Wang J. [Advances in the Influence of EGFR Mutation on the PD-L1 Expression in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:779-785. [PMID: 31874674 PMCID: PMC6935036 DOI: 10.3779/j.issn.1009-3419.2019.12.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
近年来,有关程序性死亡受体1(programmed death-1, PD-1)及其配体(programmed death-1 ligand, PD-L1)抑制剂的研究取得突破性进展,迅速改变着非小细胞肺癌(non-small cell lung cancer, NSCLC)的治疗模式。但表皮生长因子受体(epidermal growth factor receptor, EGFR)突变患者应用PD-1/PD-L1抑制剂的治疗效果并不理想。既往研究显示,肿瘤细胞PD-L1表达率与免疫抑制剂治疗效果存在相关性。但目前EGFR突变对PD-L1表达的影响并不能达成一致。我们将对相关研究进行总结,以期对基础研究或临床治疗有所帮助。
Collapse
Affiliation(s)
- Xiaoyu Zhi
- Department of Medical Oncology, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Weiwei Li
- Department of Medical Oncology, the Hospital of 81st Group Army PLA, Zhangjiakou 075000, China
| | - Shaowei Wang
- Key Laboratory of Cancer Center, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jinliang Wang
- Department of Medical Oncology, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
48
|
Cao H, Wang Q, Gao Z, Yu Z, Wu Y, Lu Q. Programmed death-ligand 1 and survival in colorectal cancers: A meta-analysis. Int J Biol Markers 2019; 34:356-363. [PMID: 31564188 DOI: 10.1177/1724600819876952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Programmed death-ligand 1 (PD-L1) is a programmed death 1 (PD-1) ligand that plays a pivotal role in the inhibition of the T-cell-mediated immune response. The expression of PD-L1 is associated with the prognosis and clinical outcomes of multiple tumors. However, the prognostic value of PD-L1 overexpression in colorectal cancer is still controversial. In this study, we sought to clarify this by presenting a meta-analysis of relevant studies. METHODS Databases including PubMed, Web of Science, and EMBASE were systematically searched for studies concerning the expression of PD-L1 and survival in colorectal cancer. The reported hazard ratios (HR) with 95% confidence intervals (CI) of overall survival, disease-free survival, and recurrence-free survival in the included studies were analyzed by fixed effects/random effects models. RESULTS Fifteen studies involving 3078 patients with colorectal cancer were included in our meta-analysis. Overexpression of PD-L1 was found to be associated with poor overall survival (HR 1.83; 95% CI 1.21, 2.79; P = 0.005) and poor recurrence-free survival (HR 2.78; 95% CI 1.43, 5.42; P = 0.003). However, no correlation was found between PD-L1 overexpression and poor disease-free survival (HR 1.23; 95% CI 0.83, 1.82; P = 0.305). Overexpression of PD-L1 indicating poor survival held true across different geographical areas, sample sizes, analysis types, sources of HRs, and cell types. CONCLUSION Overexpression of PD-L1 is associated with worse prognosis in patients with colorectal cancer and can guide physicians in the application of PD-1/PD-L1 immune checkpoint-targeted therapy.
Collapse
Affiliation(s)
- Huihua Cao
- Department of General Surgery, The Third Affiliated Hospital of Soochow University and The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Qing Wang
- Department of General Surgery, The Third Affiliated Hospital of Soochow University and The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Zhenyan Gao
- Department of General Surgery, The Third Affiliated Hospital of Soochow University and The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Zhan Yu
- Department of General Surgery, The Third Affiliated Hospital of Soochow University and The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Yugang Wu
- Department of General Surgery, The Third Affiliated Hospital of Soochow University and The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Qicheng Lu
- Department of General Surgery, The Third Affiliated Hospital of Soochow University and The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| |
Collapse
|
49
|
Liu X, Zhong D. [Research Progress of Immune Checkpoint Inhibitor Therapy for BRAF Mutation
in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:583-589. [PMID: 31526463 PMCID: PMC6754571 DOI: 10.3779/j.issn.1009-3419.2019.09.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
在非小细胞肺癌(non-small cell lung cancer, NSCLC)患者中,约2%-4%有BRAF基因突变,该型肿瘤恶性程度高、化疗有效率低、预后差。尽管BRAF抑制剂及MEK抑制剂联合治疗在BRAF V600E突变的晚期NSCLC患者中成效显著,已被写入美国国家综合癌症网络(National Comprehensive Cancer Network, NCCN)指南,但两药联合副作用发生率高,耐药之后尚无有效治疗策略,且针对非V600E突变患者仍缺乏靶向治疗方案。本文将针对BRAF突变型NSCLC免疫标志物表达情况以及免疫检查点抑制剂(immune checkpoint inhibitor, ICI)疗效相关研究做一综述,为延长患者生存提供更多选择方案。
Collapse
Affiliation(s)
- Xia Liu
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
50
|
Teramoto K, Igarashi T, Kataoka Y, Ishida M, Hanaoka J, Sumimoto H, Daigo Y. Clinical significance of PD-L1-positive cancer-associated fibroblasts in pN0M0 non-small cell lung cancer. Lung Cancer 2019; 137:56-63. [PMID: 31546072 DOI: 10.1016/j.lungcan.2019.09.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Cancer-associated fibroblasts (CAFs) are a dominant cell type in tumor stroma and support the generation of pro-tumorigenic microenvironment. CAFs have frequent opportunities to interact with immune cells infiltrating the tumor stroma, but the process remains to be determined. In this study, we focused on immune checkpoint mechanism. We also examined the induction of programmed cell death-ligand 1 (PD-L1) on CAFs by immune cell, and the clinical significance of PD-L1-expressed CAFs in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS CAFs were isolated from human NSCLC tissues, and PD-L1 expression levels in CAFs were analyzed by real-time polymerase chain reaction and flow-cytometry. Following immunohistochemical analysis of PD-L1 in surgically resected pN0M0 NSCLC (n = 125, including 88 invasive adenocarcinomas and 37 squamous cell carcinomas), the correlation of PD-L1-positive CAFs with clinicopathological features was investigated. RESULTS PD-L1 mRNA and protein expression on CAFs was upregulated by exogenously supplemented interferon-gamma (IFN-γ) and downregulated through the depletion of IFN-γ. PD-L1 expression on CAFs was upregulated by co-culture with activated lymphocytes releasing IFN-γ. Immunohistochemistry revealed that PD-L1-positive CAFs were observed in 31 cases (24.8%). Postoperative relapse-free survival was significantly prolonged in patients with PD-L1-positive CAFs as compared with those with PD-L1-negative CAFs, with 5-year relapse-free probabilities of 84.5% and 66.3%, respectively (P = 0.031). Multivariate analysis revealed that PD-L1 expression on CAFs was an independent prognostic factor of longer relapse-free survival after surgery (hazard ratio: 3.225, P = 0.027). CONCLUSION PD-L1 expression on CAFs is reversibly regulated by environmental stimuli including IFN-γ from activated lymphocytes. In the non-metastatic NSCLC, PD-L1 expression on CAFs suggests the induction of anti-tumor immune responses, contributing to better prognosis after surgery.
Collapse
MESH Headings
- Adenocarcinoma of Lung/drug therapy
- Adenocarcinoma of Lung/immunology
- Adenocarcinoma of Lung/metabolism
- Adenocarcinoma of Lung/pathology
- Aged
- Aged, 80 and over
- Antiviral Agents/pharmacology
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Cancer-Associated Fibroblasts/drug effects
- Cancer-Associated Fibroblasts/immunology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Female
- Follow-Up Studies
- Humans
- Interferon-gamma/pharmacology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Male
- Middle Aged
- Neoplasm Grading
- Neoplasm Staging
- Survival Rate
- Tumor Cells, Cultured
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Koji Teramoto
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan; Center for Advanced Medicine against Cancer, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan; Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Tomoyuki Igarashi
- Department of Surgery, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Yoko Kataoka
- Department of Surgery, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Mitsuaki Ishida
- Department of Pathology and Laboratory Medicine, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Jun Hanaoka
- Department of Surgery, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Hidetoshi Sumimoto
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan; Center for Advanced Medicine against Cancer, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan
| | - Yataro Daigo
- Department of Medical Oncology and Cancer Center, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan; Center for Advanced Medicine against Cancer, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Shiga 520-2192, Japan; Center for Antibody and Vaccine Therapy, Research Hospital, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|